The effect of austenitizing temperature on segregation of impurities along grain boundaries in steel 4330M has been examined by AES.The impurity segregation was computed quantitatively.Results showed that the quantity...The effect of austenitizing temperature on segregation of impurities along grain boundaries in steel 4330M has been examined by AES.The impurity segregation was computed quantitatively.Results showed that the quantity of impurity segregation changed with the austenitizing temperature.The limitation of the McLean′s expression for equilibrium segrega- tion was discussed.展开更多
This paper deals with the cause of intergranular fracture occurred in the retained austenitic region in plasma carburized layer.The results show that the presence of retained austenite, which has a good effect on the ...This paper deals with the cause of intergranular fracture occurred in the retained austenitic region in plasma carburized layer.The results show that the presence of retained austenite, which has a good effect on the impact toughness,has no relation to this embrittlement.Analy- sis by Auger electron spectroscopy shows that the impurities S and P segregate at the grain boundaries is the main reason of the intergranular embrittlement in carburized layer. However,the segregation of P and S can be removed by reheating and quenching treatment.展开更多
The electromagnetic directional solidification(DS)phase separation experiments of high silicon 90 wt.%Si–Ti alloy were performed under various pulling-down speeds.The results showed that Si enriched layer,Si+TiSi_(2)...The electromagnetic directional solidification(DS)phase separation experiments of high silicon 90 wt.%Si–Ti alloy were performed under various pulling-down speeds.The results showed that Si enriched layer,Si+TiSi_(2)-rich layer and Si–Ti–Fe alloy layer appeared successively in axial direction of ingot after electromagnetic DS of 90 wt.%Si–Ti alloy melt at different pulling-down speeds.Separation of primary Si and segregation mechanism of metal impurities(Fe)during the electromagnetic DS process were controlled by pulling-down speed of ingot and electromagnetic stirring.When pulling-down speed was 5μm/s,minimum thickness of the Si enriched layer was 29.4 mm,and the highest content of primary Si in this layer was 92.46 wt.%;meanwhile,the highest removal rate of Fe as metal impurity was 92.90%.The type of inclusions in the Si enriched layer is determined by Fe content of segregated Si enriched layer.When the pulling-down speed was 5μm/s,the inclusions in the Si enriched layer were TiSi_(2).Finally,when the pulling-down speed reached greater than 5μm/s,the inclusions in the Si enriched layer evolved into TiSi_(2)+τ_(5).展开更多
Hydrogen as an interstitial solute at grain boundaries(GBs)can have a catastrophic impact on the mechanical properties of many metals.Despite the global research effort,the underlying hydrogen-GB interactions in polyc...Hydrogen as an interstitial solute at grain boundaries(GBs)can have a catastrophic impact on the mechanical properties of many metals.Despite the global research effort,the underlying hydrogen-GB interactions in polycrystals remain inadequately understood.In this study,using Voronoi tessellations and atomistic simulations,we elucidate the hydrogen segregation energy spectrum at the GBs of polycrystalline nickel by exploring all the topologically favorable segregation sites.Three distinct peaks in the energy spectrum are identified,corresponding to different structural fingerprints.The first peak(-0.205 eV)represents the most favorable segregation sites at GB core,while the second and third peaks account for the sites at GB surface.By incorporating a thermodynamic model,the spectrum enables the determination of the equilibrium hydrogen concentrations at GBs,unveiling a remarkable two to three orders of magnitude increase compared to the bulk hydrogen concentration reported in experimental studies.The identified structures from the GB spectrum exhibit vastly different behaviors in hydrogen segregation and diffusion,with the low-barrier channels inside GB core contributing to short-circuit diffusion,while the high energy gaps between GB and neighboring lattice serving as on-plane diffusion barriers.Mean square displacement analysis further confirms the findings,and shows that the calculated GB diffusion coefficient is three orders of magnitude greater than that of lattice.The present study has a significant implication for practical applications since it offers a tool to bridge the gap between atomic-scale interactions and macroscopic behaviors in engineering materials.展开更多
文摘The effect of austenitizing temperature on segregation of impurities along grain boundaries in steel 4330M has been examined by AES.The impurity segregation was computed quantitatively.Results showed that the quantity of impurity segregation changed with the austenitizing temperature.The limitation of the McLean′s expression for equilibrium segrega- tion was discussed.
