Spinal cord injury necessitates effective rehabilitation strategies, with exercise therapies showing promise in promoting recovery. This study investigated the impact of rehabilitation exercise on functional recovery ...Spinal cord injury necessitates effective rehabilitation strategies, with exercise therapies showing promise in promoting recovery. This study investigated the impact of rehabilitation exercise on functional recovery and morphological changes following thoracic contusive spinal cord injury. After a 7-day recovery period after spinal cord injury, mice were assigned to either a trained group(10 weeks of voluntary running wheel or forced treadmill exercise) or an untrained group. Bi-weekly assessments revealed that the exercise-trained group, particularly the voluntary wheel exercise subgroup, displayed significantly improved locomotor recovery, more plasticity of dopaminergic and serotonin modulation compared with the untrained group. Additionally, exercise interventions led to gait pattern restoration and enhanced transcranial magnetic motor-evoked potentials. Despite consistent injury areas across groups, exercise training promoted terminal innervation of descending axons. In summary, voluntary wheel exercise shows promise for enhancing outcomes after thoracic contusive spinal cord injury, emphasizing the role of exercise modality in promoting recovery and morphological changes in spinal cord injuries. Our findings will influence future strategies for rehabilitation exercises, restoring functional movement after spinal cord injury.展开更多
With the worsening of energy crisis and environmental pollution,electric vehicles with four in?wheel motors have been paid more and more attention. The main research subject is how to reasonably distribute the driving...With the worsening of energy crisis and environmental pollution,electric vehicles with four in?wheel motors have been paid more and more attention. The main research subject is how to reasonably distribute the driving torque of each wheel. Considering the longitudinal motion,lateral motion,yaw movement and rotation of the four wheels,the tire model and the seven DOF dynamic model of the vehicle are established in this paper. Then,the torque distribution method is proposed based on road adhesion margin,which can be divided into anti ? slip control layer and torque distribution layer. The anti?slip control layer is built based on sliding mode variable structure control,whose main function is to avoid the excessive slip of wheels caused by road conditions. The torque distribution layer is responsible for selecting the torque distribution method based on road adhesion margin. The simulation results show that the proposed torque distribution method can ensure the vehicle quickly adapt to current road adhesion conditions,and improve the handling stability and dynamic performance of the vehicle in the driving process.展开更多
A differential steering system is presented for electric vehicle with motorized wheels and a dynamic model of three-freedom car is built.Based on these models,the quantitative expressions of the road feel,sensitivity,...A differential steering system is presented for electric vehicle with motorized wheels and a dynamic model of three-freedom car is built.Based on these models,the quantitative expressions of the road feel,sensitivity,and operation stability of the steering are derived.Then,according to the features of multi-constrained optimization of multi-objective function,a multi-island genetic algorithm(MIGA)is designed.Taking the road feel and the sensitivity of the steering as optimization objectives and the operation stability of the steering as a constraint,the system parameters are optimized.The simulation results show that the system optimized with MIGA can improve the steering road feel,and guarantee the operation stability and steering sensibility.展开更多
A novel motor learning method is present based on the cooperation of the cerebellum and basal ganglia for the behavior learning of agent. The motor learning method derives from the principle of CNS and operant learnin...A novel motor learning method is present based on the cooperation of the cerebellum and basal ganglia for the behavior learning of agent. The motor learning method derives from the principle of CNS and operant learning mechanism and it depends on the interactions between the basal ganglia and cerebellum. The whole learning system is composed of evaluation mechanism, action selection mechanism, tropism mechanism. The learning signals come from not only the Inferior Olive but also the Substantia Nigra in the beginning. The speed of learning is increased as well as the failure time is reduced with the cerebellum as a supervisor. Convergence can be guaranteed in the sense of entropy. With the proposed motor learning method, a motor learning system for the self-balancing two-wheeled robot has been built using the RBF neural networks as the actor and evaluation function approximator. The simulation experiments showed that the proposed motor learning system achieved a better learning effect, so the motor learning based on the coordination of cerebellum and basal ganglia is effective.展开更多
