Due to the lack of accurate data and complex parameterization,the prediction of groundwater depth is a chal-lenge for numerical models.Machine learning can effectively solve this issue and has been proven useful in th...Due to the lack of accurate data and complex parameterization,the prediction of groundwater depth is a chal-lenge for numerical models.Machine learning can effectively solve this issue and has been proven useful in the prediction of groundwater depth in many areas.In this study,two new models are applied to the prediction of groundwater depth in the Ningxia area,China.The two models combine the improved dung beetle optimizer(DBO)algorithm with two deep learning models:The Multi-head Attention-Convolution Neural Network-Long Short Term Memory networks(MH-CNN-LSTM)and the Multi-head Attention-Convolution Neural Network-Gated Recurrent Unit(MH-CNN-GRU).The models with DBO show better prediction performance,with larger R(correlation coefficient),RPD(residual prediction deviation),and lower RMSE(root-mean-square error).Com-pared with the models with the original DBO,the R and RPD of models with the improved DBO increase by over 1.5%,and the RMSE decreases by over 1.8%,indicating better prediction results.In addition,compared with the multiple linear regression model,a traditional statistical model,deep learning models have better prediction performance.展开更多
With the intensive deployment of users and the drastic increase of traffic load, a millimeter wave (mmWave) backhaul network was widely investigated. A typical mmWave backhaul network consists of the macro base stat...With the intensive deployment of users and the drastic increase of traffic load, a millimeter wave (mmWave) backhaul network was widely investigated. A typical mmWave backhaul network consists of the macro base station (MBS) and the small base stations (SBSs). How to efficiently associate users with the MBS and the SBSs for load balancing is a key issue in the network. By adding a virtual power bias to the SBSs, more users can access to the SBSs to share the load of the MBS. The bias values shall be set reasonably to guarantee the backhaul efficiency and the quality of service (QoS). An improved Q-learning algorithm is proposed to effectively adjust the bias value for each SBS. In the proposed algorithm, each SBS becomes an agent with independent learning and can achieve the best behavior, namely the optimal bias value through a series of training. Besides, an improved behavior selection mechanism is adopted to improve the learning efficiency and accelerate the convergence of the algorithm. Finally, simulations conducted in the 60 GHz band demonstrate the superior performance of the proposed algorithm in backhaul efficiency and user outage probability.展开更多
针对无线传感器网络中存在的安全问题,提出了基于Q-Learning的分簇无线传感网信任管理机制(Q-learning based trust management mechanism for clustered wireless sensor networks,QLTMM-CWSN).该机制主要考虑通信信任、数据信任和能...针对无线传感器网络中存在的安全问题,提出了基于Q-Learning的分簇无线传感网信任管理机制(Q-learning based trust management mechanism for clustered wireless sensor networks,QLTMM-CWSN).该机制主要考虑通信信任、数据信任和能量信任3个方面.在网络运行过程中,基于节点的通信行为、数据分布和能量消耗,使用Q-Learning算法更新节点信任值,并选择簇内信任值最高的节点作为可信簇头节点.当簇中主簇头节点的信任值低于阈值时,可信簇头节点代替主簇头节点管理簇内成员节点,维护正常的数据传输.研究结果表明,QLTMM-CWSN机制能有效抵御通信攻击、伪造本地数据攻击、能量攻击和混合攻击.展开更多
For underwater robots in the process of performing target detection tasks,the color distortion and the uneven quality of underwater images lead to great difficulties in the feature extraction process of the model,whic...For underwater robots in the process of performing target detection tasks,the color distortion and the uneven quality of underwater images lead to great difficulties in the feature extraction process of the model,which is prone to issues like error detection,omission detection,and poor accuracy.Therefore,this paper proposed the CER-YOLOv7(CBAM-EIOU-RepVGG-YOLOv7)underwater target detection algorithm.To improve the algorithm’s capability to retain valid features from both spatial and channel perspectives during the feature extraction phase,we have added a Convolutional Block Attention Module(CBAM)to the backbone network.The Reparameterization Visual Geometry Group(RepVGG)module is inserted into the backbone to improve the training and inference capabilities.The Efficient Intersection over Union(EIoU)loss is also used as the localization loss function,which reduces the error detection rate and missed detection rate of the algorithm.The experimental results of the CER-YOLOv7 algorithm on the UPRC(Underwater Robot Prototype Competition)dataset show that the mAP(mean Average Precision)score of the algorithm is 86.1%,which is a 2.2%improvement compared to the YOLOv7.The feasibility and validity of the CER-YOLOv7 are proved through ablation and comparison experiments,and it is more suitable for underwater target detection.展开更多
