Phase transition of polycrystalline iron compressed along the Hugoniot is studied by combining laser-driven shock with in situ x-ray diffraction technique.It is suggested that polycrystalline iron changes from an init...Phase transition of polycrystalline iron compressed along the Hugoniot is studied by combining laser-driven shock with in situ x-ray diffraction technique.It is suggested that polycrystalline iron changes from an initial body-centered cubic structure to a hexagonal close-packed structure with increasing pressure(i.e.,a phase transition fromαtoε).The relationship between density and pressure for polycrystalline iron obtained from the present experiments is found to be in good agreement with the gas-gun Hugoniot data.Our results show that experiments with samples at lower temperatures under static loading,such as in a diamond anvil cell,lead to higher densities measured than those found under dynamic loading.This means that extrapolating results of static experiments may not predict the dynamic responses of materials accurately.In addition,neither the face-centered cubic structure seen in previous molecular-dynamics simulations or twophase coexistence are found within our experimental pressure range.展开更多
This article presents the thermal transitions of a tobermorite-bearing sample when heated from 30℃ up to 1200℃,both in vacuum and in static air,including tobermorite transforming to wollastonite,aragonite to calcite...This article presents the thermal transitions of a tobermorite-bearing sample when heated from 30℃ up to 1200℃,both in vacuum and in static air,including tobermorite transforming to wollastonite,aragonite to calcite and calcite to lime.Characteristics obtained by in situ high temperature X-ray diffraction,field emission scanning electron microscopy and scanning transmission electron microscopy analyses jointly indicate that the investigated tobermorite is anomalous.The variations along the a,b,c axes and the volume changes of tobermorite with increasing temperature are described,and its thermal shrinkage coefficients therefore determined.The comparison between the refined structures at 30℃ and 800℃ demonstrates that the shrinkage degree(Δa/a0)along the a axis is higher than those(Δb/b0,Δc/c0)along the b and c axes.The wollastonite is formed in two ways:Tobermorite converting to wollastonite and lime reacting with quartz to form wollastonite.展开更多
In situ x-ray diffraction electrochemical method is used to study the activation of silver electrode in KCl solution and UPD lead on silver electrode surface. We found that the activation makes the silver crystal thic...In situ x-ray diffraction electrochemical method is used to study the activation of silver electrode in KCl solution and UPD lead on silver electrode surface. We found that the activation makes the silver crystal thicker in (111), and the arrangement of water molecules on the silver electrode surface with UPD lead is partially ordered.展开更多
LiNi0.9Co0.15Al0.05O2 (NCA) material is successfully synthesized with a modified co-precipitation method,in which NH3,H2O and EDTA are used as two chelating agents. The obtained LiNi0.9Co0.15Al0.05O2 materialhas wel...LiNi0.9Co0.15Al0.05O2 (NCA) material is successfully synthesized with a modified co-precipitation method,in which NH3,H2O and EDTA are used as two chelating agents. The obtained LiNi0.9Co0.15Al0.05O2 materialhas well-defined layered structure and uniform element distribution, which reveals an enhanced electro-chemical performance with a capacity retention of 97.9% after 100 cycles at 0.2 C, and reduced thermalrunaway from the isothermal calorimetry test. In situ X-ray diffraction (XRD) was employed to capturethe structural changes during the charge-discharge process. The reversible evolutions of lattice parame-ters (a, b, c, and V) further verify the structural stability.展开更多
This study demonstrates the design and application of a novel high temperature rotatory apparatus for insitu synchrotron X-ray diffraction studies of molten salts,facilitating investigation into the interaction betwee...This study demonstrates the design and application of a novel high temperature rotatory apparatus for insitu synchrotron X-ray diffraction studies of molten salts,facilitating investigation into the interaction between various structural materials and molten salts.The apparatus enables accurate detection of every phase change during hightemperature experiments,including strong reaction processes like corrosion.Molten salts,such as chlorides or fluo⁃rides,together with the structure materials,are inserted into either quartz or boron nitride capillaries,where X-ray diffraction pattern can be continuously collected,as the samples are heated to high temperature.The replacement re⁃action,when molten ZnCl2 are etching Ti3AlC2,can be clearly observed through changes in diffraction peak intensity as well as expansion in c-axis lattice parameter of the hexagonal matrix,due to the larger atomic number and ionic ra⁃dius of Zn2+.Furthermore,we investigated the high-temperature corrosion process when GH3535 alloy is in FLiNaK molten salt,and can help to optimize its stability for potential applications in molten salt reactor.Additionally,this high temperature apparatus is fully compatible with the combined usage of X-ray diffraction and Raman technique,providing both bulk and surface structural information.This high temperature apparatus has been open to users and is extensively used at BL14B1 beamline of the Shanghai Synchrotron Radiation Facility.展开更多
The compression behavior of the heavy RE-based BMC Gd40Y16Al24Co20 under high pressure has been investigated by in situ high pressure angle dispersive X-ray diffraction measurements using synchrotron radiation in the ...The compression behavior of the heavy RE-based BMC Gd40Y16Al24Co20 under high pressure has been investigated by in situ high pressure angle dispersive X-ray diffraction measurements using synchrotron radiation in the pressure range of 0-33.42 GPa at room temperature. By fitting the static equation of state at room temperature, we find the value of bulk modulus B is 61.27±4 GPa which is in good agreement with the experimental study by pulse-echo techniques of 58 GPa. The results show that the amorphous structure in the heavy RE-based BMG Gd40Y16Al24Co20 keeps quite stable up to 33.42 GPa although its compressibility is as large as about 33%. The coexistence of normal local structure similar to that of other BMGs and covalent bond structure similar to those of oxide glasses may be the reason for the anomalous property under high pressure of the Gd4oY16Al24Co2o BMG.展开更多
