Establishing the remote sensing algorithm of retrieving the absorption coefficient of seawater petroleum substances is an efficient way to improve the accuracy of retrieving a seawater petroleum concentration using a ...Establishing the remote sensing algorithm of retrieving the absorption coefficient of seawater petroleum substances is an efficient way to improve the accuracy of retrieving a seawater petroleum concentration using a remote sensing technology. A remote sensing reflectance is a basic physical parameter in water color remote sensing. Apply it to directly retrieve the absorption coefficient of seawater petroleum substances is of potential advantage. The absorption coefficient of waters containing petroleum [ACWCP, a_o(λ)], consists of the absorption coefficient of pure water [ACPW, a_w(λ)], plankton [ACP, a_(ph)(λ)], colored scraps [ACCS, a_(d,g)(λ)], and petroleum substance [ACPS, a_(oil)(λ)]. Among those, ACCS consists of the absorption coefficient of nonalgal particle [ACNP, a_d(λ)] and colored dissolved organic matter [ACCDOM, a_g(λ)]. For waters containing petroleum, the retrieved ACCS using the existing method is a combination absorption coefficient of ACNP,ACCDOM and ACPA [CAC, a_(d,g,oil)(λ)]. Therefore, the principle question is how to extract ACPS from CAC.Through the analysis of the three proportion tests conducted between the year of 2013 and 2015 and the corresponding remote sensing data, an algorithm of retrieving the absorption coefficient of petroleum substances is proposed based on remote sensing reflectance. First of all, ACPS and CAC are retrieved from the reflectance using the quasi-analytical algorithm(QAA), with some parameter modified. Secondly, given the fact that the backscatter coefficient [BC, b_(bp)(555)] of total particles at 555 nm can be obtained completely from the reflectance, the relation between BC and ACNP in petroleum contaminated water can be established. As a result, ACNP can be calculated. Then, combining the remote sensing retrieving algorithm of a_g(440), the method of achieving the spectral slope of the absorption coefficient can be established, from which ACCDOM,can be calculated. Finally, ACPS can be computed as the residual. The accuracy of ACPS based on this algorithm is 86% compared with the in situ measurements.展开更多
The enrichment of nutrients (Noa-, Noa-, PO43-), suspended particles, organic matter (POC, PON,DOC) , and trace metals (Cu, Ni, Cd) was determined in the sea surface microlayer of Xiamen Bay and Jiulong Estuary. The m...The enrichment of nutrients (Noa-, Noa-, PO43-), suspended particles, organic matter (POC, PON,DOC) , and trace metals (Cu, Ni, Cd) was determined in the sea surface microlayer of Xiamen Bay and Jiulong Estuary. The mean enrichment factors ([Xi]microlayer/[Xi ]15cm in depth) mostly ranged between 1 . 0 and 2. 0. The dissolved forms were the major forms of the components measured, the enrichment of dissolved organic matter and suspended particles could lead to the changes in the total amount and speciation of nutrients and trace metals. No correlation was observed between sample concentrations, speciation, enrichment factors and sample locations. However, some evidence shows that these parameters are correlated with sea state, indicating the complexity and dynamic nature of the sea surface microlayer.展开更多
By using the expressions for the maximum absorption per wavelength (αλ),and the relaxation frequency fr of the boric acid relaxation derived previously by the author and employing the related oceanographic literatur...By using the expressions for the maximum absorption per wavelength (αλ),and the relaxation frequency fr of the boric acid relaxation derived previously by the author and employing the related oceanographic literatures, the effects of pressure, temperature, pH and salinity on (αλ)r and ∫r of the boric acid relaxation in sea water have been estimated. Results show that ( αλ), not only increases with pH but also increases approximately linearly with pressure and temperature, and is nearly proportional to the 1. 35 power of salinity. However, pressure, pH and salinity have negligible effect on ∫r; therefore, ∫r, can be approximately expressed as a function of temperature only. Comparisons of the predicted with the measured ( αλ)r and ∫r in different ocean areas are given.展开更多
Atmospheric turbulence plays a vital role in the formation and dissipation of fog. However,studies of such turbulence are typically limited to observations with ultrasonic anemometers less than 100 m above ground. Thu...Atmospheric turbulence plays a vital role in the formation and dissipation of fog. However,studies of such turbulence are typically limited to observations with ultrasonic anemometers less than 100 m above ground. Thus,the turbulence characteristics of upper fog layers are poorly known. In this paper,we present 4-layers of data,measured by ultrasonic anemometers on a wind tower about 400 m above the sea surface; we use these data to characterize atmospheric turbulence atop a heavy sea fog. Large differences in turbulence during the sea fog episode were recorded. Results showed that the kinetic energy,momentum flux,and sensible heat flux of turbulence increased rapidly during the onset of fog. After onset,high turbulence was observed within the uppermost fog layer. As long as this turbulence did not exceed a critical threshold,it was crucial to enhancing the cooling rate,and maintaining the fog. Vertical momentum flux and sensible heat flux generated by this turbulence weakened wind speed and decreased air temperature during the fog. Towards the end of the fog episode,the vertical distribution of sensible heat flux reversed,contributing to a downward momentum flux in all upper layers. Spatial and temporal scales of the turbulence eddy were greater before and after the fog,than during the fog episode. Turbulence energy was greatest in upper levels,around 430 m and 450 m above mean sea level(AMSL),than in lower levels of the fog(390 m and 410 m AMSL); turbulence energy peaked along the mean wind direction. Our results show that the status of turbulence was complicated within the fog; turbulence caused fluxes of momentum and sensible heat atop the fog layer,affecting the underlying fog by decreasing or increasing average wind speed,as well as promoting or demoting air temperature stratification.展开更多