The flow shop scheduling problem is important for the manufacturing industry.Effective flow shop scheduling can bring great benefits to the industry.However,there are few types of research on Distributed Hybrid Flow S...The flow shop scheduling problem is important for the manufacturing industry.Effective flow shop scheduling can bring great benefits to the industry.However,there are few types of research on Distributed Hybrid Flow Shop Problems(DHFSP)by learning assisted meta-heuristics.This work addresses a DHFSP with minimizing the maximum completion time(Makespan).First,a mathematical model is developed for the concerned DHFSP.Second,four Q-learning-assisted meta-heuristics,e.g.,genetic algorithm(GA),artificial bee colony algorithm(ABC),particle swarm optimization(PSO),and differential evolution(DE),are proposed.According to the nature of DHFSP,six local search operations are designed for finding high-quality solutions in local space.Instead of randomselection,Q-learning assists meta-heuristics in choosing the appropriate local search operations during iterations.Finally,based on 60 cases,comprehensive numerical experiments are conducted to assess the effectiveness of the proposed algorithms.The experimental results and discussions prove that using Q-learning to select appropriate local search operations is more effective than the random strategy.To verify the competitiveness of the Q-learning assistedmeta-heuristics,they are compared with the improved iterated greedy algorithm(IIG),which is also for solving DHFSP.The Friedman test is executed on the results by five algorithms.It is concluded that the performance of four Q-learning-assisted meta-heuristics are better than IIG,and the Q-learning-assisted PSO shows the best competitiveness.展开更多
The controller is a main component in the Software-Defined Networking(SDN)framework,which plays a significant role in enabling programmability and orchestration for 5G and next-generation networks.In SDN,frequent comm...The controller is a main component in the Software-Defined Networking(SDN)framework,which plays a significant role in enabling programmability and orchestration for 5G and next-generation networks.In SDN,frequent communication occurs between network switches and the controller,which manages and directs traffic flows.If the controller is not strategically placed within the network,this communication can experience increased delays,negatively affecting network performance.Specifically,an improperly placed controller can lead to higher end-to-end(E2E)delay,as switches must traverse more hops or encounter greater propagation delays when communicating with the controller.This paper introduces a novel approach using Deep Q-Learning(DQL)to dynamically place controllers in Software-Defined Internet of Things(SD-IoT)environments,with the goal of minimizing E2E delay between switches and controllers.E2E delay,a crucial metric for network performance,is influenced by two key factors:hop count,which measures the number of network nodes data must traverse,and propagation delay,which accounts for the physical distance between nodes.Our approach models the controller placement problem as a Markov Decision Process(MDP).In this model,the network configuration at any given time is represented as a“state,”while“actions”correspond to potential decisions regarding the placement of controllers or the reassignment of switches to controllers.Using a Deep Q-Network(DQN)to approximate the Q-function,the system learns the optimal controller placement by maximizing the cumulative reward,which is defined as the negative of the E2E delay.Essentially,the lower the delay,the higher the reward the system receives,enabling it to continuously improve its controller placement strategy.The experimental results show that our DQL-based method significantly reduces E2E delay when compared to traditional benchmark placement strategies.By dynamically learning from the network’s real-time conditions,the proposed method ensures that controller placement remains efficient and responsive,reducing communication delays and enhancing overall network performance.展开更多
Pigeon peas, a type of pulse, have immense nutritional potential to improve health in arid and semi-arid regions. However, unlocking this potential relies heavily on understanding their technological properties, such ...Pigeon peas, a type of pulse, have immense nutritional potential to improve health in arid and semi-arid regions. However, unlocking this potential relies heavily on understanding their technological properties, such as hydration rate, volumetric expansion, and cooking time. These properties directly influence processing, accessibility, and acceptability as a food source. However, there is limited information on technological properties of improved varieties. The study aimed to determine technological