To advance the field of science and technology,we need to revitalize the development of science and technology through innovation.The development of science and technology has many beneficial implications on the revit...To advance the field of science and technology,we need to revitalize the development of science and technology through innovation.The development of science and technology has many beneficial implications on the revitalization of the country.For this reason,universities in China should give full attention to their role as the main propeller of science and technology.“Streamlining administration,delegating powers,improving regulation,and strengthening services”is a policy issued by the Chinese government for the management of science and technology funds in colleges and universities.Based on the policy of“streamlining administration,delegating powers,improving regulation,and strengthening services,”colleges and universities must optimize the management of science and technology funds for their efficient use.In this paper,we analyzed the importance of the policy and put forward an effective management strategy,aiming to improve the management of science and technology funds in colleges and universities.展开更多
Considering that the vehicle routing problem (VRP) with many extended features is widely used in actual life, such as multi-depot, heterogeneous types of vehicles, customer service priority and time windows etc., a ...Considering that the vehicle routing problem (VRP) with many extended features is widely used in actual life, such as multi-depot, heterogeneous types of vehicles, customer service priority and time windows etc., a mathematical model for multi-depot heterogeneous vehicle routing problem with soft time windows (MDHVRPSTW) is established. An improved ant colony optimization (IACO) is proposed for solving this model. First, MDHVRPSTW is transferred into different groups according to the nearest principle, and then the initial route is constructed by the scanning algorithm (SA). Secondly, genetic operators are introduced, and crossover probability and mutation probability are adaptively adjusted in order to improve the global search ability of the algorithm. Moreover, the smooth mechanism is used to improve the performance of the ant colony optimization (ACO). Finally, the 3-opt strategy is used to improve the local search ability. The proposed IACO was tested on three new instances that were generated randomly. The experimental results show that IACO is superior to the other three existing algorithms in terms of convergence speed and solution quality. Thus, the proposed method is effective and feasible, and the proposed model is meaningful.展开更多
Based on the deficiency of time convergence and variability of Web services selection for services composition supporting cross-enterprises collaboration,an algorithm QCDSS(QoS constraints of dynamic Web services sele...Based on the deficiency of time convergence and variability of Web services selection for services composition supporting cross-enterprises collaboration,an algorithm QCDSS(QoS constraints of dynamic Web services selection)to resolve dynamic Web services selection with QoS global optimal path,was proposed.The essence of the algorithm was that the problem of dynamic Web services selection with QoS global optimal path was transformed into a multi-objective services composition optimization problem with QoS constraints.The operations of the cross and mutation in genetic algorithm were brought into PSOA(particle swarm optimization algorithm),forming an improved algorithm(IPSOA)to solve the QoS global optimal problem.Theoretical analysis and experimental results indicate that the algorithm can better satisfy the time convergence requirement for Web services composition supporting cross-enterprises collaboration than the traditional algorithms.展开更多
The cloud computing technology is utilized for achieving resource utilization of remotebased virtual computer to facilitate the consumers with rapid and accurate massive data services.It utilizes on-demand resource pr...The cloud computing technology is utilized for achieving resource utilization of remotebased virtual computer to facilitate the consumers with rapid and accurate massive data services.It utilizes on-demand resource provisioning,but the necessitated constraints of rapid turnaround time,minimal execution cost,high rate of resource utilization and limited makespan transforms the Load Balancing(LB)process-based Task Scheduling(TS)problem into an NP-hard optimization issue.In this paper,Hybrid Prairie Dog and Beluga Whale Optimization Algorithm(HPDBWOA)is propounded for precise mapping of tasks to virtual machines with the due objective of addressing the dynamic nature of cloud environment.This capability of HPDBWOA helps in decreasing the SLA violations and