In the east of China's seas, there is a wide range of the continental shelf. The nutrient cycle and the carbon cycle in the east of China's seas exhibit a strong variability on seasonal to decadal time scales. On th...In the east of China's seas, there is a wide range of the continental shelf. The nutrient cycle and the carbon cycle in the east of China's seas exhibit a strong variability on seasonal to decadal time scales. On the basis of a regional ocean modeling system(ROMS), a three dimensional physical-biogeochemical model including the carbon cycle with the resolution(1/12)°×(1/12)° is established to investigate the physical variations, ecosystem responses and carbon cycle consequences in the east of China's seas. The ROMS-Nutrient Phytoplankton Zooplankton Detritus(NPZD) model is driven by daily air-sea fluxes(wind stress, long wave radiation, short wave radiation, sensible heat and latent heat, freshwater fluxes) that derived from the National Centers for Environmental Prediction(NCEP) reanalysis2 from 1982 to 2005. The coupled model is capable of reproducing the observed seasonal variation characteristics over the same period in the East China Sea. The integrated air-sea CO_2 flux over the entire east of China's seas reveals a strong seasonal cycle, functioning as a source of CO_2 to the atmosphere from June to October, while serving as a sink of CO_2 to the atmosphere in the other months. The 24 a mean value of airsea CO_2 flux over the entire east of China's seas is about 1.06 mol/(m^2·a), which is equivalent to a regional total of3.22 Mt/a, indicating that in the east of China's seas there is a sink of CO_2 to the atmosphere. The partial pressure of carbon dioxide in sea water in the east of China's seas has an increasing rate of 1.15 μatm/a(1μtm/a=0.101 325Pa), but p H in sea water has an opposite tendency, which decreases with a rate of 0.001 3 a^(–1) from 1982 to 2005.Biological activity is a dominant factor that controls the pCO_2 air in the east of China's seas, and followed by a temperature. The inverse relationship between the interannual variability of air-sea CO_2 flux averaged from the domain area and Ni?o3 SST Index indicates that the carbon cycle in the east of China's seas has a high correlation with El Ni?o-Southern Oscillation(ENSO).展开更多
A slowdown of sea surface height (SSH) rise occurred in the Nordic (GIN) seas around 2004. In this study, SSH satellite data and constructed steric height data for the decades before and after 2004 (i.e., May 199...A slowdown of sea surface height (SSH) rise occurred in the Nordic (GIN) seas around 2004. In this study, SSH satellite data and constructed steric height data for the decades before and after 2004 (i.e., May 1994 to April 2014) were used for comparative analysis. The findings indicate that the rate of slowdown of SSH rises in the GIN seas (3.0 mm/a) far exceeded that of the global mean (0.6 mm/a). In particular, the mean steric height of the GIN seas increased at a rate of 4.5 mm/a and then decreased at a slower pace. This was the main factor responsible for the stagnation of the SSH rises, while the mass factor only increased slightly. The Norwegian Sea particularly experienced the most prominent slowdown in SSH rises, mainly due to decreased warming of the 0-600 m layer. The controlling factors of this decreased warming were cessation in the increase of volume of the Atlantic inflow and stagnation of warming of the inflow. However, variations in air-sea thermal flux were not a major factor. In the recent two decades, mean halosteric components of the GIN seas decreased steadily and remained at a rate of 2 mm/a or more because of increased flow and salinity of the Atlantic inflow during the first decade, and reduction in freshwater inputs from the Arctic Ocean in the second decade.展开更多
The law of big fish swallowing little fish has expired when it comes to the era of new economy.What prevails nowadays in the sea of commerce is quick fish swallowing slow fish.In the Internet economy,small companies a...The law of big fish swallowing little fish has expired when it comes to the era of new economy.What prevails nowadays in the sea of commerce is quick fish swallowing slow fish.In the Internet economy,small companies are not destined to lose to giants,but slow ones are doomed to become prey of their quick counterparts. The swiftly rising Yongkang Group has made a breakthrough in dental treatment by translating the law into practice.It is called"Law of the Sea."‘Law of the Sea’展开更多
基金The National Natural Science Foundation of China under contract No.41271364the Key Projects in the National Science and Technology Pillar Program of China under contract No.2012BAH32B01-4the Program for Scientific Research Start-up Funds of Guangdong Ocean University under contract No.E16187
