A variational method is adopted to investigate the properties of shallow impurity states near the interface in a free strained wurtzite GaN/AlxGa1-xN heterojunction under hydrostatic pressure and external electric fie...A variational method is adopted to investigate the properties of shallow impurity states near the interface in a free strained wurtzite GaN/AlxGa1-xN heterojunction under hydrostatic pressure and external electric field by using a simplified coherent potential approximation. Considering the biaxial strain due to lattice mismatch or epitaxial growth and the uniaxial strains effects, we investigated the Stark energy shift led by an external electric field for impurity states as functions of pressure as well as the impurity position, A1 component and areal electron density. The numerical result shows that the binding energy near linearly increases with pressure from 0 to 10 GPa. It is also found that the binding energy as a function of the electric field perpendicular to the interface shows an un-linear red shift or a blue shift for different impurity positions. The effect of increasing x on blue shift is more significant than that on the red shift for the impurity in the channel near the interface. The pressure influence on the Stark shift is more obvious with increase of electric field and the distance between an impurity and the interface. The increase of pressure decreases the blue shift but increases the red shift.展开更多
Ground state binding energies of donor impurities in a strained wurtzite GaN/AlxGal_xN heterojunction with a po- tential barrier of finite thickness are investigated using a variational approach combined with a numeri...Ground state binding energies of donor impurities in a strained wurtzite GaN/AlxGal_xN heterojunction with a po- tential barrier of finite thickness are investigated using a variational approach combined with a numerical computation. The built-in electric field due to the spontaneous and piezoelectric polarization, the strain modification due to the lattice mismatch near the interfaces, and the effects of ternary mixed crystals are all taken into account. It is found that the binding energies by using numerical wave functions are obviously greater than those by using variational wave functions when impurities are located in the channel near the interface of a heterojunction. Nevertheless, the binding energies using the former functions are obviously less than using the later functions when impurities are located in the channel far from an interface. The difference between our numerical method and the previous variational method is huge, showing that the former should be adopted in further work for the relevant problems. The binding energies each as a function of hydrostatic pressure are also calculated. But the change is unobvious in comparison with that obtained by the variational method.展开更多
With the use of variational method to solve the effective mass equation, we have studied the electronic and shallow impurity states in semiconductor heterostructures under an applied electric field. The electron energ...With the use of variational method to solve the effective mass equation, we have studied the electronic and shallow impurity states in semiconductor heterostructures under an applied electric field. The electron energy levels are calculated exactly and the impurity binding energies are calculated with the variational approach. It is found that the behaviors of electronic and shallow impurity states in heterostructures under an applied electric field are analogous to that of quantum wells. Our results show that with the increasing strength of electric field, the electron confinement energies increase, and the impurity binding energy increases also when the impurity is on the surface, while the impurity binding energy increases at first, to a peak value, then decreases to a value which is related to the impurity position when the impurity is away from the surface. In the absence of electric field, the result tends to the Levine's ground state energy (-1/4 effective Rydberg) when the impurity is on the surface, and the ground impurity binding energy tends to that in the bulk when the impurity is far away from the surface. The dependence of the impurity binding energy on the impurity position for different electric field is also discussed.展开更多
The low-lying spectra of parabolic quantum dots with or without an impurity at the center are investigated.While it has been known that the electron-electron interaction leads to ground-state transitions on magic valu...The low-lying spectra of parabolic quantum dots with or without an impurity at the center are investigated.While it has been known that the electron-electron interaction leads to ground-state transitions on magic values of angular momentum in a magnetic field. We show, in this paper, that the implantation of an impurity ion at the center can either enhance or suppress such transitions, depending on whether it is an acceptor or a donor ion.展开更多
We consider a three-electron system in the Impurity Hubbard model with a coupling between nearest-neighbors. Our research aim consists of studying the structure of essential spectrum and discrete spectra of the energy...We consider a three-electron system in the Impurity Hubbard model with a coupling between nearest-neighbors. Our research aim consists of studying the structure of essential spectrum and discrete spectra of the energy operator of three-electron systems in the impurity Hubbard model in the quartet state of the system in a <em>v</em>-dimensional lattice. We have reduced the study of the spectrum of the three-electron quartet state operator in the impurity Hubbard model to the study of the spectrum of a simpler operator. We proved the essential spectra of the three-electron systems in the Impurity Hubbard model in the quartet state is the union of no more than six segments, and the discrete spectrum of the system is consists of no more than four eigenvalues.展开更多
