期刊文献+
共找到4,716篇文章
< 1 2 236 >
每页显示 20 50 100
High-pressure and high-temperature sintering of pure cubic silicon carbide:A study on stress-strain and densification
1
作者 刘金鑫 彭放 +5 位作者 马国龙 梁文嘉 何瑞琦 管诗雪 唐越 向晓君 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第9期498-505,共8页
Silicon carbide(SiC)is a high-performance structural ceramic material with excellent comprehensive properties,and is unmatched by metals and other structural materials.In this paper,raw SiC powder with an average grai... Silicon carbide(SiC)is a high-performance structural ceramic material with excellent comprehensive properties,and is unmatched by metals and other structural materials.In this paper,raw SiC powder with an average grain size of 5μm was sintered by an isothermal-compression process at 5.0 GPa and 1500?C;the maximum hardness of the sintered samples was31.3 GPa.Subsequently,scanning electron microscopy was used to observe the microscopic morphology of the recovered SiC samples treated in a temperature and extended pressure range of 0-1500?C and 0-16.0 GPa,respectively.Defects and plastic deformation in the SiC grains were further analyzed by transmission electron microscopy.Further,high-pressure in situ synchrotron radiation x-ray diffraction was used to study the intergranular stress distribution and yield strength under non-hydrostatic compression.This study provides a new viewpoint for the sintering of pure phase micron-sized SiC particles. 展开更多
关键词 high pressure and high temperature silicon carbide stress analysis DEFECT
下载PDF
A Comprehensive Method for the Optimization of Cement Slurry and to Avoid Air Channeling in High Temperature and High-Pressure Conditions
2
作者 Yanjun Li Wandong Zhang +3 位作者 Jiang Wu Yuhao Yang Chao Zhang Huanqiang Yang 《Fluid Dynamics & Materials Processing》 EI 2023年第5期1237-1248,共12页
Air channeling in the annulus between the casing and the cement sheath and/or between the cement sheath and formation is the main factor affecting the safe operation of natural gas wells at high temperatures and press... Air channeling in the annulus between the casing and the cement sheath and/or between the cement sheath and formation is the main factor affecting the safe operation of natural gas wells at high temperatures and pressures.Prevention of this problem requires,in general,excellent anti-channeling performances of the cement sheath.Three methods to predict such anti-channeling performances are proposed here,which use the weightless pressure of cement slurry,the permeability of cement stone and the volume expansion rate of cement sheath as input parameters.Guided by this approach,the anti-channeling performances of the cement slurry are evaluated by means of indoor experiments,and the cement slurry is optimized accordingly.The results show that the dangerous transition time of the cement slurry with optimized dosage of admixture is only 76 min,the permeability of cement stone is 0.005 md,the volume shrinkage at final setting is only 0.72%,and the anti-channeling performances are therefore maximized.The effective utilization of the optimized cement slurry in some representative wells(LD10–1-A1 and LD10–1-A2 in LD10–1 gas field)is also discussed. 展开更多
关键词 high temperature and high pressure cement slurry anti-channeling weightlessness pressure PERMEABILITY volume shrinkage
下载PDF
Mechanical Analysis of a Multi-Test String in High-Temperature and High-Pressure Deep Wells
3
作者 Zubing Tang 《Fluid Dynamics & Materials Processing》 EI 2023年第8期2161-2170,共10页
The mechanical behavior of the test string in deep wells is generally relatively complex as a result of the high temperature and high pressure,severe dogleg and buckling effects,which in some circumstances can even le... The mechanical behavior of the test string in deep wells is generally relatively complex as a result of the high temperature and high pressure,severe dogleg and buckling effects,which in some circumstances can even lead to string failure.Traditional computational methods for the analysis of these behaviors are often inaccurate.For this reason,here a more accurate mechanical model of the test string is introduced by considering variables such as temperature,pressure,wellbore trajectory,and buckling,as well as combining them with the deformation and string constraint conditions brought in by changes in temperature and pressure during the tripping,setting,and test operations.The model is validated by applying it to a specific high-pressure gas well(located in Northeast Sichuan). 展开更多
关键词 Test string high temperature and high pressure BUCKLinG subdividing operation process mechanical model
下载PDF
Various admixtures to mitigate the long-term strength retrogression of Portland cement cured under high pressure and high temperature conditions 被引量:1
4
作者 Jiankun Qin Xueyu Pang +2 位作者 Ashok Santra Guodong Cheng Hailong Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第1期191-203,共13页