properties of improved pigeon pea varieties grown in Machakos County. Seven improved pigeon peas varieties namely: KARI Mbaazi 1, KARI Mbaazi 2, ICEAP 00850, KAT 60/8, Mituki, Egerton Mbaazi 1, Egerton Mbaazi 2 and ICEAP 00554 (control variety) were used in this study. These varieties were tested for water absorption capacity (WAC), volumetric expansion, density, cooking time (CT) and total soluble solids (TSS) in the broth. The experiment was arranged in a Completely Randomized Design (CRD) replicated three times. Data analysis was conducted using SAS software version 9.1.3 (SAS, 2006). Means separation was done using Tukey’s honestly significant difference (HSD) at 95% Confidence Level. There were significant differences in water absorption capacity (WAC), volumetric expansion, density, TSS, and CT among the improved varieties (p p < 0.05). KARI Mbaazi 2 exhibited the greatest volumetric expansion after cooking (VEAC) at 11%. Additionally, control variety recorded the highest water absorption capacity (125.48%), which was significantly greater compared to the improved pigeon pea varieties. Cooking time in minutes was shortest for Mituki (46.0) and KAT 60/8 (55.7) and longest for both KARI Mbaazi 1 and ICEAP00850 at 160 minutes. All the varieties showed high TSS ranging from 10.5 to 26.7% indicating the potential to select varieties with desired flavour profiles. Improved pigeon pea varieties (Mituki and KAT60/8) displayed desired technological properties alongside the control variety. These findings inform the specific culinary applications and nutritional needs which enhance utilisation of pigeon peas as food. Further research is needed to determine the impact of the technological properties on the digestibility and glycaemic index of pigeon peas.展开更多
As the scale of the networks continually expands,the detection of distributed denial of service(DDoS)attacks has become increasingly vital.We propose an intelligent detection model named IGED by using improved general...As the scale of the networks continually expands,the detection of distributed denial of service(DDoS)attacks has become increasingly vital.We propose an intelligent detection model named IGED by using improved generalized entropy and deep neural network(DNN).The initial detection is based on improved generalized entropy to filter out as much normal traffic as possible,thereby reducing data volume.Then the fine detection is based on DNN to perform precise DDoS detection on the filtered suspicious traffic,enhancing the neural network’s generalization capabilities.Experimental results show that the proposed method can efficiently distinguish normal traffic from DDoS traffic.Compared with the benchmark methods,our method reaches 99.9%on low-rate DDoS(LDDoS),flooded DDoS and CICDDoS2019 datasets in terms of both accuracy and efficiency in identifying attack flows while reducing the time by 17%,31%and 8%.展开更多
BACKGROUND Intravenous infusion is a common method of drug administration in clinical practice.Errors in any aspect of the infusion process,from the verification of medical orders,preparation of the drug solution,to i...BACKGROUND Intravenous infusion is a common method of drug administration in clinical practice.Errors in any aspect of the infusion process,from the verification of medical orders,preparation of the drug solution,to infusion by nursing staff,may cause adverse infusion events.AIM To analyzed the value of improving nursing measures and enhancing nursing management to reduce the occurrence of adverse events in pediatric infusion.METHODS The clinical data of 130 children who received an infusion in the pediatric department of our hospital from May 2020 to May 2021 were analyzed and divided into two groups according to the differences in nursing measures and nursing management:65 patients in the control group received conventional nursing and nursing management interventions,while 65 patients in the observation group received improved nursing measure interventions and enhanced nursing management.The occurrence of adverse events,compliance of children,satisfaction of children’s families,and complaints regarding the transfusion treatment were recorded in both groups.RESULTS The incidence of fluid extravasation and infusion set dislodgement in the observation group were 3.08%and 1.54%,respectively,which were significantly lower than 12.31%and 13.85%in the control group(P<0.05),while repeated punctures and medication addition errors in the observation group were 3.08%and 0.00%,respectively,which were lower than 9.23%and 3.08%in the control group,but there was no significant difference(P>0.05).The compliance rate of children in the observation group was 98.46%(64/65),which was significantly higher than 87.69%(57/65)in the control group,and the satisfaction rate of children’s families was 96.92%(63/65),which was