期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
近红外光谱结合非线性模式识别方法进行牛奶中掺假物质的判别 被引量:8
1
作者 倪力军 钟霖 +2 位作者 张鑫 张立国 黄士新 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2014年第10期2673-2678,共6页
以287例上海及上海周边地区牧场的生鲜奶作为真奶样本集组成3个真奶样品集合,配制了526例含有糊精(或淀粉)+三聚氰胺(或尿素、或硝酸铵)的掺假牛奶形成6个不同种类的假奶样品集合,其中糊精、淀粉在掺假奶中的含量为0.15%~0.45%;硝酸铵... 以287例上海及上海周边地区牧场的生鲜奶作为真奶样本集组成3个真奶样品集合,配制了526例含有糊精(或淀粉)+三聚氰胺(或尿素、或硝酸铵)的掺假牛奶形成6个不同种类的假奶样品集合,其中糊精、淀粉在掺假奶中的含量为0.15%~0.45%;硝酸铵、尿素和三聚氰胺的含量分别为700~2 100,524~1 572与365.5~1 096.5mg·kg-1,以保证掺假奶中凯氏定氮法测得的蛋白含量不低于3%。所有样本的近红外光谱均经过标准正态变换(SNV)预处理。将3个真奶样品集合和6个假奶样品集合进行不同的组合并对其采用改进与简化的K最邻近结点算法(IS-KNN)和改进与简化的支持向量机法(ν-SVM)建立了判别糊精、淀粉、三聚氰胺、尿素、硝酸铵这5类掺假物质的近红外判别模型,探寻掺假物质的浓度与识别正确率之间的关系。结果表明IS-KNN和ν-SVM两种方法对含三聚氰胺、尿素、硝酸铵的掺假牛奶的平均判别正确率分别在49.55%~51.01%,61.78%~68.79%与68.25%~73.51%区间波动,说明在该研究的掺假物浓度范围内,很难用近红外模型良好区分不同类型伪蛋白的掺假奶;IS-KNN和ν-SVM两种方法对含淀粉的掺假牛奶的判别正确率分别为92.33%与93.66%、对含糊精的掺假牛奶的平均判别正确率分别为77.29%与85.08%。从整体结果上来看ν-SVM法进行建模判别的结果大部分优于IS-KNN法进行建模判别的结果。对判别正确率与样品中掺假物质的含量水平分析表明近红外光谱结合非线性模式识别方法能良好地区分掺假奶中含量较高(0.15%~0.45%)的糊精和淀粉,而对含量偏低的三聚氰胺等伪蛋白的判别效果不佳,说明近红外光谱技术不适于鉴别牛奶中含量低于0.1%的掺假物质。 展开更多
关键词 近红外光谱 液态奶掺假物质判别 改进与简化的支持向量机方法 改进与简化的KNN方法
下载PDF
基于CEEMD和优化KNN的离心泵故障诊断方法 被引量:12
2
作者 杨波 黄倩 +1 位作者 付强 朱荣生 《机电工程》 CAS 北大核心 2022年第11期1502-1509,共8页
卧式离心泵实际测量中背景噪声含量较大,故障特征常被淹没,导致机械故障诊断效果较差,为了实时、精准地获得其运行状态,或对其进行故障诊断,提出了一种基于互补集合经验模态分解(CEEMD)和优化最邻近(KNN)算法的卧式离心泵机械故障诊断... 卧式离心泵实际测量中背景噪声含量较大,故障特征常被淹没,导致机械故障诊断效果较差,为了实时、精准地获得其运行状态,或对其进行故障诊断,提出了一种基于互补集合经验模态分解(CEEMD)和优化最邻近(KNN)算法的卧式离心泵机械故障诊断方法。首先,采集了卧式离心泵机械故障加速度信号,使用CEEMD对信号进行了一次分解,得到了本征模函数(IMF),采用相关系数法得到了IMF相关系数,确定了相关分量与不相关分量;其次,通过改进小波阈值去噪方法对不相关分量进行处理,提取了重构信号可分析的时频故障特征;最后,搭建了离心泵实验台,采用上述故障诊断方法对离心泵机械故障进行了分类诊断。研究结果表明:经CEEMD降噪后,信号评价指标信噪比(SNR)为2.2571,比原来的去噪方法提升了0.4381;优化后KNN分类对于卧式离心泵的机械故障诊断准确率可达96.7%,能够有效识别离心泵故障,达到智能诊断的目的。 展开更多
关键词 叶片式泵 故障信号分解 互补集合经验模态分解 改进小波阈值降噪 优化最邻近算法分类 本征模函数 相关分量/不相关分量
下载PDF
基于改进K-NN和SVM的多学科协作诊疗决策支持系统 被引量:1
3
作者 李晓峰 王妍玮 李东 《计算机系统应用》 2020年第6期80-88,共9页
由于当前的诊疗决策支持系统采用单一学科的决策方法,导致诊疗精度不高,获取的数据分类结果准确率较低,提出并设计一种基于改进K-NN(K-Nearest Neighbour)分类算法和SVM(Support Vector Mechine)的多学科协作诊疗决策支持系统.在构建系... 由于当前的诊疗决策支持系统采用单一学科的决策方法,导致诊疗精度不高,获取的数据分类结果准确率较低,提出并设计一种基于改进K-NN(K-Nearest Neighbour)分类算法和SVM(Support Vector Mechine)的多学科协作诊疗决策支持系统.在构建系统总体框架的基础上,对数据库系统模块、人机交互模块和诊疗推理模块进行设计,其中诊疗推理模块是系统的软件核心,通过改进K-NN分类算法和SVM建立推理引擎,在计算机的辅助下,搜索与患者病症信息相似的医疗案例,并进行相似度匹配,根据匹配结果与患者症状集构建一个新的临床案例,引入CDA(Clinical Document Architecture)概念,实现改进K-NN分类算法和SVM算法的有效融合,完成多学科协作诊疗决策.实验结果表明,与传统系统相比,该系统的诊疗决策精度高,评价指标测试平均值达到95.98%,分类结果准确率较高,在该系统辅助下能提高医生诊断正确性,降低误诊率,且运算复杂度较低. 展开更多
关键词 改进K-NN分类算法 SVM 多学科协作 诊疗决策支持系统
下载PDF
文本分类的几种方法研究 被引量:1
4
