期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Direct and Simultaneous Determination of Several Impurity Elements in Manganese Tetroxide using ICP-AES 被引量:2
1
作者 姚俊 Atakora Djak Ladislau Kékedy-Nagy 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2006年第1期4-8,共5页
A rapid method for the determination of impurity elements, such as Zn, Ni, Co, Cr, Cu, Cd and Pb in manganese tetroxide was developed, using inductively coupled plasma atomic emission spectrometry (ICP-AES). The cri... A rapid method for the determination of impurity elements, such as Zn, Ni, Co, Cr, Cu, Cd and Pb in manganese tetroxide was developed, using inductively coupled plasma atomic emission spectrometry (ICP-AES). The critical instrumental parameters such as sample flow rate and radio frequency incident were thoroughly optimized. The effect of matrix was also examined. The sensitivity was investigated using calibration curves obtained in presence of the matrix. The obtained recoveries for Ni, Co, Cr, Cu, and Cd at the μg· g^ -1 level were satisfactory and practically independent of the matrix used for the calibration standards. The recoveries of Pb and Zn were less suffwient. The method can be applied for routine analysis and quality control purposes at μg· g^-1 level of concentration. 展开更多
关键词 manganese tetroxide impurity elements inductively coupled plasma-atomic emission spectrometry
下载PDF
First-principles Investigation on Solution Hardening of Interstitial Impurity Elements (O,N) inγ-TiAl
2
作者 Longguang ZHOU and Lianlong HE (Laboratory of Atomic Imaging of Solids, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, China) Lin DONG and Caibei ZHANG (College of Science, Northeastern University, Shenyang 110006, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第6期573-576,共4页
We have calculated the electronic Structures of O-doped and N-doped r-TiAl using the firstprinciples discrete variational method (DVM) with the aim to understand the solution hardening effects of oxygen and nitrogen ... We have calculated the electronic Structures of O-doped and N-doped r-TiAl using the firstprinciples discrete variational method (DVM) with the aim to understand the solution hardening effects of oxygen and nitrogen in r-TiAl. Our combination analysis on the electronic density, density of states (DOS) and the local environment total bond orders (LTBO) will show that, X atom (X is O or N) can strongly bind with its six surrounding atoms via electronic hybridizations of Ti-3d/X-2p and Al-3p/X-2p. As a sequence, there forms a 'hard' cohesive region around the impurity atom. A pinning model based on the calculations is proposed to explain the hardening effects. The consistent results are obtained between the present calculation and formal test experiments. 展开更多
关键词 TiAl First-principles Investigation on Solution Hardening of Interstitial impurity elements O N
下载PDF
Electronic Theoretical Study of the Interaction between Rare Earth Elements and Impurities at Grain Boundaries in Steel 被引量:4
3
作者 刘贵立 张国英 李荣德 《Journal of Rare Earths》 SCIE EI CAS CSCD 2003年第3期372-374,共3页
The model of dislocations was used to construct the model of grain boundary (GB) with pure rare earths, and rare earth elements and impurities. The influence of the interaction between rare earth elements and impuriti... The model of dislocations was used to construct the model of grain boundary (GB) with pure rare earths, and rare earth elements and impurities. The influence of the interaction between rare earth elements and impurities on the cohesive properties of 5.3° low angle GB of Fe was investigated by the recursion method. The calculated results of environment sensitive embeding energy( E ESE ) show that the preferential segregation of rare earth elements towards GBs exists. Calculations of bond order integrals (BOI) show that rare earth elements increase the cohesive strength of low angle GB, and impurities such as S, P weaken the intergranular cohesion of the GB. So rare earth element of proper quantity added in steel not only cleanses other harmful impurities off the GBs, but also enhances the intergranular cohesion. This elucidates the action mechanism of rare earth elements in steel from electronic level and offers theoretical evidence for applications of rare earth elements in steels. 展开更多