significantly higher than 86.15%(56/65)in the control group(P<0.05).The observation group did not receive any complaints from the child’s family,whereas the control group received four complaints,two of which were due to the crying of the child caused by repeated punctures,one due to the poor attitude of the nurse,and one due to medication addition errors,with a cumulative complaint rate of 6.15%.The cumulative complaint rate of the observation group was significantly lower than that of the control group(P<0.05).CONCLUSION Improving nursing measures and enhancing nursing management can reduce the incidence of fluid extravasation and infusion set dislodgement in pediatric patients,improve children’s compliance and satisfaction of their families,and reduce family complaints.展开更多
Intelligent traffic control requires accurate estimation of the road states and incorporation of adaptive or dynamically adjusted intelligent algorithms for making the decision.In this article,these issues are handled...Intelligent traffic control requires accurate estimation of the road states and incorporation of adaptive or dynamically adjusted intelligent algorithms for making the decision.In this article,these issues are handled by proposing a novel framework for traffic control using vehicular communications and Internet of Things data.The framework integrates Kalman filtering and Q-learning.Unlike smoothing Kalman filtering,our data fusion Kalman filter incorporates a process-aware model which makes it superior in terms of the prediction error.Unlike traditional Q-learning,our Q-learning algorithm enables adaptive state quantization by changing the threshold of separating low traffic from high traffic on the road according to the maximum number of vehicles in the junction roads.For evaluation,the model has been simulated on a single intersection consisting of four roads:east,west,north,and south.A comparison of the developed adaptive quantized Q-learning(AQQL)framework with state-of-the-art and greedy approaches shows the superiority of AQQL with an improvement percentage in terms of the released number of vehicles of AQQL is 5%over the greedy approach and 340%over the state-of-the-art approach.Hence,AQQL provides an effective traffic control that can be applied in today’s intelligent traffic system.展开更多
基金supported by the National Natural Science Foundation of China [grant numbers 42088101 and 42375048]。
文摘Due to the lack of accurate data and complex parameterization,the prediction of groundwater depth is a chal-lenge for numerical models.Machine learning can effectively solve this issue and has been proven useful in the prediction of groundwater depth in many areas.In this study,two new models are applied to the prediction of groundwater depth in the Ningxia area,China.The two models combine the improved dung beetle optimizer(DBO)algorithm with two deep learning models:The Multi-head Attention-Convolution Neural Network-Long Short Term Memory networks(MH-CNN-LSTM)and the Multi-head Attention-Convolution Neural Network-Gated Recurrent Unit(MH-CNN-GRU).The models with DBO show better prediction performance,with larger R(correlation coefficient),RPD(residual prediction deviation),and lower RMSE(root-mean-square error).Com-pared with the models with the original DBO,the R and RPD of models with the improved DBO increase by over 1.5%,and the RMSE decreases by over 1.8%,indicating better prediction results.In addition,compared with the multiple linear regression model,a traditional statistical model,deep learning models have better prediction performance.
基金supported by the State Major Science and Technique Project (MJ-2014-S-37)the 111 Project (B08038)
文摘With the intensive deployment of users and the drastic increase of traffic load, a millimeter wave (mmWave) backhaul network was widely investigated. A typical mmWave backhaul network consists of the macro base station (MBS) and the small base stations (SBSs). How to efficiently associate users with the MBS and the SBSs for load balancing is a key issue in the network. By adding a virtual power bias to the SBSs, more users can access to the SBSs to share the load of the MBS. The bias values shall be set reasonably to guarantee the backhaul efficiency and the quality of service (QoS). An improved Q-learning algorithm is proposed to effectively adjust the bias value for each SBS. In the proposed algorithm, each SBS becomes an agent with independent learning and can achieve the best behavior, namely the optimal bias value through a series of training. Besides, an improved behavior selection mechanism is adopted to improve the learning efficiency and accelerate the convergence of the algorithm. Finally, simulations conducted in the 60 GHz band demonstrate the superior performance of the proposed algorithm in backhaul efficiency and user outage probability.