文摘Establishing the remote sensing algorithm of retrieving the absorption coefficient of seawater petroleum substances is an efficient way to improve the accuracy of retrieving a seawater petroleum concentration using a remote sensing technology. A remote sensing reflectance is a basic physical parameter in water color remote sensing. Apply it to directly retrieve the absorption coefficient of seawater petroleum substances is of potential advantage. The absorption coefficient of waters containing petroleum [ACWCP, a_o(λ)], consists of the absorption coefficient of pure water [ACPW, a_w(λ)], plankton [ACP, a_(ph)(λ)], colored scraps [ACCS, a_(d,g)(λ)], and petroleum substance [ACPS, a_(oil)(λ)]. Among those, ACCS consists of the absorption coefficient of nonalgal particle [ACNP, a_d(λ)] and colored dissolved organic matter [ACCDOM, a_g(λ)]. For waters containing petroleum, the retrieved ACCS using the existing method is a combination absorption coefficient of ACNP,ACCDOM and ACPA [CAC, a_(d,g,oil)(λ)]. Therefore, the principle question is how to extract ACPS from CAC.Through the analysis of the three proportion tests conducted between the year of 2013 and 2015 and the corresponding remote sensing data, an algorithm of retrieving the absorption coefficient of petroleum substances is proposed based on remote sensing reflectance. First of all, ACPS and CAC are retrieved from the reflectance using the quasi-analytical algorithm(QAA), with some parameter modified. Secondly, given the fact that the backscatter coefficient [BC, b_(bp)(555)] of total particles at 555 nm can be obtained completely from the reflectance, the relation between BC and ACNP in petroleum contaminated water can be established. As a result, ACNP can be calculated. Then, combining the remote sensing retrieving algorithm of a_g(440), the method of achieving the spectral slope of the absorption coefficient can be established, from which ACCDOM,can be calculated. Finally, ACPS can be computed as the residual. The accuracy of ACPS based on this algorithm is 86% compared with the in situ measurements.
文摘The enrichment of nutrients (Noa-, Noa-, PO43-), suspended particles, organic matter (POC, PON,DOC) , and trace metals (Cu, Ni, Cd) was determined in the sea surface microlayer of Xiamen Bay and Jiulong Estuary. The mean enrichment factors ([Xi]microlayer/[Xi ]15cm in depth) mostly ranged between 1 . 0 and 2. 0. The dissolved forms were the major forms of the components measured, the enrichment of dissolved organic matter and suspended particles could lead to the changes in the total amount and speciation of nutrients and trace metals. No correlation was observed between sample concentrations, speciation, enrichment factors and sample locations. However, some evidence shows that these parameters are correlated with sea state, indicating the complexity and dynamic nature of the sea surface microlayer.
基金This work is supported by National Natural Science Foundation of China
文摘By using the expressions for the maximum absorption per wavelength (αλ),and the relaxation frequency fr of the boric acid relaxation derived previously by the author and employing the related oceanographic literatures, the effects of pressure, temperature, pH and salinity on (αλ)r and ∫r of the boric acid relaxation in sea water have been estimated. Results show that ( αλ), not only increases with pH but also increases approximately linearly with pressure and temperature, and is nearly proportional to the 1. 35 power of salinity. However, pressure, pH and salinity have negligible effect on ∫r; therefore, ∫r, can be approximately expressed as a function of temperature only. Comparisons of the predicted with the measured ( αλ)r and ∫r in different ocean areas are given.
基金Supported by the Marine Science and Technology Projects of Shanghai Committee of Science and Technology,China(No.10DZ1210802)
文摘Atmospheric turbulence plays a vital role in the formation and dissipation of fog. However,studies of such turbulence are typically limited to observations with ultrasonic anemometers less than 100 m above ground. Thus,the turbulence characteristics of upper fog layers are poorly known. In this paper,we present 4-layers of data,measured by ultrasonic anemometers on a wind tower about 400 m above the sea surface; we use these data to characterize atmospheric turbulence atop a heavy sea fog. Large differences in turbulence during the sea fog episode were recorded. Results showed that the kinetic energy,momentum flux,and sensible heat flux of turbulence increased rapidly during the onset of fog. After onset,high turbulence was observed within the uppermost fog layer. As long as this turbulence did not exceed a critical threshold,it was crucial to enhancing the cooling rate,and maintaining the fog. Vertical momentum flux and sensible heat flux generated by this turbulence weakened wind speed and decreased air temperature during the fog. Towards the end of the fog episode,the vertical distribution of sensible heat flux reversed,contributing to a downward momentum flux in all upper layers. Spatial and temporal scales of the turbulence eddy were greater before and after the fog,than during the fog episode. Turbulence energy was greatest in upper levels,around 430 m and 450 m above mean sea level(AMSL),than in lower levels of the fog(390 m and 410 m AMSL); turbulence energy peaked along the mean wind direction. Our results show that the status of turbulence was complicated within the fog; turbulence caused fluxes of momentum and sensible heat atop the fog layer,affecting the underlying fog by decreasing or increasing average wind speed,as well as promoting or demoting air temperature stratification.