The variational method and the effective mass approximation are used to calculate the phonon effects on the hydrogenic impurity states in a cylindrical quantum wire with finite deep potential by taking both the coupli...The variational method and the effective mass approximation are used to calculate the phonon effects on the hydrogenic impurity states in a cylindrical quantum wire with finite deep potential by taking both the couplings of the electron-confined bulk longitudinal optical(LO) phonons and the impurity-ion-LO phonons into account.The binding energies and the phonon contributions are calculated as functions of the transverse dimension of the quantum wire.The results show that the polaronic effect induced by the electron-LO phonon coupling and the screening effect induced by the impurity-ion-LO phonon coupling tend to compensate each other and the total effects reduce the impurity binding energies.展开更多
Polarons bound to a shallow Coulomb impurity center in cylindrical quantum wire is studied by a vari- ational approach. The binding energies of the shallow impurity states in AlxGal-xAs cylindrical quantum wire are ca...Polarons bound to a shallow Coulomb impurity center in cylindrical quantum wire is studied by a vari- ational approach. The binding energies of the shallow impurity states in AlxGal-xAs cylindrical quantum wire are calculated as functions of the composition x and the impurity position. It is confirmed that the binding energies are reduced obviously by the influence of the electron-phonon interaction and the binding energies are increased with increasing the composition x.展开更多
Using the natural orbitals renormalization group(NORG)method,we investigate the screening of the local spin of an Anderson impurity interacting with the helical edge states in a quantum spin Hall insulator.It is fou...Using the natural orbitals renormalization group(NORG)method,we investigate the screening of the local spin of an Anderson impurity interacting with the helical edge states in a quantum spin Hall insulator.It is found that there is a local spin formed at the impurity site and the local spin is completel.y screened by electrons in the quantum spin Hall insulator.Meanwhile,the local spin is screened dominantly by a single active natural orbital.We then show that the Kondo screening mechanism becomes transparent and simple in the framework of the natural orbitals formalism.We project the active natural orbital respectively into real space and momentum space to characterize its structure.We conilrm the spin-momentum locking property of the edge states based on the occupancy of a Bloch state on the edge to which the impurity couples.Furthermore,we study the dynamical property of the active natural orbital represented by the local density of states,from which we observe the Kondo resonance peak.展开更多
We investigate how the driving field affects the bound states in the one-dimensional two-particle Bose-Hubbard model with an impurity. In the high-frequency regime, compared with the static lattice [Phys. Rev. Lett. 1...We investigate how the driving field affects the bound states in the one-dimensional two-particle Bose-Hubbard model with an impurity. In the high-frequency regime, compared with the static lattice [Phys. Rev. Lett. 109 (2012) 116405], a new type of Floquet bound state can be obtained even for a weak particle-particle interaction by tuning the driving amplitude. Moreover, the localization degree of the F1oquet bound molecular state can be adjusted by tuning the driving frequency, and even the Floquet bound molecular state can be changed into the Floquet extended state when the driving frequency is below a critical value. Our results provide an efficient way to manipulate bound states in the many-body systems.展开更多
Binding energies of shallow hydrogenic impurity in a GaAs/GaAlAs quantum dot with spherical confinement, parabolic confinement and rectangular confinement are calculated as a function of dot radius in the influence of...Binding energies of shallow hydrogenic impurity in a GaAs/GaAlAs quantum dot with spherical confinement, parabolic confinement and rectangular confinement are calculated as a function of dot radius in the influence of electric field. The binding energy is calculated following a variational procedure within the effective mass approximation along with the spatial depended dielectric function. A finite confining potential well with depth is determined by the discontinuity of the band gap in the quantum dot and the cladding. It is found that the contribution of spatially dependent screening effects are small for a donor impurity and it is concluded that the rectangulax confinement is better than the parabolic and spherical confinements. These results are compared with the existing literature.展开更多