ABS is an active safety system which showed a valuable contribution to vehicle safety and stability since it was first introduced. Recently, EVs with in-wheel-motors have drawn increasing attention owing to their grea...ABS is an active safety system which showed a valuable contribution to vehicle safety and stability since it was first introduced. Recently, EVs with in-wheel-motors have drawn increasing attention owing to their greatest advantages. Wheels torques are precisely and swiftly controlled thanks to electric motors and their advanced driving techniques. In this paper, a regenerative-ABS control RABS is proposed for all-in-wheel-motors-drive EVs. The RABS is realized as a pure electronic braking system called brake-by-wire. A coordination strategy is suggested to control RABS compromising three layers. First, wheels slip control takes place, and braking torque is calculated in the higher layer. In the coordinate interlayer, torque is allocated between actuators ensuring maximal energy recovery and vehicle stability. While in the lower layer, actuator control is performed. The RABS effectiveness is validated on a 3-DOF EVSimulink model through two straight-line braking manoeuvres with low and high initial speeds of 50 km/h and 150 km/h, respectively. Both regular and emergency braking manoeuvres are considered with ABS enabled and disabled for comparison. Simulation results showed the high performance of the proposed RABS control in terms of vehicle stability, brake response, stopping distance, and battery re-charging.展开更多
Considering the steering characters of one type of wheeled armored vehicle, a brushless direct current (DC) motor is adapted as the actuator for steering control. After investigating the known algorithms, one kind o...Considering the steering characters of one type of wheeled armored vehicle, a brushless direct current (DC) motor is adapted as the actuator for steering control. After investigating the known algorithms, one kind of algorithm, which combines the fuzzy logic control with the self-adapting PID control and the startup and pre-hrake control, is put forward. Then a test-bed is constructed, and an experiment is conducted. The result of experiment confirms the validity of this algorithm in steering control of wheeled armored vehicle with brushless DC motor.展开更多
To analyze wheel wear discrepancy between motor car and trailer of an intercity train,a novel wheel wear rates calculation model was proposed,which was composed of the intercity train dynamics model,wheel-rail three-d...To analyze wheel wear discrepancy between motor car and trailer of an intercity train,a novel wheel wear rates calculation model was proposed,which was composed of the intercity train dynamics model,wheel-rail three-dimensional rolling contact FEM model and the wear model.The simulated results were contrasted with measured results in field test.The simulated results showed the motor car wheels had larger rotation rate and longitudinal creepage than the trailer wheels.Meanwhile,the motor car wheels encountered larger vertical forces and longitudinal forces from bogie because of the heavier car body and the impact of traction torque.The traction torque acting on motor car wheel could increase the slip rates in the rear part of wheel contact patch and weaken the spinning phenomenon of relative slip.Larger contact pressure and slip rates caused the higher wear rates of motor car wheel than those of trailer wheel.The overall trends of wheel wear depth in simulated and tested results were similar.And they both showed the motor car wheel encountered the more serious wear than the trailer wheel.These models can be used to study the effect of the traction characteristics curves on the wear of wheel.展开更多
This paper focuses on the controller design using fuzzy sliding mode control(FSMC)with application to electro-mechanical brake(EMB)systems using BLDC Motor.The EMB controller transmits the control signal to the motor ...This paper focuses on the controller design using fuzzy sliding mode control(FSMC)with application to electro-mechanical brake(EMB)systems using BLDC Motor.The EMB controller transmits the control signal to the motor driver to rotate the motor.The torque distribution of motors is studied in this paper actually.Firstly,the model of the EMB system is established.Then the state observer is developed to estimate the vehicle states including the vehicle velocity and longitudinal force.Due to the fact that the EMB system is nonlinear and uncertain,a FSMC strategy based on wheel slip ratio is proposed,where both the normal and emergency braking conditions are taken into account.The equivalent control law of sliding mode controller is designed on the basis of the variation of the front axle and rear axle load during the brake process,while the switching control law is adjusted by the fuzzy corrector.The simulation results illustrate that the FSMC strategy has the superior performance,better adaptability to various types of roads,and shorter braking distance,as compared to PID control and traditional sliding mode control technologies.Finally,the hardware-in-loop(HIL)experimental results have exemplified the validation of the developed methodology.展开更多