High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Exten...High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Extensive studies on the deformation mech-anisms of HEAs can guide microstructure control and toughness design,which is vital for understanding and studying state-of-the-art structural materials.Synchrotron X-ray and neutron diffraction are necessary techniques for materials science research,especially for in situ coupling of physical/chemical fields and for resolving macro/microcrystallographic information on materials.Recently,several re-searchers have applied synchrotron X-ray and neutron diffraction methods to study the deformation mechanisms,phase transformations,stress behaviors,and in situ processes of HEAs,such as variable-temperature,high-pressure,and hydrogenation processes.In this review,the principles and development of synchrotron X-ray and neutron diffraction are presented,and their applications in the deformation mechanisms of HEAs are discussed.The factors that influence the deformation mechanisms of HEAs are also outlined.This review fo-cuses on the microstructures and micromechanical behaviors during tension/compression or creep/fatigue deformation and the application of synchrotron X-ray and neutron diffraction methods to the characterization of dislocations,stacking faults,twins,phases,and intergrain/interphase stress changes.Perspectives on future developments of synchrotron X-ray and neutron diffraction and on research directions on the deformation mechanisms of novel metals are discussed.展开更多
Synchrotron polychromatic X-ray microdiffraction(micro-XRD) was applied to study in situ deformation twinning of commercially AZ31(Mg-3Al-1Zn) strip subjected to uniaxial tension.The morphology and growth of twins...Synchrotron polychromatic X-ray microdiffraction(micro-XRD) was applied to study in situ deformation twinning of commercially AZ31(Mg-3Al-1Zn) strip subjected to uniaxial tension.The morphology and growth of twins were analyzed in situ under the load level from 64 to 73 MPa.The X-ray microdiffraction data,collected on beamline 12.3.2 at the Advanced Light Source,were then used to map an area of 396μm x 200μm within the region of interest.The experimental set-up and X-ray diffraction microscopy with a depth resolution allow the position and orientation of each illuminated grain to be determined at the submicron size.A list of parent grains sorted by crystallographic orientation were selected to examine their twinning behavior.The results depict twin variant selection,local misorientation fluctuation and mosaic spread for multi-twins within the same parent grain.As load increases,the amplitude of misorientation fluctuation along twin trace keeps increasing.This is attributable to the accumulation of geometrically necessary dislocations.展开更多
Beam splitting is one of the main approaches to achieving x-ray ghost imaging, and the intensity correlation between diffraction beam and transmission beam will directly affect the imaging quality. In this paper, we i...Beam splitting is one of the main approaches to achieving x-ray ghost imaging, and the intensity correlation between diffraction beam and transmission beam will directly affect the imaging quality. In this paper, we investigate the intensity correlation between the split x-ray beams by Laue diffraction of stress-free crystal. The analysis based on the dynamical theory of x-ray diffraction indicates that the spatial resolution of diffraction image and transmission image are reduced due to the position shift of the exit beam. In the experimental setup, a stress-free crystal with a thickness of hundredmicrometers-level is used for beam splitting. The crystal is in a non-dispersive configuration equipped with a double-crystal monochromator to ensure that the dimension of the diffraction beam and transmission beam are consistent. A correlation coefficient of 0.92 is achieved experimentally and the high signal-to-noise ratio of the x-ray ghost imaging is anticipated.Results of this paper demonstrate that the developed beam splitter of Laue crystal has the potential in the efficient data acquisition of x-ray ghost imaging.展开更多
The thermodynamics structural relaxation of Fe73Cu1.5Nd3Si13.5B9 amorphous alloy from room temperature to 400℃ has been investigated by measuring the structure factor with in situ X-ray diffraction. The structural in...The thermodynamics structural relaxation of Fe73Cu1.5Nd3Si13.5B9 amorphous alloy from room temperature to 400℃ has been investigated by measuring the structure factor with in situ X-ray diffraction. The structural information of the atomic con-figuration such as radial distribution function (RDF) and neighbor atomic distance was gained by Fourier transformation. The research result shows that the amor-phous structure remains stable in the temperature range of 30 to 400℃ but exhibits distinct changes in local atomic configuration with the increase of temperature. The quantitative determination of the neighbor atomic distance suggests that the de-gree of short-range order changes by the temperature altering the second nearest neighbor local atomic configuration of the amorphous when structural relaxation occurs.展开更多