关键词 metal material grain boundary recursion method IMPURITIES the interaction between rare earth elements and impurities rare earths
下载PDF
Selective lithium recovery from black powder of spent lithiumion batteries via sulfation reaction:phase conversion and impurities influence 被引量:1
4
作者 Hao Liu Jia-Liang Zhang +3 位作者 Guo-Qiang Liang Meng Wang Yong-Qiang Chen Cheng-Yan Wang 《Rare Metals》 SCIE EI CAS CSCD 2023年第7期2350-2360,共11页
The aim of this study is to present a new understanding for the selective lithium recovery from spent lithium-ion batteries(LIBs)via sulfation roasting.The composition of roasting products and reaction behavior of imp... The aim of this study is to present a new understanding for the selective lithium recovery from spent lithium-ion batteries(LIBs)via sulfation roasting.The composition of roasting products and reaction behavior of impurity elements were analyzed through thermodynamic calculations.Then,the effects of sulfuric acid dosage,roasting temperature,roasting time,and impurity elements were assessed on the leaching efficiency of valuable metals.Characterization methods such as X-ray diffraction(XRD),scanning electron microscopy-energy dispersive spectroscopy(SEM-EDS),and X-ray photoelectron spectroscopy(XPS)were employed to analyze the phase transformation mechanism during roasting process.The results indicate that after sulfation roasting(n(H_(2)SO_(4)):n(Li)=0.5,550℃,2 h),94%lithium can be selectively recovered by water leaching and more than 95%Ni,Co,and Mn can be leached through acid leaching without the addition of reduction agent.During the sulfation roasting process,the lithium in LiNi_(x)Mn_(y)Co_zO_(2)is mainly converted to Li_(2)SO_(4),while the Ni,Co and Mn are first transformed to sulfate and then converted into oxide form.In addition,impurity elements such as Al and F will combine with lithium to form LiF and LiAlO_(2),which will reduce the leaching rate of lithium.These results provide a new understanding on the mechanisms of phase conversion during sulfation roasting and reveal the influence of impurity elements for the lithium recovery from spent LIBs. 展开更多
关键词 Spent lithium-ion batteries(LIBs) Thermodynamic calculations Sulfation roasting impurity elements Conversion mechanism
原文传递
Impurity formation mechanism of silicon carbide crystals smelted by Acheson process
5
作者 Dong Feng Hong-qiang Ru +2 位作者 Xu-dong Luo Jie-gang You Ling Zhang 《Journal of Iron and Steel Research(International)》 SCIE EI CAS 2024年第6期1367-1375,共9页
In order to further promote the application of SiC refractories in modern steel metallurgy,the occurrence forms and formation mechanism of impurities in SiC crystals smelted by Acheson process were investigated.The te... In order to further promote the application of SiC refractories in modern steel metallurgy,the occurrence forms and formation mechanism of impurities in SiC crystals smelted by Acheson process were investigated.The techniques of inductively coupled plasma-atomic emission spectrometry,X-ray diffraction,and scanning electron microscopy were combined to examine the types and occurrence forms of impurities in smelted SiC crystals.The results showed that the main impurities in the SiC are free Si,free C,oxides(CaO·Al_(2)O_(3)·2SiO_(2),3Al_(2)O_(3)·2SiO_(2),CaO·SiO_(2) and SiO_(2))and alloy phases(Fe_(x)Si_(y),Fe_(x)Si_(y)Ti_(z) and Fe_(x)Al_(y)Si_(z)).The formation process of impurities during the smelting of SiC can be described as follows:At high temperature,the SiO_(2) and Fe,Ti related oxide impurities present in the raw materials are reduced to Si,Fe,and Ti metal melts.After the reduction process,the free Si,Fe_(x)Si_(y) and Fe_(x)Si_(y)Ti_(z) are precipitated from the melt during cooling.Free Si primarily exists in aggregated form within the SiC crystal,while the alloy phase is predominantly found at the interface between SiC and free Si,with Fe_(x)Si_(y)Ti_(z) embedded within FexSiy.Towards the end of the cooling process,other impurity oxides such as Al_(2)O_(3),CaO,and some unreduced SiO_(2) solidify to form calcium-aluminum-silicate glass phases,predominantly located between SiC grains.The remaining C from the reaction is mainly dispersed as free C within the SiC crystal and at the interface between SiC and free Si. 展开更多
关键词 impurity element Formation mechanism Smelted SiC crystal SiC refractory Occurrence form
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部