This paper describes the electric drive for an in-wheel fractional-slot axial flux machine,designed for achieving a wide flux-weakening operating region.By using a slotted stator with fractional-slot windings and addi...This paper describes the electric drive for an in-wheel fractional-slot axial flux machine,designed for achieving a wide flux-weakening operating region.By using a slotted stator with fractional-slot windings and additional cores enclosing end windings,the axial flux machine reaches a wide constant power speed range.The machine is designed for increasing flux-weakening capability while obtaining low harmonic back-electromotive force and low cogging torque.A 10 N.m axial flux machine exhibiting 3 to 1 flux-weakening speed range has been built.A flux-weakening controller,able to maximize the output torque in the flux-weakening region,is designed and implemented.The goodness of both design and control algorithm is proved by experimental tests.However,such a fractional-slot machine has not only advantages.Rotor losses are very high,and they have to be properly considered during the design process.展开更多
This paper describes in detail three kinds of typical compound braking strategy of wheel motor drive electric vehicle and summarizes the current commonly used strategies based on the three typical strategies developed...This paper describes in detail three kinds of typical compound braking strategy of wheel motor drive electric vehicle and summarizes the current commonly used strategies based on the three typical strategies developed. In the end, a new compound braking strategy is proposed;that is, we take braking mode classify, ECE regulations and SOC value of the battery as an important reference of braking force that joins the motor braking force, as well as we join the different identification models;according to the different braking modes, the purpose is that we can apply the different braking program.展开更多
The conventional Al2O3-13 wt. % TiO2 composite ceramic coatings are fabricated by plasma spraying on the surface of extrusion wheel. The microstrueture, morphology and phase compositions of the substrate and coat- ing...The conventional Al2O3-13 wt. % TiO2 composite ceramic coatings are fabricated by plasma spraying on the surface of extrusion wheel. The microstrueture, morphology and phase compositions of the substrate and coat- ing are investigated by using X-ray diffractometry (XRD) , scanning electron microsopy (SEM) and energy dis- persive spectroscopy (EDS). Moreover, the microhardness of the substrate and the coating are investigated using Vickers mierohardness tester, the friction and wear behaviors of the substrate and the coating are investigated by using a block-on-ring tribometer under dry sliding conditions with the load of 245 N. The results show that both γ-Al2O3 and α-Al2O3 phases are observed in the as-sprayed coatings, the mian phase is γ-Al2O3. There are white particulates Al2O3 on its surface. The Al2O3-13 wt. % TiO2 coating possesses higher mierohardness which is about 1018HV and 1.6 times that of the substrate. The wear performance of coating is better than that of the substrate. In a practical application, the life of the extrusion wheel which is plasma sprayed Al2O3-13 wt. % TiO2 coating on the surface is 1.2 times that of the conventional extrusion wheel, and the life is about 330 h.展开更多
基金supported by the NIH (R01NS103481, R01NS111776, and R01NS131489)Indiana Department of Health (ISDH58180)(all to WW)。
文摘Spinal cord injury necessitates effective rehabilitation strategies, with exercise therapies showing promise in promoting recovery. This study investigated the impact of rehabilitation exercise on functional recovery and morphological changes following thoracic contusive spinal cord injury. After a 7-day recovery period after spinal cord injury, mice were assigned to either a trained group(10 weeks of voluntary running wheel or forced treadmill exercise) or an untrained group. Bi-weekly assessments revealed that the exercise-trained group, particularly the voluntary wheel exercise subgroup, displayed significantly improved locomotor recovery, more plasticity of dopaminergic and serotonin modulation compared with the untrained group. Additionally, exercise interventions led to gait pattern restoration and enhanced transcranial magnetic motor-evoked potentials. Despite consistent injury areas across groups, exercise training promoted terminal innervation of descending axons. In summary, voluntary wheel exercise shows promise for enhancing outcomes after thoracic contusive spinal cord injury, emphasizing the role of exercise modality in promoting recovery and morphological changes in spinal cord injuries. Our findings will influence future strategies for rehabilitation exercises, restoring functional movement after spinal cord injury.