The high-pressure behaviors of SmFeO3 are investigated by angle-dispersive synchrotron X-ray powder diffraction under a pressure of up to 40.3 GPa at room temperature. The crystal structure of SmFeO3 remains stable at...The high-pressure behaviors of SmFeO3 are investigated by angle-dispersive synchrotron X-ray powder diffraction under a pressure of up to 40.3 GPa at room temperature. The crystal structure of SmFeO3 remains stable at up to the highest pressure. The different pressure coefficients of the normalized axial compressibility are obtained to be βa = 0.60 × 10-3 GPa-1,βb = 0.79 × 10-3 GPa-1, βc = 1.28 × 10-3 GPa- 1, and the bulk modulus (B0) is determined to be 293(3) GPa by fitting the pressure-volume data using the Birch-Murnaghan equation of state. Furthermore, the larger compressibility of the FeO6 octahedra suggests the evolution of the orthorhombic structure towards higher symmetry configuration at high pressures.展开更多
The compression behavior of a natural hydroxyapophyllite is investigated up to about 10.01 GPa at 300 K using in situ angle-dispersive X-ray diffraction and a diamond anvil cell at the High Pressure Experiment Station...The compression behavior of a natural hydroxyapophyllite is investigated up to about 10.01 GPa at 300 K using in situ angle-dispersive X-ray diffraction and a diamond anvil cell at the High Pressure Experiment Station, Beijing Synchrotron Radiation Facility (BSRF). Over this pressure range, no phase change or disproportionation is observed. The isothermal equation of state is determined for the first time. The values of zero-pressure volume V0, isothermal bulk modulus K0, and K0' refined with a third-order Birch-Mumaghan equation of state are V0 = 1276.3 ± 0.9 A3, K0 = 71± 3 GPa, and K0' = 8 ±1. Furthermore, we confirm that the values of linear compressibility β along the a and c directions of hydroxyapophyllite are elastically anisotropic.展开更多
The effect of cryorolling on the precipitation process of deformed Cu-Ni-Si alloys was investigated through in situ synchrotron X-ray diffraction technique. The results demonstrate that the precipitation process is si...The effect of cryorolling on the precipitation process of deformed Cu-Ni-Si alloys was investigated through in situ synchrotron X-ray diffraction technique. The results demonstrate that the precipitation process is significantly accelerated by cryorolling. Cryorolling produces higher dislocation density, which provides more heterogeneous nucleation sites for Ni2Si precipitates, hence promotes precipitation. In the early stage of aging, the enhanced nucleation of precipitates accelerates the depletion of supersaturation, and finer precipitates are obtained. In addition, recrystallization is promoted as a result of high stored energy in the cryorolled Cu-Ni-Si alloys, which facilitates the formation of discontinuous precipitation in the late stage of aging.展开更多
Cu-TDPAT(H_(6)TDPAT=2,4,6-tris(3,5-dicarboxylphenylamino)-1,3,5-triazine),a stable nanoporous metal-organic framework with rht topology,has sparked broad interest as an adsorbent for several chemical separation proces...Cu-TDPAT(H_(6)TDPAT=2,4,6-tris(3,5-dicarboxylphenylamino)-1,3,5-triazine),a stable nanoporous metal-organic framework with rht topology,has sparked broad interest as an adsorbent for several chemical separation processes.In this work,in situ synchrotron diffraction experiments followed by sequential LeBail refinements reveal that Cu-TDPAT shows unusually large anisotropic negative thermal expansion(NTE).The PASCal crystallography tool,used to analyze the magnitude of the NTE,reveals an average volumetric thermal expansion coefficientαv=-20.3 MK^(-1).This value is significantly higher than the one reported for Cu-BTC(also known as HKUST-1),which contains the same Cu-paddlewheel building unit,αv=-12 MK^(-1).In situ synchrotron single crystal X-ray diffraction and in situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS)were employed to shed light on the NTE mechanism.Using these two methods,we were able to elucidate the three main structural motions that are responsible for the NTE effect.The more pronounced NTE behavior of Cu-TDPAT is attributed to the lower symmetry combined with the more complex ligand structure when compared to Cu-BTC.The knowledge obtained in this work is important for understanding the behavior of the adsorbent under transient variable temperature conditions in fixed adsorption beds.展开更多
The structure and disorder-order transformation of NdxFe60.5-x Pt39.5(x = 0, 0.5, 1.0, 1.5) alloys were investigated in situ by high temperature X-ray diffraction. The results show that the lattice parameter a of di...The structure and disorder-order transformation of NdxFe60.5-x Pt39.5(x = 0, 0.5, 1.0, 1.5) alloys were investigated in situ by high temperature X-ray diffraction. The results show that the lattice parameter a of disordered γ phase (FCC, Al structure type) and the lattice parameter ratio c/a of ordered γ1 phase (FCT, L10 structure type) increase linearly with increasing Nd concentration, whereas the c/a ratio decreases with increasing temperature. The transition temperature from ordered FCT to disordered FCC decreases with increasing Nd concentration, but for alloys quenched rapidly from γ phase region into ice-water it increases with increasing Nd.展开更多
Phase transformations and lattice expansions of MlNi_)3.75)Co_)0.75)Mn_)0.3)Al_)0.2) during the electrochemical hydriding-dehydriding process were investigated using in-situ X-ray diffraction. An intermediate hydride ...Phase transformations and lattice expansions of MlNi_)3.75)Co_)0.75)Mn_)0.3)Al_)0.2) during the electrochemical hydriding-dehydriding process were investigated using in-situ X-ray diffraction. An intermediate hydride γ phase between the hydrogen solid solution α phase and fully hydrided β phase can be observed during the cycling. The formation of γ phase is related to the diffusion of hydrogen in the crystal grains. The lower the charge rate is, the higher the content of γ phase is. The phase transformations during the hydriding-dehydriding process can be described as )αα+γ+ββγ+αα.) The lattice expansion from α to β is discrete, while that from γ to β is continuous. The formation of γ phase can reduce the discrete lattice expansion from α to β by 30%.展开更多