文摘针对无线传感器网络中存在的安全问题,提出了基于Q-Learning的分簇无线传感网信任管理机制(Q-learning based trust management mechanism for clustered wireless sensor networks,QLTMM-CWSN).该机制主要考虑通信信任、数据信任和能量信任3个方面.在网络运行过程中,基于节点的通信行为、数据分布和能量消耗,使用Q-Learning算法更新节点信任值,并选择簇内信任值最高的节点作为可信簇头节点.当簇中主簇头节点的信任值低于阈值时,可信簇头节点代替主簇头节点管理簇内成员节点,维护正常的数据传输.研究结果表明,QLTMM-CWSN机制能有效抵御通信攻击、伪造本地数据攻击、能量攻击和混合攻击.
基金Scientific Research Fund of Liaoning Provincial Education Department(No.JGLX2021030):Research on Vision-Based Intelligent Perception Technology for the Survival of Benthic Organisms.
文摘For underwater robots in the process of performing target detection tasks,the color distortion and the uneven quality of underwater images lead to great difficulties in the feature extraction process of the model,which is prone to issues like error detection,omission detection,and poor accuracy.Therefore,this paper proposed the CER-YOLOv7(CBAM-EIOU-RepVGG-YOLOv7)underwater target detection algorithm.To improve the algorithm’s capability to retain valid features from both spatial and channel perspectives during the feature extraction phase,we have added a Convolutional Block Attention Module(CBAM)to the backbone network.The Reparameterization Visual Geometry Group(RepVGG)module is inserted into the backbone to improve the training and inference capabilities.The Efficient Intersection over Union(EIoU)loss is also used as the localization loss function,which reduces the error detection rate and missed detection rate of the algorithm.The experimental results of the CER-YOLOv7 algorithm on the UPRC(Underwater Robot Prototype Competition)dataset show that the mAP(mean Average Precision)score of the algorithm is 86.1%,which is a 2.2%improvement compared to the YOLOv7.The feasibility and validity of the CER-YOLOv7 are proved through ablation and comparison experiments,and it is more suitable for underwater target detection.
基金partially supported by the Guangdong Basic and Applied Basic Research Foundation(2023A1515011531)the National Natural Science Foundation of China under Grant 62173356+2 种基金the Science and Technology Development Fund(FDCT),Macao SAR,under Grant 0019/2021/AZhuhai Industry-University-Research Project with Hongkong and Macao under Grant ZH22017002210014PWCthe Key Technologies for Scheduling and Optimization of Complex Distributed Manufacturing Systems(22JR10KA007).
文摘The flow shop scheduling problem is important for the manufacturing industry.Effective flow shop scheduling can bring great benefits to the industry.However,there are few types of research on Distributed Hybrid Flow Shop Problems(DHFSP)by learning assisted meta-heuristics.This work addresses a DHFSP with minimizing the maximum completion time(Makespan).First,a mathematical model is developed for the concerned DHFSP.Second,four Q-learning-assisted meta-heuristics,e.g.,genetic algorithm(GA),artificial bee colony algorithm(ABC),particle swarm optimization(PSO),and differential evolution(DE),are proposed.According to the nature of DHFSP,six local search operations are designed for finding high-quality solutions in local space.Instead of randomselection,Q-learning assists meta-heuristics in choosing the appropriate local search operations during iterations.Finally,based on 60 cases,comprehensive numerical experiments are conducted to assess the effectiveness of the proposed algorithms.The experimental results and discussions prove that using Q-learning to select appropriate local search operations is more effective than the random strategy.To verify the competitiveness of the Q-learning assistedmeta-heuristics,they are compared with the improved iterated greedy algorithm(IIG),which is also for solving DHFSP.The Friedman test is executed on the results by five algorithms.It is concluded that the performance of four Q-learning-assisted meta-heuristics are better than IIG,and the Q-learning-assisted PSO shows the best competitiveness.