文摘This paper deals with the cause of intergranular fracture occurred in the retained austenitic region in plasma carburized layer.The results show that the presence of retained austenite, which has a good effect on the impact toughness,has no relation to this embrittlement.Analy- sis by Auger electron spectroscopy shows that the impurities S and P segregate at the grain boundaries is the main reason of the intergranular embrittlement in carburized layer. However,the segregation of P and S can be removed by reheating and quenching treatment.
基金the Sichuan Science and Technology Program(2021YJ0548)Panzhihua Science and Technology Project(2020CY-G-15)+1 种基金Research Project of Panzhihua University(2020ZD002)Project of Sichuan Key Laboratory for comprehensive utilization of vanadium and titanium resources(2019FTSZ06,2020FTSZ01).
文摘The electromagnetic directional solidification(DS)phase separation experiments of high silicon 90 wt.%Si–Ti alloy were performed under various pulling-down speeds.The results showed that Si enriched layer,Si+TiSi_(2)-rich layer and Si–Ti–Fe alloy layer appeared successively in axial direction of ingot after electromagnetic DS of 90 wt.%Si–Ti alloy melt at different pulling-down speeds.Separation of primary Si and segregation mechanism of metal impurities(Fe)during the electromagnetic DS process were controlled by pulling-down speed of ingot and electromagnetic stirring.When pulling-down speed was 5μm/s,minimum thickness of the Si enriched layer was 29.4 mm,and the highest content of primary Si in this layer was 92.46 wt.%;meanwhile,the highest removal rate of Fe as metal impurity was 92.90%.The type of inclusions in the Si enriched layer is determined by Fe content of segregated Si enriched layer.When the pulling-down speed was 5μm/s,the inclusions in the Si enriched layer were TiSi_(2).Finally,when the pulling-down speed reached greater than 5μm/s,the inclusions in the Si enriched layer evolved into TiSi_(2)+τ_(5).
基金financially supported by the Research Council of Norway under the M-HEAT project(No.294689)the HyLINE Project(No.294739)All simulation resources are provided by the Norwegian Metacenter for Computational Science(Nos.NN9110K and NN9391K).
文摘Hydrogen as an interstitial solute at grain boundaries(GBs)can have a catastrophic impact on the mechanical properties of many metals.Despite the global research effort,the underlying hydrogen-GB interactions in polycrystals remain inadequately understood.In this study,using Voronoi tessellations and atomistic simulations,we elucidate the hydrogen segregation energy spectrum at the GBs of polycrystalline nickel by exploring all the topologically favorable segregation sites.Three distinct peaks in the energy spectrum are identified,corresponding to different structural fingerprints.The first peak(-0.205 eV)represents the most favorable segregation sites at GB core,while the second and third peaks account for the sites at GB surface.By incorporating a thermodynamic model,the spectrum enables the determination of the equilibrium hydrogen concentrations at GBs,unveiling a remarkable two to three orders of magnitude increase compared to the bulk hydrogen concentration reported in experimental studies.The identified structures from the GB spectrum exhibit vastly different behaviors in hydrogen segregation and diffusion,with the low-barrier channels inside GB core contributing to short-circuit diffusion,while the high energy gaps between GB and neighboring lattice serving as on-plane diffusion barriers.Mean square displacement analysis further confirms the findings,and shows that the calculated GB diffusion coefficient is three orders of magnitude greater than that of lattice.The present study has a significant implication for practical applications since it offers a tool to bridge the gap between atomic-scale interactions and macroscopic behaviors in engineering materials.