基金supported by the Natural Science Foundation of Jiangsu Province(No. BK20151472)the Research Project of Key Laboratory of Advanced Manufacture Technology for Automobile Parts(Chongqing University of Technology) , Ministry of Education (No. 2015KLMT04)
文摘With the worsening of energy crisis and environmental pollution,electric vehicles with four in?wheel motors have been paid more and more attention. The main research subject is how to reasonably distribute the driving torque of each wheel. Considering the longitudinal motion,lateral motion,yaw movement and rotation of the four wheels,the tire model and the seven DOF dynamic model of the vehicle are established in this paper. Then,the torque distribution method is proposed based on road adhesion margin,which can be divided into anti ? slip control layer and torque distribution layer. The anti?slip control layer is built based on sliding mode variable structure control,whose main function is to avoid the excessive slip of wheels caused by road conditions. The torque distribution layer is responsible for selecting the torque distribution method based on road adhesion margin. The simulation results show that the proposed torque distribution method can ensure the vehicle quickly adapt to current road adhesion conditions,and improve the handling stability and dynamic performance of the vehicle in the driving process.
基金Supported by the National Natural Science Foundation of China(51375007,51205191)the Visiting Scholar Foundation of the State Key Lab of Mechanical Transmission in Chongqing University+1 种基金the Funds from the Postgraduate Creative Base in Nanjing University of Aeronautics and Astronauticsthe Research Funding of Nanjing University of Aeronautics and Astronautics(NS2013015)
文摘A differential steering system is presented for electric vehicle with motorized wheels and a dynamic model of three-freedom car is built.Based on these models,the quantitative expressions of the road feel,sensitivity,and operation stability of the steering are derived.Then,according to the features of multi-constrained optimization of multi-objective function,a multi-island genetic algorithm(MIGA)is designed.Taking the road feel and the sensitivity of the steering as optimization objectives and the operation stability of the steering as a constraint,the system parameters are optimized.The simulation results show that the system optimized with MIGA can improve the steering road feel,and guarantee the operation stability and steering sensibility.
文摘A novel motor learning method is present based on the cooperation of the cerebellum and basal ganglia for the behavior learning of agent. The motor learning method derives from the principle of CNS and operant learning mechanism and it depends on the interactions between the basal ganglia and cerebellum. The whole learning system is composed of evaluation mechanism, action selection mechanism, tropism mechanism. The learning signals come from not only the Inferior Olive but also the Substantia Nigra in the beginning. The speed of learning is increased as well as the failure time is reduced with the cerebellum as a supervisor. Convergence can be guaranteed in the sense of entropy. With the proposed motor learning method, a motor learning system for the self-balancing two-wheeled robot has been built using the RBF neural networks as the actor and evaluation function approximator. The simulation experiments showed that the proposed motor learning system achieved a better learning effect, so the motor learning based on the coordination of cerebellum and basal ganglia is effective.
文摘ABS is an active safety system which showed a valuable contribution to vehicle safety and stability since it was first introduced. Recently, EVs with in-wheel-motors have drawn increasing attention owing to their greatest advantages. Wheels torques are precisely and swiftly controlled thanks to electric motors and their advanced driving techniques. In this paper, a regenerative-ABS control RABS is proposed for all-in-wheel-motors-drive EVs. The RABS is realized as a pure electronic braking system called brake-by-wire. A coordination strategy is suggested to control RABS compromising three layers. First, wheels slip control takes place, and braking torque is calculated in the higher layer. In the coordinate interlayer, torque is allocated between actuators ensuring maximal energy recovery and vehicle stability. While in the lower layer, actuator control is performed. The RABS effectiveness is validated on a 3-DOF EVSimulink model through two straight-line braking manoeuvres with low and high initial speeds of 50 km/h and 150 km/h, respectively. Both regular and emergency braking manoeuvres are considered with ABS enabled and disabled for comparison. Simulation results showed the high performance of the proposed RABS control in terms of vehicle stability, brake response, stopping distance, and battery re-charging.
文摘Considering the steering characters of one type of wheeled armored vehicle, a brushless direct current (DC) motor is adapted as the actuator for steering control. After investigating the known algorithms, one kind of algorithm, which combines the fuzzy logic control with the self-adapting PID control and the startup and pre-hrake control, is put forward. Then a test-bed is constructed, and an experiment is conducted. The result of experiment confirms the validity of this algorithm in steering control of wheeled armored vehicle with brushless DC motor.