In order to investigate the problem of long-term strength retrogression in oil well cement systems exposed to high pressure and high temperature(HPHT)curing conditions,various influencing factors,including cement sour... In order to investigate the problem of long-term strength retrogression in oil well cement systems exposed to high pressure and high temperature(HPHT)curing conditions,various influencing factors,including cement sources,particle sizes of silica flour,and additions of silica fume,alumina,colloidal iron oxide and nano-graphene,were investigated.To simulate the environment of cementing geothermal wells and deep wells,cement slurries were directly cured at 50 MPa and 200?C.Mineral compositions(as determined by X-ray diffraction Rietveld refinement),water permeability,compressive strength and Young’s modulus were used to evaluate the qualities of the set cement.Short-term curing(2e30 d)test results indicated that the adoption of 6 m m ultrafine crystalline silica played the most important role in stabilizing the mechanical properties of oil well cement systems,while the addition of silica fume had a detrimental effect on strength stability.Long-term curing(2e180 d)test results indicated that nano-graphene could stabilize the Young’s modulus of oil well cement systems.However,none of the ad-mixtures studied here can completely prevent the strength retrogression phenomenon due to their inability to stop the conversion of amorphous to crystalline phases. 展开更多
关键词 high pressure and high temperature(HPHT) Strength retrogression Young’s modulus Water permeability Rietveld method
下载PDF
A new technology for controlling in-situ oxygen fugacity in diamond anvil cells and measuring electrical conductivity of anhydrous olivine at high pressures and temperatures
5
作者 沈文舒 吴雷 +5 位作者 欧天吉 岳冬辉 冀婷婷 韩永昊 许文良 高春晓 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第1期186-191,共6页
We present a novel technique for controlling oxygen fugacity,which is broadly used to in-situ measure the electrical conductivities in minerals and rocks during diamond anvil cell experiments.The electrical conductivi... We present a novel technique for controlling oxygen fugacity,which is broadly used to in-situ measure the electrical conductivities in minerals and rocks during diamond anvil cell experiments.The electrical conductivities of olivine are determined under controlled oxygen fugacity conditions(Mo–MoO2)at pressures up to 4.0 GPa and temperatures up to 873 K.The advantages of this new technique enable the measuring of the activation enthalpy,activation energy,and activation bulk volume in the Arrhenius relationship.This provides an improved understanding of the mechanism of conduction in olivine.Electrical conduction in olivine is best explained by small polaron movement,given the oxygen fugacity-dependent variations in conductivity. 展开更多
关键词 high pressure high temperature oxygen fugacity
下载PDF
High temperature and high pressure rheological properties of high-density water-based drilling fluids for deep wells 被引量:9
6
作者 Wang Fuhua Tan Xuechao +3 位作者 Wang Ruihe Sun Mingbo Wang Li Liu Jianghua 《Petroleum Science》 SCIE CAS CSCD 2012年第3期354-362,共9页
To maintain tight control over rheological properties of high-density water-based drilling fluids, it is essential to understand the factors influencing the theology of water-based drilling fluids. This paper examines... To maintain tight control over rheological properties of high-density water-based drilling fluids, it is essential to understand the factors influencing the theology of water-based drilling fluids. This paper examines temperature effects on the rheological properties of two types of high-density water-based drilling fluids (fresh water-based and brine-based) under high temperature and high pressure (HTHP) with a Fann 50SL rheometer. On the basis of the water-based drilling fluid systems formulated in laboratory, this paper mainly describes the influences of different types and concentration of clay, the content of a colloid stabilizer named GHJ-1 and fluid density on the rheological parameters such as viscosity and shear stress. In addition, the effects of aging temperature and aging time of the drilling fluid on these parameters were also examined. Clay content and proportions for different densities of brine-based fluids were recommended to effectively regulate the rheological properties. Four theological models, the Bingham, power law, Casson and H-B models, were employed to fit the rheological parameters. It turns out that the H-B model was the best one to describe the rheological properties of the high-density drilling fluid under HTHP conditions and power law model produced the worst fit. In addition, a new mathematical model that describes the apparent viscosity as a function of temperature and pressure was established and has been applied on site. 展开更多
关键词 high-density water-based drilling fluid rheological behavior CLAY high temperature high pressure linear fitting rheological model mathematical model
下载PDF
A new and reliable model for predicting methane viscosity at high pressures and high temperatures 被引量:6
7
作者 Ehsan Heidaryan Jamshid Moghadasi Amir Salarabadi 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2010年第5期552-556,共5页