The unit-cell parameters and volumes of geikielite(MgTiO_(3))and ilmenite(FeTiO_(3))were investigated at high temperatures up to 700 K and ambient pressure,using in-situ angle-dispersive synchrotron X-ray diffraction....The unit-cell parameters and volumes of geikielite(MgTiO_(3))and ilmenite(FeTiO_(3))were investigated at high temperatures up to 700 K and ambient pressure,using in-situ angle-dispersive synchrotron X-ray diffraction.No phase transition was detected over the experimental temperature range.Using(Berman in J Petrol29:445-522,1988.10.1093/petrology/29.2.445)equations to fit the temperature-volume data,the volumetric thermal expansion coefficients at ambient conditions(α_(V0))of MgTiO_(3) and FeTiO_(3) were obtained as follows:2.55(6)×10^(-5)K^(-1)and 2.82(10)×10^(-5)K^(-1),respectively.We infer that the larger effective ionic radius of Fe^(2+)(Ⅵ)(0.78 A)than that of Mg^(2+)(Ⅵ)(0.72?)renders FeTiO_(3)has a larger volumetric thermal expansivity than MgTiO_(3).Simultaneously,the refined axial thermal expansion coefficients under ambient conditions areα_(a0)=0.74(3)×10^(-5)K^(-1)andα_(c0)=1.08(5)×10^(-5)K^(-1)for the aaxis and c-axis of MgTiO_(3),respectively,andα_(a0)=0.95(5)×10^(-5)K^(-1)andα_(c0)=0.92(12)×10^(-5)K^(-1)for the aaxis and c-axis of FeTiO_(3),respectively.The axial thermal expansivity of MgTiO_(3) is anisotropic,but that of FeTiO_(3) is nearly isotropic.We infer that the main reason for the different axial thermal expansivity between MgTiO_(3) and FeTiO_(3) is that the thermal expansion mode of the Mg-O bond in MgTiO_(3) is different from that of the Fe-O bonds in FeTiO_(3).展开更多
We report here high-pressure investigations on Piplia Kalan eucrite-a member of HED (Howardite -Eucrite-Diogenite) family from asteroid 4-Vesta based on synchrotron X-ray diffraction (up to 16 GPa) and ^57Fe Mossb...We report here high-pressure investigations on Piplia Kalan eucrite-a member of HED (Howardite -Eucrite-Diogenite) family from asteroid 4-Vesta based on synchrotron X-ray diffraction (up to 16 GPa) and ^57Fe Mossbauer spectroscopy (up to 8 GPa). Dominant with anorthite-rich plagioclase, pigeonite-rich pyroxene and clino-ferrosilite, the sample displayed various phase transitions attaining amorphous character at 16 GPa. These phase transitions of individual components could be explained simultaneously through variations in high-pressure XRD patterns and the Mossbauer parameters. Most prominent P21/c to C2/c transition of pigeonite and ferrosilite was exhibited both as sudden variation in Mossbauer parameters and population inversion of Fe^2+ in M1 and M2 sites between 2.9 and 3.8 GPa and variation in intensity profile in XRD patterns at 3.56 GPa. Anorthite seemed to respond more to such impact than other components in the sample. Complete amorphization in anorthite which occurred at lower pressure of - 12 GPa implied residual stress experienced due to shock impact. The presence of high pressure (monoclinic) phase of pigeonite and ferrosilite at ambient condition in this eucrite sample confirmed earlier suggestions of an early shock event. This report is an attempt to emphasize the role of anorthite in the determination of the residual stress due to impact process in the parent body thus to understand the behavioral differences amongst HED members.展开更多
The zircaloy-4 is an alloy of zirconium, which has a very weak thermal neutron absorption, satisfactory mechanical properties and good corrosion resistance at high temperature. For these reasons, zircaloy-4 is used as...The zircaloy-4 is an alloy of zirconium, which has a very weak thermal neutron absorption, satisfactory mechanical properties and good corrosion resistance at high temperature. For these reasons, zircaloy-4 is used as a material of cladding fuel rod of nuclear reactors. In this environment, it is submitted to different severe conditions of temperature and pressure. The objective of this work is to study the oxidation kinetics of zircaloy-4 in air by the X-ray diffraction technique. The experiments were realized in a “HTK1200” furnace installed as a sample holder in the diffractometer at different temperatures;25°C, 350°C, 500°C, 830°C and 1000°C. The results show that the monoclinic and the tetragonal phases are formed at 350°C temperature. The volume fraction of these phases increased with the temperature until 1000°C where the α phase disappears completely. For simulating the case of loss-of-coolant-accident (LOCA), we have done x-ray diffraction of Zry-4 samples water quenched at 1050°C with different ageing times at this temperature. At 10 seconds and more, there is an important evolution of monoclinic and tetragonal zirconias, which leads to the degradation of zircaloy-4 properties.展开更多
A multiscale crystal plasticity model accounting for temperature-dependent mechanical behaviors without introducing a larger number of unknown parameters was developed.The model was implemented in elastic-plastic self...A multiscale crystal plasticity model accounting for temperature-dependent mechanical behaviors without introducing a larger number of unknown parameters was developed.The model was implemented in elastic-plastic self-consistent(EPSC)and crystal plasticity finite element(CPFE)frameworks for grain-scale simulations.A computationally efficient EPSC model was first employed to estimate the critical resolved shear stress and hardening parameters of the slip and twin systems available in a hexagonal close-packed magnesium alloy,ZEK100.The constitutive parameters were thereafter refined using the CPFE.The crystal plasticity frameworks incorporated with the temperature-dependent constitutive model were used to predict stress–strain curves in macroscale and lattice strains in microscale at different testing temperatures up to 200℃.In particular,the predictions by the crystal plasticity models were compared with the measured lattice strain data at the elevated temperatures by in situ high-energy X-ray diffraction,for the first time.The comparison in the multiscale improved the fidelity of the developed temperature-dependent constitutive model and validated the assumption with regard to the temperature dependency of available slip and twin systems in the magnesium alloy.Finally,this work provides a time-efficient and precise modeling scheme for magnesium alloys at elevated temperatures.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12304033,12072328,and 11991073).