基金supported by the Researcher Supporting Project number(RSPD2024R582),King Saud University,Riyadh,Saudi Arabia.
文摘The controller is a main component in the Software-Defined Networking(SDN)framework,which plays a significant role in enabling programmability and orchestration for 5G and next-generation networks.In SDN,frequent communication occurs between network switches and the controller,which manages and directs traffic flows.If the controller is not strategically placed within the network,this communication can experience increased delays,negatively affecting network performance.Specifically,an improperly placed controller can lead to higher end-to-end(E2E)delay,as switches must traverse more hops or encounter greater propagation delays when communicating with the controller.This paper introduces a novel approach using Deep Q-Learning(DQL)to dynamically place controllers in Software-Defined Internet of Things(SD-IoT)environments,with the goal of minimizing E2E delay between switches and controllers.E2E delay,a crucial metric for network performance,is influenced by two key factors:hop count,which measures the number of network nodes data must traverse,and propagation delay,which accounts for the physical distance between nodes.Our approach models the controller placement problem as a Markov Decision Process(MDP).In this model,the network configuration at any given time is represented as a“state,”while“actions”correspond to potential decisions regarding the placement of controllers or the reassignment of switches to controllers.Using a Deep Q-Network(DQN)to approximate the Q-function,the system learns the optimal controller placement by maximizing the cumulative reward,which is defined as the negative of the E2E delay.Essentially,the lower the delay,the higher the reward the system receives,enabling it to continuously improve its controller placement strategy.The experimental results show that our DQL-based method significantly reduces E2E delay when compared to traditional benchmark placement strategies.By dynamically learning from the network’s real-time conditions,the proposed method ensures that controller placement remains efficient and responsive,reducing communication delays and enhancing overall network performance.
文摘Pigeon peas, a type of pulse, have immense nutritional potential to improve health in arid and semi-arid regions. However, unlocking this potential relies heavily on understanding their technological properties, such as hydration rate, volumetric expansion, and cooking time. These properties directly influence processing, accessibility, and acceptability as a food source. However, there is limited information on technological properties of improved varieties. The study aimed to determine technological properties of improved pigeon pea varieties grown in Machakos County. Seven improved pigeon peas varieties namely: KARI Mbaazi 1, KARI Mbaazi 2, ICEAP 00850, KAT 60/8, Mituki, Egerton Mbaazi 1, Egerton Mbaazi 2 and ICEAP 00554 (control variety) were used in this study. These varieties were tested for water absorption capacity (WAC), volumetric expansion, density, cooking time (CT) and total soluble solids (TSS) in the broth. The experiment was arranged in a Completely Randomized Design (CRD) replicated three times. Data analysis was conducted using SAS software version 9.1.3 (SAS, 2006). Means separation was done using Tukey’s honestly significant difference (HSD) at 95% Confidence Level. There were significant differences in water absorption capacity (WAC), volumetric expansion, density, TSS, and CT among the improved varieties (p p < 0.05). KARI Mbaazi 2 exhibited the greatest volumetric expansion after cooking (VEAC) at 11%. Additionally, control variety recorded the highest water absorption capacity (125.48%), which was significantly greater compared to the improved pigeon pea varieties. Cooking time in minutes was shortest for Mituki (46.0) and KAT 60/8 (55.7) and longest for both KARI Mbaazi 1 and ICEAP00850 at 160 minutes. All the varieties showed high TSS ranging from 10.5 to 26.7% indicating the potential to select varieties with desired flavour profiles. Improved pigeon pea varieties (Mituki and KAT60/8) displayed desired technological properties alongside the control variety. These findings inform the specific culinary applications and nutritional needs which enhance utilisation of pigeon peas as food. Further research is needed to determine the impact of the technological properties on the digestibility and glycaemic index of pigeon peas.