This paper theoretically studies the impurity states and the effects of impurity concentration and configuration on the optical,electrical,and statistical properties of CdSe nanoplatelets(NPLs).An image charge-based m...This paper theoretically studies the impurity states and the effects of impurity concentration and configuration on the optical,electrical,and statistical properties of CdSe nanoplatelets(NPLs).An image charge-based model of electron-impurity interaction is proposed.The charge-carrier energy spectra and corresponding wave functions depending on the impurity number and configuration are calculated.The electron binding energies are calculated for different NPL thicknesses.It is shown that the image charge-based interaction potential that arises due to the dielectric constants mismatch is much stronger than the interaction potential that does not take such a mismatch into account.Also,it is demonstrated that the binding energies are increasing with the number of impurities.We calculate the canonical partition function using the energy levels of the electron,which in turn is used to obtain the mean energy,heat capacity,and entropy of the non-interacting electron gas.The thermodynamic properties of the non-interacting electron gas that depend on the geometric parameters of the NPL,impurity number,configuration,and temperature are studied.展开更多
The impurity effect is studied in three-dimensional Dirac semimetals in the framework of a T-matrix method to consider the multiple scattering events of Dirac electrons off impurities. It has been found that a strong ...The impurity effect is studied in three-dimensional Dirac semimetals in the framework of a T-matrix method to consider the multiple scattering events of Dirac electrons off impurities. It has been found that a strong impurity potential can significantly restructure the energy dispersion and the density of states of Dirac electrons. An impurity-induced resonant state emerges and significantly modifies the pristine optical response. It is shown that the impurity state disturbs the common longitudinal optical conductivity by creating either an optical conductivity peak or double absorption jumps, depending on the relative position of the impurity band and the Fermi level. More importantly, these conductivity features appear in the forbidden region between the Drude and interband transition, completely or partially filling the Pauli block region of optical response. The underlying physics is that the appearance of resonance states as well as the broadening of the bands leads to a more complicated selection rule for the optical transitions, making it possible to excite new electron-hole pairs in the forbidden region. These features in optical conductivity provide valuable information to understand the impurity behaviors in 3D Dirac materials.展开更多
We use scanning tunneling microscopy to visualize the atomic-scale electronic states induced by a pair of hole dopants in Ca_(2)CuO_(2)Cl_(2)parent Mott insulator of cuprates.We find that when the two dopants approach...We use scanning tunneling microscopy to visualize the atomic-scale electronic states induced by a pair of hole dopants in Ca_(2)CuO_(2)Cl_(2)parent Mott insulator of cuprates.We find that when the two dopants approach each other,the transfer of spectral weight from high energy Hubbard band to low energy ingap state creates a broad peak and nearly V-shaped gap around the Fermi level.The peak position shows a sudden drop at distance around 4 a_(0)and then remains almost constant.The in-gap states exhibit peculiar spatial distributions depending on the configuration of the two dopants relative to the underlying Cu lattice.These results shed important new lights on the evolution of low energy electronic states when a few holes are doped into parent cuprates.展开更多
Ga-doped ZnO nanowires have been synthesized by a pulsed laser chemical vapor deposition method. The crystal structure and photoluminescence spectra indicate that the dopant atoms are well integrated into the ZnO wurt...Ga-doped ZnO nanowires have been synthesized by a pulsed laser chemical vapor deposition method. The crystal structure and photoluminescence spectra indicate that the dopant atoms are well integrated into the ZnO wurtzite lattice. The photocurrent properties at different temperatures have been systematically investigated for nanowires configured as a three-terminal device. Among the experimental highlights, a pronounced semiconductor-to-metal transition occurs upon UV band-to-band excitation. This is a consequence of the reduction in electron mobility arising from the drastically enhanced Coulomb interactions and surface scattering. Another feature is the reproducible presence of two resistance valleys at 220 and 320 K upon light irradiation. This phenomenon originates from the trapping and detrapping processes in the impurity band arising from the native defects as well as the extrinsic Ga dopants. This work demonstrates that due to the dimensional confinement in quasi-one-dimensional structures, enhanced Coulomb interaction, surface scattering, and impurity states can significantly influence charge transport.展开更多
Based on the effective-mass approximation theory and variational method, the laser field and temperature effects on the ground-state donor binding energy in the GaAsflGa1-x AlxAs quantum well (QW) are investigated. ...Based on the effective-mass approximation theory and variational method, the laser field and temperature effects on the ground-state donor binding energy in the GaAsflGa1-x AlxAs quantum well (QW) are investigated. Numerical results show that the donor binding energy depends on the impurity position, laser parameter, temperature, Al composition, and well width. The donor binding energy is decreased when the laser field and temperature are increased in the QW for any impurity position and QW parameter case. Moreover, the laser field has an obvious influence on the donor binding energy of impurity located at the vicinity of the QW center. In addition, our results also show that the donor binding energy decreases (or increases) as the well width (or AI composition x) increases in the QW.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 60566002)