文摘Phase transition of polycrystalline iron compressed along the Hugoniot is studied by combining laser-driven shock with in situ x-ray diffraction technique.It is suggested that polycrystalline iron changes from an initial body-centered cubic structure to a hexagonal close-packed structure with increasing pressure(i.e.,a phase transition fromαtoε).The relationship between density and pressure for polycrystalline iron obtained from the present experiments is found to be in good agreement with the gas-gun Hugoniot data.Our results show that experiments with samples at lower temperatures under static loading,such as in a diamond anvil cell,lead to higher densities measured than those found under dynamic loading.This means that extrapolating results of static experiments may not predict the dynamic responses of materials accurately.In addition,neither the face-centered cubic structure seen in previous molecular-dynamics simulations or twophase coexistence are found within our experimental pressure range.
文摘This article presents the thermal transitions of a tobermorite-bearing sample when heated from 30℃ up to 1200℃,both in vacuum and in static air,including tobermorite transforming to wollastonite,aragonite to calcite and calcite to lime.Characteristics obtained by in situ high temperature X-ray diffraction,field emission scanning electron microscopy and scanning transmission electron microscopy analyses jointly indicate that the investigated tobermorite is anomalous.The variations along the a,b,c axes and the volume changes of tobermorite with increasing temperature are described,and its thermal shrinkage coefficients therefore determined.The comparison between the refined structures at 30℃ and 800℃ demonstrates that the shrinkage degree(Δa/a0)along the a axis is higher than those(Δb/b0,Δc/c0)along the b and c axes.The wollastonite is formed in two ways:Tobermorite converting to wollastonite and lime reacting with quartz to form wollastonite.
基金This paper was suported by the National Natural Science Foundation of China.
文摘In situ x-ray diffraction electrochemical method is used to study the activation of silver electrode in KCl solution and UPD lead on silver electrode surface. We found that the activation makes the silver crystal thicker in (111), and the arrangement of water molecules on the silver electrode surface with UPD lead is partially ordered.
基金partially supported by the National Key Research and Development Program of China (2016YFB0100203)the National Natural Science Foundation of China (21673116,21633003)+1 种基金the Natural Science Foundation of Jiangsu Province of China (BK20160068)PAPD of Jiangsu Higher Education Institutions
文摘LiNi0.9Co0.15Al0.05O2 (NCA) material is successfully synthesized with a modified co-precipitation method,in which NH3,H2O and EDTA are used as two chelating agents. The obtained LiNi0.9Co0.15Al0.05O2 materialhas well-defined layered structure and uniform element distribution, which reveals an enhanced electro-chemical performance with a capacity retention of 97.9% after 100 cycles at 0.2 C, and reduced thermalrunaway from the isothermal calorimetry test. In situ X-ray diffraction (XRD) was employed to capturethe structural changes during the charge-discharge process. The reversible evolutions of lattice parame-ters (a, b, c, and V) further verify the structural stability.
基金CAS Photon Science Research Center for Carbon DioxideCAS President’s International Fellowship Initiative(2024PVA0097)+1 种基金National Key Research and Development Program of China(2017YFA0403000,2017YFA0402800)National Natural Science Foundation of China(U1932201,U1732121)。
文摘This study demonstrates the design and application of a novel high temperature rotatory apparatus for insitu synchrotron X-ray diffraction studies of molten salts,facilitating investigation into the interaction between various structural materials and molten salts.The apparatus enables accurate detection of every phase change during hightemperature experiments,including strong reaction processes like corrosion.Molten salts,such as chlorides or fluo⁃rides,together with the structure materials,are inserted into either quartz or boron nitride capillaries,where X-ray diffraction pattern can be continuously collected,as the samples are heated to high temperature.The replacement re⁃action,when molten ZnCl2 are etching Ti3AlC2,can be clearly observed through changes in diffraction peak intensity as well as expansion in c-axis lattice parameter of the hexagonal matrix,due to the larger atomic number and ionic ra⁃dius of Zn2+.Furthermore,we investigated the high-temperature corrosion process when GH3535 alloy is in FLiNaK molten salt,and can help to optimize its stability for potential applications in molten salt reactor.Additionally,this high temperature apparatus is fully compatible with the combined usage of X-ray diffraction and Raman technique,providing both bulk and surface structural information.This high temperature apparatus has been open to users and is extensively used at BL14B1 beamline of the Shanghai Synchrotron Radiation Facility.
基金Supported by Chinese Academy of Sciences (KJCX2-SW-N20, KJCX2-SW-N03)NSFC (50731005)+1 种基金SKPBRC(2007CB616915/2006CB605201)PCSIRT (IRT0650)
文摘The compression behavior of the heavy RE-based BMC Gd40Y16Al24Co20 under high pressure has been investigated by in situ high pressure angle dispersive X-ray diffraction measurements using synchrotron radiation in the pressure range of 0-33.42 GPa at room temperature. By fitting the static equation of state at room temperature, we find the value of bulk modulus B is 61.27±4 GPa which is in good agreement with the experimental study by pulse-echo techniques of 58 GPa. The results show that the amorphous structure in the heavy RE-based BMG Gd40Y16Al24Co20 keeps quite stable up to 33.42 GPa although its compressibility is as large as about 33%. The coexistence of normal local structure similar to that of other BMGs and covalent bond structure similar to those of oxide glasses may be the reason for the anomalous property under high pressure of the Gd4oY16Al24Co2o BMG.
基金supported by the National Natural Science Foundation of China(Nos.52171098 and 51921001)the State Key Laboratory for Advanced Metals and Materials(No.2022Z-02)+1 种基金the National High-level Personnel of Special Support Program(No.ZYZZ2021001)the Fundamental Research Funds for the Central Universities(Nos.FRF-TP-20-03C2 and FRF-BD-20-02B).