基金The National Key Research and Development Program of China under contract No.2016YFC1401605the National Key Research and Development Program of China under contract No.2016YFC1401605+3 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences under contract No.XDA 1102010403the National Natural Science Foundation of China under contract Nos 41222038,41206023 and 41076011the Public Science and Technology Research Funds projects of Ocean of China under contract No.201205018the Guangdong Provincial Key Laboratory of Fishery Ecology and Environment under contract No.LFE-2015-3
文摘In the east of China's seas, there is a wide range of the continental shelf. The nutrient cycle and the carbon cycle in the east of China's seas exhibit a strong variability on seasonal to decadal time scales. On the basis of a regional ocean modeling system(ROMS), a three dimensional physical-biogeochemical model including the carbon cycle with the resolution(1/12)°×(1/12)° is established to investigate the physical variations, ecosystem responses and carbon cycle consequences in the east of China's seas. The ROMS-Nutrient Phytoplankton Zooplankton Detritus(NPZD) model is driven by daily air-sea fluxes(wind stress, long wave radiation, short wave radiation, sensible heat and latent heat, freshwater fluxes) that derived from the National Centers for Environmental Prediction(NCEP) reanalysis2 from 1982 to 2005. The coupled model is capable of reproducing the observed seasonal variation characteristics over the same period in the East China Sea. The integrated air-sea CO_2 flux over the entire east of China's seas reveals a strong seasonal cycle, functioning as a source of CO_2 to the atmosphere from June to October, while serving as a sink of CO_2 to the atmosphere in the other months. The 24 a mean value of airsea CO_2 flux over the entire east of China's seas is about 1.06 mol/(m^2·a), which is equivalent to a regional total of3.22 Mt/a, indicating that in the east of China's seas there is a sink of CO_2 to the atmosphere. The partial pressure of carbon dioxide in sea water in the east of China's seas has an increasing rate of 1.15 μatm/a(1μtm/a=0.101 325Pa), but p H in sea water has an opposite tendency, which decreases with a rate of 0.001 3 a^(–1) from 1982 to 2005.Biological activity is a dominant factor that controls the pCO_2 air in the east of China's seas, and followed by a temperature. The inverse relationship between the interannual variability of air-sea CO_2 flux averaged from the domain area and Ni?o3 SST Index indicates that the carbon cycle in the east of China's seas has a high correlation with El Ni?o-Southern Oscillation(ENSO).
基金The National Natural Science Foundation of China under contract No.41330960the National Major Scientific Research Program on Global Changes under contract No.2015CB953900
文摘A slowdown of sea surface height (SSH) rise occurred in the Nordic (GIN) seas around 2004. In this study, SSH satellite data and constructed steric height data for the decades before and after 2004 (i.e., May 1994 to April 2014) were used for comparative analysis. The findings indicate that the rate of slowdown of SSH rises in the GIN seas (3.0 mm/a) far exceeded that of the global mean (0.6 mm/a). In particular, the mean steric height of the GIN seas increased at a rate of 4.5 mm/a and then decreased at a slower pace. This was the main factor responsible for the stagnation of the SSH rises, while the mass factor only increased slightly. The Norwegian Sea particularly experienced the most prominent slowdown in SSH rises, mainly due to decreased warming of the 0-600 m layer. The controlling factors of this decreased warming were cessation in the increase of volume of the Atlantic inflow and stagnation of warming of the inflow. However, variations in air-sea thermal flux were not a major factor. In the recent two decades, mean halosteric components of the GIN seas decreased steadily and remained at a rate of 2 mm/a or more because of increased flow and salinity of the Atlantic inflow during the first decade, and reduction in freshwater inputs from the Arctic Ocean in the second decade.
文摘The law of big fish swallowing little fish has expired when it comes to the era of new economy.What prevails nowadays in the sea of commerce is quick fish swallowing slow fish.In the Internet economy,small companies are not destined to lose to giants,but slow ones are doomed to become prey of their quick counterparts. The swiftly rising Yongkang Group has made a breakthrough in dental treatment by translating the law into practice.It is called"Law of the Sea."‘Law of the Sea’