Makespan with optimal resource management.It is modelled as a scheduling strategy which utilizes the merits of PDOA and BWOA for attaining reactive decisions making with respect to the process of assigning the tasks to virtual resources by considering their priorities into account.It addresses the problem of pre-convergence with wellbalanced exploration and exploitation to attain necessitated Quality of Service(QoS)for minimizing the waiting time incurred during TS process.It further balanced exploration and exploitation rates for reducing the makespan during the task allocation with complete awareness of VM state.The results of the proposed HPDBWOA confirmed minimized energy utilization of 32.18% and reduced cost of 28.94% better than approaches used for investigation.The statistical investigation of the proposed HPDBWOA conducted using ANOVA confirmed its efficacy over the benchmarked systems in terms of throughput,system,and response time.展开更多
A novel non-linear stochastic method based on a Mixed-Integer Linear Programming(MILP)optimization model is proposed to optimally manage a high number of photovoltaic(PV)-battery systems for the provision of up and do...A novel non-linear stochastic method based on a Mixed-Integer Linear Programming(MILP)optimization model is proposed to optimally manage a high number of photovoltaic(PV)-battery systems for the provision of up and down regulation in the ancillary services market.This method,considers both the technical constraints of the power system,and those of the equipment used by all the prosumers.This allows an aggregator of many residential prosumers endowed with photovoltaic(PV)-battery systems to evaluate the baseline of the aggregate by minimizing the costs related to the electrical energy absorbed from the grid and then to assess the up and down flexibility curves with relative offer prices.As confirmed by simulation results carried out considering different realistic case studies,the method can effectively be used by an aggregator to evaluate the economic impact of its participation in the ancillary services market,both for the aggregator and for its prosumers.展开更多
文摘To advance the field of science and technology,we need to revitalize the development of science and technology through innovation.The development of science and technology has many beneficial implications on the revitalization of the country.For this reason,universities in China should give full attention to their role as the main propeller of science and technology.“Streamlining administration,delegating powers,improving regulation,and strengthening services”is a policy issued by the Chinese government for the management of science and technology funds in colleges and universities.Based on the policy of“streamlining administration,delegating powers,improving regulation,and strengthening services,”colleges and universities must optimize the management of science and technology funds for their efficient use.In this paper,we analyzed the importance of the policy and put forward an effective management strategy,aiming to improve the management of science and technology funds in colleges and universities.
基金The National Natural Science Foundation of China(No.61074147)the Natural Science Foundation of Guangdong Province(No.S2011010005059)+2 种基金the Foundation of Enterprise-University-Research Institute Cooperation from Guangdong Province and Ministry of Education of China(No.2012B091000171,2011B090400460)the Science and Technology Program of Guangdong Province(No.2012B050600028)the Science and Technology Program of Huadu District,Guangzhou(No.HD14ZD001)
文摘Considering that the vehicle routing problem (VRP) with many extended features is widely used in actual life, such as multi-depot, heterogeneous types of vehicles, customer service priority and time windows etc., a mathematical model for multi-depot heterogeneous vehicle routing problem with soft time windows (MDHVRPSTW) is established. An improved ant colony optimization (IACO) is proposed for solving this model. First, MDHVRPSTW is transferred into different groups according to the nearest principle, and then the initial route is constructed by the scanning algorithm (SA). Secondly, genetic operators are introduced, and crossover probability and mutation probability are adaptively adjusted in order to improve the global search ability of the algorithm. Moreover, the smooth mechanism is used to improve the performance of the ant colony optimization (ACO). Finally, the 3-opt strategy is used to improve the local search ability. The proposed IACO was tested on three new instances that were generated randomly. The experimental results show that IACO is superior to the other three existing algorithms in terms of convergence speed and solution quality. Thus, the proposed method is effective and feasible, and the proposed model is meaningful.