文摘High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Extensive studies on the deformation mech-anisms of HEAs can guide microstructure control and toughness design,which is vital for understanding and studying state-of-the-art structural materials.Synchrotron X-ray and neutron diffraction are necessary techniques for materials science research,especially for in situ coupling of physical/chemical fields and for resolving macro/microcrystallographic information on materials.Recently,several re-searchers have applied synchrotron X-ray and neutron diffraction methods to study the deformation mechanisms,phase transformations,stress behaviors,and in situ processes of HEAs,such as variable-temperature,high-pressure,and hydrogenation processes.In this review,the principles and development of synchrotron X-ray and neutron diffraction are presented,and their applications in the deformation mechanisms of HEAs are discussed.The factors that influence the deformation mechanisms of HEAs are also outlined.This review fo-cuses on the microstructures and micromechanical behaviors during tension/compression or creep/fatigue deformation and the application of synchrotron X-ray and neutron diffraction methods to the characterization of dislocations,stacking faults,twins,phases,and intergrain/interphase stress changes.Perspectives on future developments of synchrotron X-ray and neutron diffraction and on research directions on the deformation mechanisms of novel metals are discussed.
基金Project(DP140102355)supported by the Australian Research Council(ARC)Project supported by the China Scholarship Council(CSC)
文摘Synchrotron polychromatic X-ray microdiffraction(micro-XRD) was applied to study in situ deformation twinning of commercially AZ31(Mg-3Al-1Zn) strip subjected to uniaxial tension.The morphology and growth of twins were analyzed in situ under the load level from 64 to 73 MPa.The X-ray microdiffraction data,collected on beamline 12.3.2 at the Advanced Light Source,were then used to map an area of 396μm x 200μm within the region of interest.The experimental set-up and X-ray diffraction microscopy with a depth resolution allow the position and orientation of each illuminated grain to be determined at the submicron size.A list of parent grains sorted by crystallographic orientation were selected to examine their twinning behavior.The results depict twin variant selection,local misorientation fluctuation and mosaic spread for multi-twins within the same parent grain.As load increases,the amplitude of misorientation fluctuation along twin trace keeps increasing.This is attributable to the accumulation of geometrically necessary dislocations.
基金Project supported by the National Key Research and Development Program of China (Grant Nos.2022YFF0709103,2022YFA1603601,2021YFF0601203,and 2021YFA1600703)the National Natural Science Foundation of China (Grant No.81430087)the Shanghai Pilot Program for Basic Research-Chinese Academy of Sciences,Shanghai Branch (Grant No.JCYJ-SHFY-2021-010)。
文摘Beam splitting is one of the main approaches to achieving x-ray ghost imaging, and the intensity correlation between diffraction beam and transmission beam will directly affect the imaging quality. In this paper, we investigate the intensity correlation between the split x-ray beams by Laue diffraction of stress-free crystal. The analysis based on the dynamical theory of x-ray diffraction indicates that the spatial resolution of diffraction image and transmission image are reduced due to the position shift of the exit beam. In the experimental setup, a stress-free crystal with a thickness of hundredmicrometers-level is used for beam splitting. The crystal is in a non-dispersive configuration equipped with a double-crystal monochromator to ensure that the dimension of the diffraction beam and transmission beam are consistent. A correlation coefficient of 0.92 is achieved experimentally and the high signal-to-noise ratio of the x-ray ghost imaging is anticipated.Results of this paper demonstrate that the developed beam splitter of Laue crystal has the potential in the efficient data acquisition of x-ray ghost imaging.
基金the Natural Science Foundation of Hebei Province of China (Grant No. A2007000296)the National Natural Science Foundation of China (Grant No. 50731005)+1 种基金SKPBRC (Grant Nos. 2007CB616915 and 2006CB605201)PCSIRT (Grant No. IRT0650)
文摘The thermodynamics structural relaxation of Fe73Cu1.5Nd3Si13.5B9 amorphous alloy from room temperature to 400℃ has been investigated by measuring the structure factor with in situ X-ray diffraction. The structural information of the atomic con-figuration such as radial distribution function (RDF) and neighbor atomic distance was gained by Fourier transformation. The research result shows that the amor-phous structure remains stable in the temperature range of 30 to 400℃ but exhibits distinct changes in local atomic configuration with the increase of temperature. The quantitative determination of the neighbor atomic distance suggests that the de-gree of short-range order changes by the temperature altering the second nearest neighbor local atomic configuration of the amorphous when structural relaxation occurs.
基金supported by the National Natural Science Foundation of China(Grant No.51172091)the Program for New Century Excellent Talents in University,Chinathe National Fund for Fostering Talents of Basic Science,China(Grant No.J1103202)
文摘The high-pressure behaviors of SmFeO3 are investigated by angle-dispersive synchrotron X-ray powder diffraction under a pressure of up to 40.3 GPa at room temperature. The crystal structure of SmFeO3 remains stable at up to the highest pressure. The different pressure coefficients of the normalized axial compressibility are obtained to be βa = 0.60 × 10-3 GPa-1,βb = 0.79 × 10-3 GPa-1, βc = 1.28 × 10-3 GPa- 1, and the bulk modulus (B0) is determined to be 293(3) GPa by fitting the pressure-volume data using the Birch-Murnaghan equation of state. Furthermore, the larger compressibility of the FeO6 octahedra suggests the evolution of the orthorhombic structure towards higher symmetry configuration at high pressures.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 41004035 and 90914008)the Western Doctor Special Fund of the West Light Foundation of the Chinese Academy of Sciences+1 种基金the Research Start-up Funds of the Excellent Doctoral Dissertation and Dean Award of Chinese Academy of SciencesThe High Pressure Station is supported by Chinese Academy of Sciences (Grant Nos. KJCX2-SW-N20 and KJCX2-SW-N03)
文摘The compression behavior of a natural hydroxyapophyllite is investigated up to about 10.01 GPa at 300 K using in situ angle-dispersive X-ray diffraction and a diamond anvil cell at the High Pressure Experiment Station, Beijing Synchrotron Radiation Facility (BSRF). Over this pressure range, no phase change or disproportionation is observed. The isothermal equation of state is determined for the first time. The values of zero-pressure volume V0, isothermal bulk modulus K0, and K0' refined with a third-order Birch-Mumaghan equation of state are V0 = 1276.3 ± 0.9 A3, K0 = 71± 3 GPa, and K0' = 8 ±1. Furthermore, we confirm that the values of linear compressibility β along the a and c directions of hydroxyapophyllite are elastically anisotropic.