作者 沙俐敏 《南方冶金学院学报》 2004年第1期50-54,共5页
经过训练和统计对每一类文本形成特征的权重向量,利用K-最近距离的方法对测试集进行分类.Sleepingexpert算法采用正权重和负权重较好地描述了多义词的特性,该文在原算法中插入了一种权重补偿模块,其目标是实现权重和当前概念的一致性,... 经过训练和统计对每一类文本形成特征的权重向量,利用K-最近距离的方法对测试集进行分类.Sleepingexpert算法采用正权重和负权重较好地描述了多义词的特性,该文在原算法中插入了一种权重补偿模块,其目标是实现权重和当前概念的一致性,具有更好的分类性能. 展开更多
关键词 文本分类 基于K-最近距离 SLEEPING EXPERT 概念推理网 权重
下载PDF
A Two-Stage Vehicle Type Recognition Method Combining the Most Effective Gabor Features 被引量:5
5
作者 Wei Sun Xiaorui Zhang +2 位作者 Xiaozheng He Yan Jin Xu Zhang 《Computers, Materials & Continua》 SCIE EI 2020年第12期2489-2510,共22页
Vehicle type recognition(VTR)is an important research topic due to its significance in intelligent transportation systems.However,recognizing vehicle type on the real-world images is challenging due to the illuminatio... Vehicle type recognition(VTR)is an important research topic due to its significance in intelligent transportation systems.However,recognizing vehicle type on the real-world images is challenging due to the illumination change,partial occlusion under real traffic environment.These difficulties limit the performance of current state-of-art methods,which are typically based on single-stage classification without considering feature availability.To address such difficulties,this paper proposes a two-stage vehicle type recognition method combining the most effective Gabor features.The first stage leverages edge features to classify vehicles by size into big or small via a similarity k-nearest neighbor classifier(SKNNC).Further the more specific vehicle type such as bus,truck,sedan or van is recognized by the second stage classification,which leverages the most effective Gabor features extracted by a set of Gabor wavelet kernels on the partitioned key patches via a kernel sparse representation-based classifier(KSRC).A verification and correction step based on minimum residual analysis is proposed to enhance the reliability of the VTR.To improve VTR efficiency,the most effective Gabor features are selected through gray relational analysis that leverages the correlation between Gabor feature image and the original image.Experimental results demonstrate that the proposed method not only improves the accuracy of VTR but also enhances the recognition robustness to illumination change and partial occlusion. 展开更多
关键词 Vehicle type recognition improved Canny algorithm Gabor filter k-nearest neighbor classification grey relational analysis kernel sparse representation two-stage classification
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部