基金This work is supported by the National Natural Science Foundation of China(Grant Nos.U22B2005,62072109)the Natural Science Foundation of Fujian Province(Grant No.2021J01625)the Major Science and Technology Project of Fuzhou(Grant No.2023-ZD-003).
文摘As the scale of the networks continually expands,the detection of distributed denial of service(DDoS)attacks has become increasingly vital.We propose an intelligent detection model named IGED by using improved generalized entropy and deep neural network(DNN).The initial detection is based on improved generalized entropy to filter out as much normal traffic as possible,thereby reducing data volume.Then the fine detection is based on DNN to perform precise DDoS detection on the filtered suspicious traffic,enhancing the neural network’s generalization capabilities.Experimental results show that the proposed method can efficiently distinguish normal traffic from DDoS traffic.Compared with the benchmark methods,our method reaches 99.9%on low-rate DDoS(LDDoS),flooded DDoS and CICDDoS2019 datasets in terms of both accuracy and efficiency in identifying attack flows while reducing the time by 17%,31%and 8%.
文摘BACKGROUND Intravenous infusion is a common method of drug administration in clinical practice.Errors in any aspect of the infusion process,from the verification of medical orders,preparation of the drug solution,to infusion by nursing staff,may cause adverse infusion events.AIM To analyzed the value of improving nursing measures and enhancing nursing management to reduce the occurrence of adverse events in pediatric infusion.METHODS The clinical data of 130 children who received an infusion in the pediatric department of our hospital from May 2020 to May 2021 were analyzed and divided into two groups according to the differences in nursing measures and nursing management:65 patients in the control group received conventional nursing and nursing management interventions,while 65 patients in the observation group received improved nursing measure interventions and enhanced nursing management.The occurrence of adverse events,compliance of children,satisfaction of children’s families,and complaints regarding the transfusion treatment were recorded in both groups.RESULTS The incidence of fluid extravasation and infusion set dislodgement in the observation group were 3.08%and 1.54%,respectively,which were significantly lower than 12.31%and 13.85%in the control group(P<0.05),while repeated punctures and medication addition errors in the observation group were 3.08%and 0.00%,respectively,which were lower than 9.23%and 3.08%in the control group,but there was no significant difference(P>0.05).The compliance rate of children in the observation group was 98.46%(64/65),which was significantly higher than 87.69%(57/65)in the control group,and the satisfaction rate of children’s families was 96.92%(63/65),which was significantly higher than 86.15%(56/65)in the control group(P<0.05).The observation group did not receive any complaints from the child’s family,whereas the control group received four complaints,two of which were due to the crying of the child caused by repeated punctures,one due to the poor attitude of the nurse,and one due to medication addition errors,with a cumulative complaint rate of 6.15%.The cumulative complaint rate of the observation group was significantly lower than that of the control group(P<0.05).CONCLUSION Improving nursing measures and enhancing nursing management can reduce the incidence of fluid extravasation and infusion set dislodgement in pediatric patients,improve children’s compliance and satisfaction of their families,and reduce family complaints.
文摘Intelligent traffic control requires accurate estimation of the road states and incorporation of adaptive or dynamically adjusted intelligent algorithms for making the decision.In this article,these issues are handled by proposing a novel framework for traffic control using vehicular communications and Internet of Things data.The framework integrates Kalman filtering and Q-learning.Unlike smoothing Kalman filtering,our data fusion Kalman filter incorporates a process-aware model which makes it superior in terms of the prediction error.Unlike traditional Q-learning,our Q-learning algorithm enables adaptive state quantization by changing the threshold of separating low traffic from high traffic on the road according to the maximum number of vehicles in the junction roads.For evaluation,the model has been simulated on a single intersection consisting of four roads:east,west,north,and south.A comparison of the developed adaptive quantized Q-learning(AQQL)framework with state-of-the-art and greedy approaches shows the superiority of AQQL with an improvement percentage in terms of the released number of vehicles of AQQL is 5%over the greedy approach and 340%over the state-of-the-art approach.Hence,AQQL provides an effective traffic control that can be applied in today’s intelligent traffic system.