In recent years, there has been an increase of interest in the flow of gases at relatively high pressures and high temperatures. Hydrodynamic calculation of the energy losses in the flow of gases in conduits, as well ... In recent years, there has been an increase of interest in the flow of gases at relatively high pressures and high temperatures. Hydrodynamic calculation of the energy losses in the flow of gases in conduits, as well as through the porous media constituting natural petroleum reservoirs, requires knowledge of the viscosity of the fluid at the pressure and temperature involved. Although there are numerous publications concerning the viscosity of methane at atmospheric pressure, there appears to be little information available relating to the effect of pressure and temperature upon the viscosity. A survey of the literature reveals that the disagreements between published data on the viscosity of methane are common and that most investigations have been conducted over restricted temperature and pressure ranges. Experimental viscosity data for methane are presented for temperatures from 320 to 400 K and pressures from 3000 to 140000 kPa by using falling body viscometer. A summary is given to evaluate the available data for methane, and a comparison is presented for that data common to the experimental range reported in this paper. A new and reliable correlation for methane gas viscosity is presented. Predicted values are given for temperatures up to 400 K and pressures up to 140000 kPa with Average Absolute Percent Relative Error (EABS) of 0.794. 展开更多
关键词 METHANE VISCOSITY falling body viscometer high pressures high temperatures CORRELatION
下载PDF
Rheological properties of oil-based drilling fluids at high temperature and high pressure 被引量:3
8
作者 赵胜英 鄢捷年 +1 位作者 舒勇 张洪霞 《Journal of Central South University》 SCIE EI CAS 2008年第S1期457-461,共5页
The rheological properties of two kinds of oil-based drilling fluids with typically composition were studied at pressures up to 138 MPa and temperatures up to 204 ℃ using the RheoChan 7400 Rheometer.The experimental ... The rheological properties of two kinds of oil-based drilling fluids with typically composition were studied at pressures up to 138 MPa and temperatures up to 204 ℃ using the RheoChan 7400 Rheometer.The experimental results show that the apparent viscosity,plastic viscosity and yield point decrease with the increase of temperature,and increase with the increase of pressure.The effect of pressure on the apparent viscosity,plastic viscosity and yield point is considerable at ambient temperature.However,this effect gradually reduces with the increase of temperature.The major factor influencing the rheological properties of oil-based drilling fluids is temperature instead of pressure in the deep sections of oil wells.On the basis of numerous experiments,the model for predict the apparent viscosity,plastic viscosity and yield point of oil-based drilling fluids at high temperature and pressure was established using the method of regressive analysis.It is confirmed that the calculated data are in good agreement with the measured data,and the correlation coefficients are more than 0.98.The model is convenient for use and suitable for the application in drilling operations. 展开更多
关键词 OIL-BASED DRILLinG FLUIDS high temperature high pressure RHEOLOGICAL property MatHEMatICAL model
下载PDF
Porosity, permeability and rock mechanics of Lower Silurian Longmaxi Formation deep shale under temperature-pressure coupling in the Sichuan Basin, SW China 被引量:2
9
作者 SUN Chuanxiang NIE Haikuan +5 位作者 SU Haikun DU Wei LU Ting CHEN Yalin LIU Mi LI Jingchang 《Petroleum Exploration and Development》 2023年第1期85-98,共14页
To investigate the porosity, permeability and rock mechanics of deep shale under temperature-pressure coupling, we selected the core samples of deep shale from the Lower Silurian Longmaxi Formation in the Weirong and ... To investigate the porosity, permeability and rock mechanics of deep shale under temperature-pressure coupling, we selected the core samples of deep shale from the Lower Silurian Longmaxi Formation in the Weirong and Yongchuan areas of the Sichuan Basin for porosity and permeability experiments and a triaxial compression and sound wave integration experiment at the maximum temperature and pressure of 120 ℃ and 70 MPa. The results show that the microscopic porosity and permeability change and the macroscopic rock deformation are mutually constrained, both showing the trend of steep and then gentle variation. At the maximum temperature and pressure, the porosity reduces by 34%–71%, and the permeability decreases by 85%–97%. With the rising temperature and pressure, deep shale undergoes plastic deformation in which organic pores and clay mineral pores are compressed and microfractures are closed, and elastic deformation in which brittle mineral pores and rock skeleton particles are compacted. Compared with previous experiments under high confining pressure and normal temperature,the experiment under high temperature and high pressure coupling reveals the effect of high temperature on stress sensitivity of porosity and permeability. High temperature can increase the plasticity of the rock, intensify the compression of pores due to high confining pressure, and induce thermal stress between the rock skeleton particles, allowing the reopening of shale bedding or the creation of new fractures along weak planes such as bedding, which inhibits the decrease of permeability with the increase of temperature and confining pressure. Compared with the triaxial mechanical experiment at normal temperature, the triaxial compression experiment at high temperature and high pressure demonstrates that the compressive strength and peak strain of deep shale increase significantly due to the coupling of temperature and pressure. The compressive strength is up to 435 MPa and the peak strain exceeds 2%, indicating that high temperature is not conducive to fracture initiation and expansion by increasing rock plasticity. Lithofacies and mineral composition have great impacts on the porosity, permeability and rock mechanics of deep shale. Shales with different lithologies are different in the difficulty and extent of brittle failure. The stress-strain characteristics of rocks under actual geological conditions are key support to the optimization of reservoir stimulation program. 展开更多