文摘A variational method is adopted to investigate the properties of shallow impurity states near the interface in a free strained wurtzite GaN/AlxGa1-xN heterojunction under hydrostatic pressure and external electric field by using a simplified coherent potential approximation. Considering the biaxial strain due to lattice mismatch or epitaxial growth and the uniaxial strains effects, we investigated the Stark energy shift led by an external electric field for impurity states as functions of pressure as well as the impurity position, A1 component and areal electron density. The numerical result shows that the binding energy near linearly increases with pressure from 0 to 10 GPa. It is also found that the binding energy as a function of the electric field perpendicular to the interface shows an un-linear red shift or a blue shift for different impurity positions. The effect of increasing x on blue shift is more significant than that on the red shift for the impurity in the channel near the interface. The pressure influence on the Stark shift is more obvious with increase of electric field and the distance between an impurity and the interface. The increase of pressure decreases the blue shift but increases the red shift.
基金supported by the National Natural Science Foundation of China(Grant No.60966001)the Key Project of the Natural Science Foundation of Inner Mongolia Autonomous Region,China(Grant Nos.20080404Zd02 and 2013ZD02)
文摘Ground state binding energies of donor impurities in a strained wurtzite GaN/AlxGal_xN heterojunction with a po- tential barrier of finite thickness are investigated using a variational approach combined with a numerical computation. The built-in electric field due to the spontaneous and piezoelectric polarization, the strain modification due to the lattice mismatch near the interfaces, and the effects of ternary mixed crystals are all taken into account. It is found that the binding energies by using numerical wave functions are obviously greater than those by using variational wave functions when impurities are located in the channel near the interface of a heterojunction. Nevertheless, the binding energies using the former functions are obviously less than using the later functions when impurities are located in the channel far from an interface. The difference between our numerical method and the previous variational method is huge, showing that the former should be adopted in further work for the relevant problems. The binding energies each as a function of hydrostatic pressure are also calculated. But the change is unobvious in comparison with that obtained by the variational method.
基金Natural Science Foundation of Shanghai Municipal Commission of Education
文摘With the use of variational method to solve the effective mass equation, we have studied the electronic and shallow impurity states in semiconductor heterostructures under an applied electric field. The electron energy levels are calculated exactly and the impurity binding energies are calculated with the variational approach. It is found that the behaviors of electronic and shallow impurity states in heterostructures under an applied electric field are analogous to that of quantum wells. Our results show that with the increasing strength of electric field, the electron confinement energies increase, and the impurity binding energy increases also when the impurity is on the surface, while the impurity binding energy increases at first, to a peak value, then decreases to a value which is related to the impurity position when the impurity is away from the surface. In the absence of electric field, the result tends to the Levine's ground state energy (-1/4 effective Rydberg) when the impurity is on the surface, and the ground impurity binding energy tends to that in the bulk when the impurity is far away from the surface. The dependence of the impurity binding energy on the impurity position for different electric field is also discussed.
文摘The low-lying spectra of parabolic quantum dots with or without an impurity at the center are investigated.While it has been known that the electron-electron interaction leads to ground-state transitions on magic values of angular momentum in a magnetic field. We show, in this paper, that the implantation of an impurity ion at the center can either enhance or suppress such transitions, depending on whether it is an acceptor or a donor ion.
文摘We consider a three-electron system in the Impurity Hubbard model with a coupling between nearest-neighbors. Our research aim consists of studying the structure of essential spectrum and discrete spectra of the energy operator of three-electron systems in the impurity Hubbard model in the quartet state of the system in a <em>v</em>-dimensional lattice. We have reduced the study of the spectrum of the three-electron quartet state operator in the impurity Hubbard model to the study of the spectrum of a simpler operator. We proved the essential spectra of the three-electron systems in the Impurity Hubbard model in the quartet state is the union of no more than six segments, and the discrete spectrum of the system is consists of no more than four eigenvalues.