基金Project(70631004)supported by the Key Project of the National Natural Science Foundation of ChinaProject(20080440988)supported by the Postdoctoral Science Foundation of China+1 种基金Project(09JJ4030)supported by the Natural Science Foundation of Hunan Province,ChinaProject supported by the Postdoctoral Science Foundation of Central South University,China
文摘Based on the deficiency of time convergence and variability of Web services selection for services composition supporting cross-enterprises collaboration,an algorithm QCDSS(QoS constraints of dynamic Web services selection)to resolve dynamic Web services selection with QoS global optimal path,was proposed.The essence of the algorithm was that the problem of dynamic Web services selection with QoS global optimal path was transformed into a multi-objective services composition optimization problem with QoS constraints.The operations of the cross and mutation in genetic algorithm were brought into PSOA(particle swarm optimization algorithm),forming an improved algorithm(IPSOA)to solve the QoS global optimal problem.Theoretical analysis and experimental results indicate that the algorithm can better satisfy the time convergence requirement for Web services composition supporting cross-enterprises collaboration than the traditional algorithms.
文摘The cloud computing technology is utilized for achieving resource utilization of remotebased virtual computer to facilitate the consumers with rapid and accurate massive data services.It utilizes on-demand resource provisioning,but the necessitated constraints of rapid turnaround time,minimal execution cost,high rate of resource utilization and limited makespan transforms the Load Balancing(LB)process-based Task Scheduling(TS)problem into an NP-hard optimization issue.In this paper,Hybrid Prairie Dog and Beluga Whale Optimization Algorithm(HPDBWOA)is propounded for precise mapping of tasks to virtual machines with the due objective of addressing the dynamic nature of cloud environment.This capability of HPDBWOA helps in decreasing the SLA violations and Makespan with optimal resource management.It is modelled as a scheduling strategy which utilizes the merits of PDOA and BWOA for attaining reactive decisions making with respect to the process of assigning the tasks to virtual resources by considering their priorities into account.It addresses the problem of pre-convergence with wellbalanced exploration and exploitation to attain necessitated Quality of Service(QoS)for minimizing the waiting time incurred during TS process.It further balanced exploration and exploitation rates for reducing the makespan during the task allocation with complete awareness of VM state.The results of the proposed HPDBWOA confirmed minimized energy utilization of 32.18% and reduced cost of 28.94% better than approaches used for investigation.The statistical investigation of the proposed HPDBWOA conducted using ANOVA confirmed its efficacy over the benchmarked systems in terms of throughput,system,and response time.
文摘随着不确定性可再生能源大规模并网,电网频率特性日益复杂。传统火电机组具有响应时间长、无法准确跟踪指令等问题,亟须利用储能提高火电机组参与自动发电控制(automatic generation control,AGC)调频时的调节性能。首先,针对调频考核规则,建立调频性能指标数学模型,并考虑火储系统出力特性,结合改进层次分析法校正调频子指标权重系数,以此构建以调频性能最优为目标的第一阶段优化模型;在此基础上,为了减少储能荷电状态(state of charge,SOC)越限和深度充放情况,以储能SOC偏差最小为目标构建第二阶段优化模型。仿真验证表明:所提的两阶段调频方法能够提高火储联合系统的调频性能和调频收益,同时有效减少储能深度充放情况和工作寿命损耗,提高储能辅助调频服务的可持续性。
文摘A novel non-linear stochastic method based on a Mixed-Integer Linear Programming(MILP)optimization model is proposed to optimally manage a high number of photovoltaic(PV)-battery systems for the provision of up and down regulation in the ancillary services market.This method,considers both the technical constraints of the power system,and those of the equipment used by all the prosumers.This allows an aggregator of many residential prosumers endowed with photovoltaic(PV)-battery systems to evaluate the baseline of the aggregate by minimizing the costs related to the electrical energy absorbed from the grid and then to assess the up and down flexibility curves with relative offer prices.As confirmed by simulation results carried out considering different realistic case studies,the method can effectively be used by an aggregator to evaluate the economic impact of its participation in the ancillary services market,both for the aggregator and for its prosumers.