基金the supports of National Key Research and Development Program of China(No.2017YFA0403803)the National Natural Science Foundation of China(Nos.51525401,51774065,51690163 and 51601028)the Dalian Support Plan for Innovation of High-level Talents(Top and Leading Talents,2015R013)
文摘The effect of cryorolling on the precipitation process of deformed Cu-Ni-Si alloys was investigated through in situ synchrotron X-ray diffraction technique. The results demonstrate that the precipitation process is significantly accelerated by cryorolling. Cryorolling produces higher dislocation density, which provides more heterogeneous nucleation sites for Ni2Si precipitates, hence promotes precipitation. In the early stage of aging, the enhanced nucleation of precipitates accelerates the depletion of supersaturation, and finer precipitates are obtained. In addition, recrystallization is promoted as a result of high stored energy in the cryorolled Cu-Ni-Si alloys, which facilitates the formation of discontinuous precipitation in the late stage of aging.
基金the Swiss National Science Foundation under Grant PYAPP2_160581.M.A.acknowledges the Swiss Commission for Technology and Innovation(CTI)(the SCCER EIP-Efflciency of Industrial Processes)for financial support.We also acknowledge the Swiss-Norwegian Beam Line BM01 at European Synchrotron Radiation Facility(ESRF)for the beamtime allocation and Dr.D m itry Chernyshov,Dr.Iurii Dovgaliuk,Dr.Olga Trukhina and Mr.Vikram Karve for the assistance on the beamline,BM01.M.A.also thanks Dr.Pascal Schouwink for assistance on X-ray diffraction experiments at EPFL Valais.
文摘Cu-TDPAT(H_(6)TDPAT=2,4,6-tris(3,5-dicarboxylphenylamino)-1,3,5-triazine),a stable nanoporous metal-organic framework with rht topology,has sparked broad interest as an adsorbent for several chemical separation processes.In this work,in situ synchrotron diffraction experiments followed by sequential LeBail refinements reveal that Cu-TDPAT shows unusually large anisotropic negative thermal expansion(NTE).The PASCal crystallography tool,used to analyze the magnitude of the NTE,reveals an average volumetric thermal expansion coefficientαv=-20.3 MK^(-1).This value is significantly higher than the one reported for Cu-BTC(also known as HKUST-1),which contains the same Cu-paddlewheel building unit,αv=-12 MK^(-1).In situ synchrotron single crystal X-ray diffraction and in situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS)were employed to shed light on the NTE mechanism.Using these two methods,we were able to elucidate the three main structural motions that are responsible for the NTE effect.The more pronounced NTE behavior of Cu-TDPAT is attributed to the lower symmetry combined with the more complex ligand structure when compared to Cu-BTC.The knowledge obtained in this work is important for understanding the behavior of the adsorbent under transient variable temperature conditions in fixed adsorption beds.
文摘The structure and disorder-order transformation of NdxFe60.5-x Pt39.5(x = 0, 0.5, 1.0, 1.5) alloys were investigated in situ by high temperature X-ray diffraction. The results show that the lattice parameter a of disordered γ phase (FCC, Al structure type) and the lattice parameter ratio c/a of ordered γ1 phase (FCT, L10 structure type) increase linearly with increasing Nd concentration, whereas the c/a ratio decreases with increasing temperature. The transition temperature from ordered FCT to disordered FCC decreases with increasing Nd concentration, but for alloys quenched rapidly from γ phase region into ice-water it increases with increasing Nd.
文摘Phase transformations and lattice expansions of MlNi_)3.75)Co_)0.75)Mn_)0.3)Al_)0.2) during the electrochemical hydriding-dehydriding process were investigated using in-situ X-ray diffraction. An intermediate hydride γ phase between the hydrogen solid solution α phase and fully hydrided β phase can be observed during the cycling. The formation of γ phase is related to the diffusion of hydrogen in the crystal grains. The lower the charge rate is, the higher the content of γ phase is. The phase transformations during the hydriding-dehydriding process can be described as )αα+γ+ββγ+αα.) The lattice expansion from α to β is discrete, while that from γ to β is continuous. The formation of γ phase can reduce the discrete lattice expansion from α to β by 30%.