基金supported by the National Natural Science Foundation of China (No.10764003)
文摘The variational method and the effective mass approximation are used to calculate the phonon effects on the hydrogenic impurity states in a cylindrical quantum wire with finite deep potential by taking both the couplings of the electron-confined bulk longitudinal optical(LO) phonons and the impurity-ion-LO phonons into account.The binding energies and the phonon contributions are calculated as functions of the transverse dimension of the quantum wire.The results show that the polaronic effect induced by the electron-LO phonon coupling and the screening effect induced by the impurity-ion-LO phonon coupling tend to compensate each other and the total effects reduce the impurity binding energies.
基金Project supported by the Inner Mongolia Natural Science Foundation,China(No.2013MS0111)the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region(No.NJZZ14159)
文摘Polarons bound to a shallow Coulomb impurity center in cylindrical quantum wire is studied by a vari- ational approach. The binding energies of the shallow impurity states in AlxGal-xAs cylindrical quantum wire are calculated as functions of the composition x and the impurity position. It is confirmed that the binding energies are reduced obviously by the influence of the electron-phonon interaction and the binding energies are increased with increasing the composition x.
基金Supported by National Natural Science Foundation of China under Grant Nos 11474356 and 11774422supported by the Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China
文摘Using the natural orbitals renormalization group(NORG)method,we investigate the screening of the local spin of an Anderson impurity interacting with the helical edge states in a quantum spin Hall insulator.It is found that there is a local spin formed at the impurity site and the local spin is completel.y screened by electrons in the quantum spin Hall insulator.Meanwhile,the local spin is screened dominantly by a single active natural orbital.We then show that the Kondo screening mechanism becomes transparent and simple in the framework of the natural orbitals formalism.We project the active natural orbital respectively into real space and momentum space to characterize its structure.We conilrm the spin-momentum locking property of the edge states based on the occupancy of a Bloch state on the edge to which the impurity couples.Furthermore,we study the dynamical property of the active natural orbital represented by the local density of states,from which we observe the Kondo resonance peak.
基金Supported by the National Natural Science Foundation of China under Grants Nos 11374375,11574405,11465008 and 11547125the Hunan Provincial Natural Science Foundation under Grant Nos 2015JJ4020 and 2015JJ2114the Scientific Research Fund of Hunan Provincial Education Department under Grant No 14A118
文摘We investigate how the driving field affects the bound states in the one-dimensional two-particle Bose-Hubbard model with an impurity. In the high-frequency regime, compared with the static lattice [Phys. Rev. Lett. 109 (2012) 116405], a new type of Floquet bound state can be obtained even for a weak particle-particle interaction by tuning the driving amplitude. Moreover, the localization degree of the F1oquet bound molecular state can be adjusted by tuning the driving frequency, and even the Floquet bound molecular state can be changed into the Floquet extended state when the driving frequency is below a critical value. Our results provide an efficient way to manipulate bound states in the many-body systems.
文摘Binding energies of shallow hydrogenic impurity in a GaAs/GaAlAs quantum dot with spherical confinement, parabolic confinement and rectangular confinement are calculated as a function of dot radius in the influence of electric field. The binding energy is calculated following a variational procedure within the effective mass approximation along with the spatial depended dielectric function. A finite confining potential well with depth is determined by the discontinuity of the band gap in the quantum dot and the cladding. It is found that the contribution of spatially dependent screening effects are small for a donor impurity and it is concluded that the rectangulax confinement is better than the parabolic and spherical confinements. These results are compared with the existing literature.