基金Project(51805374)supported by the National Natural Science Foundation of ChinaProject(208YFB1201603-08)supported by the Key R&D Program of Ministry of Science and Technology,China。
文摘To analyze wheel wear discrepancy between motor car and trailer of an intercity train,a novel wheel wear rates calculation model was proposed,which was composed of the intercity train dynamics model,wheel-rail three-dimensional rolling contact FEM model and the wear model.The simulated results were contrasted with measured results in field test.The simulated results showed the motor car wheels had larger rotation rate and longitudinal creepage than the trailer wheels.Meanwhile,the motor car wheels encountered larger vertical forces and longitudinal forces from bogie because of the heavier car body and the impact of traction torque.The traction torque acting on motor car wheel could increase the slip rates in the rear part of wheel contact patch and weaken the spinning phenomenon of relative slip.Larger contact pressure and slip rates caused the higher wear rates of motor car wheel than those of trailer wheel.The overall trends of wheel wear depth in simulated and tested results were similar.And they both showed the motor car wheel encountered the more serious wear than the trailer wheel.These models can be used to study the effect of the traction characteristics curves on the wear of wheel.
基金This work was supported by the National Natural Science Foundation of China under Grant[number 51575167]。
文摘This paper focuses on the controller design using fuzzy sliding mode control(FSMC)with application to electro-mechanical brake(EMB)systems using BLDC Motor.The EMB controller transmits the control signal to the motor driver to rotate the motor.The torque distribution of motors is studied in this paper actually.Firstly,the model of the EMB system is established.Then the state observer is developed to estimate the vehicle states including the vehicle velocity and longitudinal force.Due to the fact that the EMB system is nonlinear and uncertain,a FSMC strategy based on wheel slip ratio is proposed,where both the normal and emergency braking conditions are taken into account.The equivalent control law of sliding mode controller is designed on the basis of the variation of the front axle and rear axle load during the brake process,while the switching control law is adjusted by the fuzzy corrector.The simulation results illustrate that the FSMC strategy has the superior performance,better adaptability to various types of roads,and shorter braking distance,as compared to PID control and traditional sliding mode control technologies.Finally,the hardware-in-loop(HIL)experimental results have exemplified the validation of the developed methodology.
基金financed by the Electric'Drive Laboratory,Department of Electrical Engineering,University of Padova,Padova(haly).
文摘This paper describes the electric drive for an in-wheel fractional-slot axial flux machine,designed for achieving a wide flux-weakening operating region.By using a slotted stator with fractional-slot windings and additional cores enclosing end windings,the axial flux machine reaches a wide constant power speed range.The machine is designed for increasing flux-weakening capability while obtaining low harmonic back-electromotive force and low cogging torque.A 10 N.m axial flux machine exhibiting 3 to 1 flux-weakening speed range has been built.A flux-weakening controller,able to maximize the output torque in the flux-weakening region,is designed and implemented.The goodness of both design and control algorithm is proved by experimental tests.However,such a fractional-slot machine has not only advantages.Rotor losses are very high,and they have to be properly considered during the design process.
文摘This paper describes in detail three kinds of typical compound braking strategy of wheel motor drive electric vehicle and summarizes the current commonly used strategies based on the three typical strategies developed. In the end, a new compound braking strategy is proposed;that is, we take braking mode classify, ECE regulations and SOC value of the battery as an important reference of braking force that joins the motor braking force, as well as we join the different identification models;according to the different braking modes, the purpose is that we can apply the different braking program.
文摘The conventional Al2O3-13 wt. % TiO2 composite ceramic coatings are fabricated by plasma spraying on the surface of extrusion wheel. The microstrueture, morphology and phase compositions of the substrate and coat- ing are investigated by using X-ray diffractometry (XRD) , scanning electron microsopy (SEM) and energy dis- persive spectroscopy (EDS). Moreover, the microhardness of the substrate and the coating are investigated using Vickers mierohardness tester, the friction and wear behaviors of the substrate and the coating are investigated by using a block-on-ring tribometer under dry sliding conditions with the load of 245 N. The results show that both γ-Al2O3 and α-Al2O3 phases are observed in the as-sprayed coatings, the mian phase is γ-Al2O3. There are white particulates Al2O3 on its surface. The Al2O3-13 wt. % TiO2 coating possesses higher mierohardness which is about 1018HV and 1.6 times that of the substrate. The wear performance of coating is better than that of the substrate. In a practical application, the life of the extrusion wheel which is plasma sprayed Al2O3-13 wt. % TiO2 coating on the surface is 1.2 times that of the conventional extrusion wheel, and the life is about 330 h.