基金supported by National Natural Science Foundation of China(U2032118 and 42172048)Guizhou Provincial Science and Technology Projects(QKHPTRCYQK[2023]035 and QKHJC-ZK[2021]ZD042)+1 种基金Hundred Talents Program of the Chinese Academy of SciencesGuizhou Provincial 2020 and 2021 Science and Technology Subsidies(Nos.GZ2020SIG and GZ2021SIG)。
文摘The unit-cell parameters and volumes of geikielite(MgTiO_(3))and ilmenite(FeTiO_(3))were investigated at high temperatures up to 700 K and ambient pressure,using in-situ angle-dispersive synchrotron X-ray diffraction.No phase transition was detected over the experimental temperature range.Using(Berman in J Petrol29:445-522,1988.10.1093/petrology/29.2.445)equations to fit the temperature-volume data,the volumetric thermal expansion coefficients at ambient conditions(α_(V0))of MgTiO_(3) and FeTiO_(3) were obtained as follows:2.55(6)×10^(-5)K^(-1)and 2.82(10)×10^(-5)K^(-1),respectively.We infer that the larger effective ionic radius of Fe^(2+)(Ⅵ)(0.78 A)than that of Mg^(2+)(Ⅵ)(0.72?)renders FeTiO_(3)has a larger volumetric thermal expansivity than MgTiO_(3).Simultaneously,the refined axial thermal expansion coefficients under ambient conditions areα_(a0)=0.74(3)×10^(-5)K^(-1)andα_(c0)=1.08(5)×10^(-5)K^(-1)for the aaxis and c-axis of MgTiO_(3),respectively,andα_(a0)=0.95(5)×10^(-5)K^(-1)andα_(c0)=0.92(12)×10^(-5)K^(-1)for the aaxis and c-axis of FeTiO_(3),respectively.The axial thermal expansivity of MgTiO_(3) is anisotropic,but that of FeTiO_(3) is nearly isotropic.We infer that the main reason for the different axial thermal expansivity between MgTiO_(3) and FeTiO_(3) is that the thermal expansion mode of the Mg-O bond in MgTiO_(3) is different from that of the Fe-O bonds in FeTiO_(3).
基金Council of Scientific and Industrial Research(CSIR),PLANEX program of India Space Research Organization,Department of Space(Government of India),CSR-SHORE-PSC-02005 and ISRO projects(GP)for funding, CSIR for providing Emeritus Scientist Fellowship(UC)
文摘We report here high-pressure investigations on Piplia Kalan eucrite-a member of HED (Howardite -Eucrite-Diogenite) family from asteroid 4-Vesta based on synchrotron X-ray diffraction (up to 16 GPa) and ^57Fe Mossbauer spectroscopy (up to 8 GPa). Dominant with anorthite-rich plagioclase, pigeonite-rich pyroxene and clino-ferrosilite, the sample displayed various phase transitions attaining amorphous character at 16 GPa. These phase transitions of individual components could be explained simultaneously through variations in high-pressure XRD patterns and the Mossbauer parameters. Most prominent P21/c to C2/c transition of pigeonite and ferrosilite was exhibited both as sudden variation in Mossbauer parameters and population inversion of Fe^2+ in M1 and M2 sites between 2.9 and 3.8 GPa and variation in intensity profile in XRD patterns at 3.56 GPa. Anorthite seemed to respond more to such impact than other components in the sample. Complete amorphization in anorthite which occurred at lower pressure of - 12 GPa implied residual stress experienced due to shock impact. The presence of high pressure (monoclinic) phase of pigeonite and ferrosilite at ambient condition in this eucrite sample confirmed earlier suggestions of an early shock event. This report is an attempt to emphasize the role of anorthite in the determination of the residual stress due to impact process in the parent body thus to understand the behavioral differences amongst HED members.
文摘The zircaloy-4 is an alloy of zirconium, which has a very weak thermal neutron absorption, satisfactory mechanical properties and good corrosion resistance at high temperature. For these reasons, zircaloy-4 is used as a material of cladding fuel rod of nuclear reactors. In this environment, it is submitted to different severe conditions of temperature and pressure. The objective of this work is to study the oxidation kinetics of zircaloy-4 in air by the X-ray diffraction technique. The experiments were realized in a “HTK1200” furnace installed as a sample holder in the diffractometer at different temperatures;25°C, 350°C, 500°C, 830°C and 1000°C. The results show that the monoclinic and the tetragonal phases are formed at 350°C temperature. The volume fraction of these phases increased with the temperature until 1000°C where the α phase disappears completely. For simulating the case of loss-of-coolant-accident (LOCA), we have done x-ray diffraction of Zry-4 samples water quenched at 1050°C with different ageing times at this temperature. At 10 seconds and more, there is an important evolution of monoclinic and tetragonal zirconias, which leads to the degradation of zircaloy-4 properties.
基金the supports by the Fundamental Research Program of the Korea Institute of Materials Science(KIMS,PNK7760)。
文摘A multiscale crystal plasticity model accounting for temperature-dependent mechanical behaviors without introducing a larger number of unknown parameters was developed.The model was implemented in elastic-plastic self-consistent(EPSC)and crystal plasticity finite element(CPFE)frameworks for grain-scale simulations.A computationally efficient EPSC model was first employed to estimate the critical resolved shear stress and hardening parameters of the slip and twin systems available in a hexagonal close-packed magnesium alloy,ZEK100.The constitutive parameters were thereafter refined using the CPFE.The crystal plasticity frameworks incorporated with the temperature-dependent constitutive model were used to predict stress–strain curves in macroscale and lattice strains in microscale at different testing temperatures up to 200℃.In particular,the predictions by the crystal plasticity models were compared with the measured lattice strain data at the elevated temperatures by in situ high-energy X-ray diffraction,for the first time.The comparison in the multiscale improved the fidelity of the developed temperature-dependent constitutive model and validated the assumption with regard to the temperature dependency of available slip and twin systems in the magnesium alloy.Finally,this work provides a time-efficient and precise modeling scheme for magnesium alloys at elevated temperatures.