基金funded by the RA Science Committee as part of a‘Leading scientific research support program’within the framework of research project 21AG-1C022。
文摘This paper theoretically studies the impurity states and the effects of impurity concentration and configuration on the optical,electrical,and statistical properties of CdSe nanoplatelets(NPLs).An image charge-based model of electron-impurity interaction is proposed.The charge-carrier energy spectra and corresponding wave functions depending on the impurity number and configuration are calculated.The electron binding energies are calculated for different NPL thicknesses.It is shown that the image charge-based interaction potential that arises due to the dielectric constants mismatch is much stronger than the interaction potential that does not take such a mismatch into account.Also,it is demonstrated that the binding energies are increasing with the number of impurities.We calculate the canonical partition function using the energy levels of the electron,which in turn is used to obtain the mean energy,heat capacity,and entropy of the non-interacting electron gas.The thermodynamic properties of the non-interacting electron gas that depend on the geometric parameters of the NPL,impurity number,configuration,and temperature are studied.
基金This work was supported by Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (CDUPS) (2017), the National Natural Science Founda-tion of China (Grant Nos. 11474106 and 11774100), Guangdong Natural Science Foundation of China (Grant Nos. 2017B030311003 and 2015A030313384), and the Innovation Project of Graduate School of South China Normal University.
文摘The impurity effect is studied in three-dimensional Dirac semimetals in the framework of a T-matrix method to consider the multiple scattering events of Dirac electrons off impurities. It has been found that a strong impurity potential can significantly restructure the energy dispersion and the density of states of Dirac electrons. An impurity-induced resonant state emerges and significantly modifies the pristine optical response. It is shown that the impurity state disturbs the common longitudinal optical conductivity by creating either an optical conductivity peak or double absorption jumps, depending on the relative position of the impurity band and the Fermi level. More importantly, these conductivity features appear in the forbidden region between the Drude and interband transition, completely or partially filling the Pauli block region of optical response. The underlying physics is that the appearance of resonance states as well as the broadening of the bands leads to a more complicated selection rule for the optical transitions, making it possible to excite new electron-hole pairs in the forbidden region. These features in optical conductivity provide valuable information to understand the impurity behaviors in 3D Dirac materials.
基金the National Program on Key Basic Research Project of China(973 Program)(2017YFA0302900)the Basic Science Center Project of the National Natural Science Foundation of China(51788104)supported in part by the Beijing Advanced Innovation Center for Future Chip(ICFC)。
文摘We use scanning tunneling microscopy to visualize the atomic-scale electronic states induced by a pair of hole dopants in Ca_(2)CuO_(2)Cl_(2)parent Mott insulator of cuprates.We find that when the two dopants approach each other,the transfer of spectral weight from high energy Hubbard band to low energy ingap state creates a broad peak and nearly V-shaped gap around the Fermi level.The peak position shows a sudden drop at distance around 4 a_(0)and then remains almost constant.The in-gap states exhibit peculiar spatial distributions depending on the configuration of the two dopants relative to the underlying Cu lattice.These results shed important new lights on the evolution of low energy electronic states when a few holes are doped into parent cuprates.
文摘Ga-doped ZnO nanowires have been synthesized by a pulsed laser chemical vapor deposition method. The crystal structure and photoluminescence spectra indicate that the dopant atoms are well integrated into the ZnO wurtzite lattice. The photocurrent properties at different temperatures have been systematically investigated for nanowires configured as a three-terminal device. Among the experimental highlights, a pronounced semiconductor-to-metal transition occurs upon UV band-to-band excitation. This is a consequence of the reduction in electron mobility arising from the drastically enhanced Coulomb interactions and surface scattering. Another feature is the reproducible presence of two resistance valleys at 220 and 320 K upon light irradiation. This phenomenon originates from the trapping and detrapping processes in the impurity band arising from the native defects as well as the extrinsic Ga dopants. This work demonstrates that due to the dimensional confinement in quasi-one-dimensional structures, enhanced Coulomb interaction, surface scattering, and impurity states can significantly influence charge transport.
基金Supported by the National Natural Science Foundation of China under Grant No. 60906044
文摘Based on the effective-mass approximation theory and variational method, the laser field and temperature effects on the ground-state donor binding energy in the GaAsflGa1-x AlxAs quantum well (QW) are investigated. Numerical results show that the donor binding energy depends on the impurity position, laser parameter, temperature, Al composition, and well width. The donor binding energy is decreased when the laser field and temperature are increased in the QW for any impurity position and QW parameter case. Moreover, the laser field has an obvious influence on the donor binding energy of impurity located at the vicinity of the QW center. In addition, our results also show that the donor binding energy decreases (or increases) as the well width (or AI composition x) increases in the QW.