Based on improved multi-objective particle swarm optimization(MOPSO) algorithm with principal component analysis(PCA) methodology, an efficient high-dimension multiobjective optimization method is proposed, which,...Based on improved multi-objective particle swarm optimization(MOPSO) algorithm with principal component analysis(PCA) methodology, an efficient high-dimension multiobjective optimization method is proposed, which, as the purpose of this paper, aims to improve the convergence of Pareto front in multi-objective optimization design. The mathematical efficiency,the physical reasonableness and the reliability in dealing with redundant objectives of PCA are verified by typical DTLZ5 test function and multi-objective correlation analysis of supercritical airfoil,and the proposed method is integrated into aircraft multi-disciplinary design(AMDEsign) platform, which contains aerodynamics, stealth and structure weight analysis and optimization module.Then the proposed method is used for the multi-point integrated aerodynamic optimization of a wide-body passenger aircraft, in which the redundant objectives identified by PCA are transformed to optimization constraints, and several design methods are compared. The design results illustrate that the strategy used in this paper is sufficient and multi-point design requirements of the passenger aircraft are reached. The visualization level of non-dominant Pareto set is improved by effectively reducing the dimension without losing the primary feature of the problem.展开更多
The Internet of Things(IoT)role is instrumental in the technological advancement of the healthcare industry.Both the hardware and the core level of software platforms are the progress resulted from the accompaniment o...The Internet of Things(IoT)role is instrumental in the technological advancement of the healthcare industry.Both the hardware and the core level of software platforms are the progress resulted from the accompaniment of Medicine 4.0.Healthcare IoT systems are the emergence of this foresight.The communication systems between the sensing nodes and the processors;and the processing algorithms to produce output obtained from the data collected by the sensors are the major empowering technologies.At present,many new technologies supplement these empowering technologies.So,in this research work,a practical feature extraction and classification technique is suggested for handling data acquisition besides data fusion to enhance treatment-related data.In the initial stage,IoT devices are gathered and pre-processed for fusion processing.Dynamic Bayesian Network is considered an improved balance for tractability,a tool for CDF operations.Improved Principal Component Analysis is deployed for feature extraction along with dimension reduction.Lastly,this data learning is attained through Hybrid Learning Classifier Model for data fusion performance examination.In this research,Deep Belief Neural Network and Support VectorMachine are hybridized for healthcare data prediction.Thus,the suggested system is probably a beneficial decision support tool for multiple data sources prediction and predictive ability enhancement.展开更多
基金supported by the National Natural Science Foundation of China (No.11402288)
文摘Based on improved multi-objective particle swarm optimization(MOPSO) algorithm with principal component analysis(PCA) methodology, an efficient high-dimension multiobjective optimization method is proposed, which, as the purpose of this paper, aims to improve the convergence of Pareto front in multi-objective optimization design. The mathematical efficiency,the physical reasonableness and the reliability in dealing with redundant objectives of PCA are verified by typical DTLZ5 test function and multi-objective correlation analysis of supercritical airfoil,and the proposed method is integrated into aircraft multi-disciplinary design(AMDEsign) platform, which contains aerodynamics, stealth and structure weight analysis and optimization module.Then the proposed method is used for the multi-point integrated aerodynamic optimization of a wide-body passenger aircraft, in which the redundant objectives identified by PCA are transformed to optimization constraints, and several design methods are compared. The design results illustrate that the strategy used in this paper is sufficient and multi-point design requirements of the passenger aircraft are reached. The visualization level of non-dominant Pareto set is improved by effectively reducing the dimension without losing the primary feature of the problem.
文摘The Internet of Things(IoT)role is instrumental in the technological advancement of the healthcare industry.Both the hardware and the core level of software platforms are the progress resulted from the accompaniment of Medicine 4.0.Healthcare IoT systems are the emergence of this foresight.The communication systems between the sensing nodes and the processors;and the processing algorithms to produce output obtained from the data collected by the sensors are the major empowering technologies.At present,many new technologies supplement these empowering technologies.So,in this research work,a practical feature extraction and classification technique is suggested for handling data acquisition besides data fusion to enhance treatment-related data.In the initial stage,IoT devices are gathered and pre-processed for fusion processing.Dynamic Bayesian Network is considered an improved balance for tractability,a tool for CDF operations.Improved Principal Component Analysis is deployed for feature extraction along with dimension reduction.Lastly,this data learning is attained through Hybrid Learning Classifier Model for data fusion performance examination.In this research,Deep Belief Neural Network and Support VectorMachine are hybridized for healthcare data prediction.Thus,the suggested system is probably a beneficial decision support tool for multiple data sources prediction and predictive ability enhancement.