关键词 Sichuan Basin Longmaxi Formation deep shale gas POROSITY PERMEABILITY rock mechanics high temperature and high pressure triaxial compression
下载PDF
Growth and annealing study of hydrogen-doped single diamond crystals under high pressure and high temperature 被引量:4
10
作者 李勇 贾晓鹏 +5 位作者 胡美华 刘晓兵 颜丙敏 周振翔 张壮飞 马红安 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第5期652-656,共5页
A series of diamond crystals doped with hydrogen is successfully synthesized using LiH as the hydrogen source in a catalyst-carbon system at a pressure of 6.0 GPa and temperature ranging from 1255 C to 1350 C.It is sh... A series of diamond crystals doped with hydrogen is successfully synthesized using LiH as the hydrogen source in a catalyst-carbon system at a pressure of 6.0 GPa and temperature ranging from 1255 C to 1350 C.It is shown that the high temperature plays a key role in the incorporation of hydrogen atoms during diamond crystallization.Fourier transform infrared micro-spectroscopy reveals that most of the hydrogen atoms in the synthesized diamond are incorporated into the crystal structure as sp 3-CH 2-symmetric(2850 cm-1) and sp 3 CH 2-antisymmetric vibrations(2920 cm-1).The intensities of these peaks increase gradually with an increase in the content of the hydrogen source in the catalyst.The incorporation of hydrogen impurity leads to a significant shift towards higher frequencies of the Raman peak from 1332.06 cm-1 to 1333.05 cm-1 and gives rise to some compressive stress in the diamond crystal lattice.Furthermore,hydrogen to carbon bonds are evident in the annealed diamond,indicating that the bonds that remain throughout the annealing process and the vibration frequencies centred at 2850 and 2920 cm-1 have no observable shift.Therefore,we suggest that the sp 3 C-H bond is rather stable in diamond crystals. 展开更多
关键词 high pressure and high temperature hydrogen-doped diamond crystals ANNEALinG LiH additives
下载PDF
Pressure Prediction for High-Temperature and High-Pressure Formation and Its Application to Drilling in the Northern South China Sea 被引量:3
11
作者 WANGZhenfeng XIEXinong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第3期640-643,共4页
There are plentiful potential hydrocarbon resources in the Yinggehai and Qiongdongnan basins in the northern South China Sea. However, the special petrol-geological condition with high formation temperature and pressu... There are plentiful potential hydrocarbon resources in the Yinggehai and Qiongdongnan basins in the northern South China Sea. However, the special petrol-geological condition with high formation temperature and pressure greatly blocked hydrocarbon exploration. The conventional means of drills, including methods in the prediction and monitoring of underground strata pressure, can no longer meet the requirements in this area. The China National Offshore Oil Corporation has allocated one well with a designed depth of 3200 m and pressure coefficient of 2.3 in the Yinggehai Basin (called test well in the paper) in order to find gas reservoirs in middle-deep section in the Miocene Huangliu and Meishan formations at the depth below 3000 m. Therefore, combined with the '863' national high-tech project, the authors analyzed the distribution of overpressure in the Yinggehai and Qiongdongnan basins, and set up a series of key technologies and methods to predict and monitor formation pressure, and then apply the results to pressure prediction of the test well. Because of the exact pressure prediction before and during drilling, associated procedure design of casing and their allocation in test well has been ensured to be more rational. This well is successfully drilled to the depth of 3485 m (nearly 300 m deeper than the designed depth) under the formation pressure about 2.3 SG (EMW), which indicate that a new step in the technology of drilling in higher temperature and pressure has been reached in the China National Offshore Oil Corporation. 展开更多
关键词 formation pressure high temperature OVERpressure pressure prediction Yinggehai Basin South China Sea
下载PDF
Large single crystal diamond grown in FeNiMnCo-S-C system under high pressure and high temperature conditions 被引量:5
12
作者 张贺 李尚升 +4 位作者 宿太超 胡美华 李光辉 马红安 贾晓鹏 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第11期588-593,共6页
大钻石成功地在 1255-1393 敤瑮漠 ? 摀畲的温度从 FeNiMnCo-S-C 系统被综合了吗?
关键词 large diamond high pressure and high temperature sulfur additive
下载PDF
Polycrystalline cubic boron nitride prepared with cubic-hexagonal boron nitride under high pressure and high temperature 被引量:3
13
作者 杨鸣 寇自力 +8 位作者 刘腾 卢景瑞 刘方明 刘银娟 戚磊 丁未 龚红霞 倪小林 贺端威 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第5期424-429,共6页
Polycrystalline cubic boron nitride(Pc BN) compacts, using the mixture of submicron cubic boron nitride(c BN) powder and hexagonal BN(h BN) powder as starting materials, were sintered at pressures of 6.5–10.0 G... Polycrystalline cubic boron nitride(Pc BN) compacts, using the mixture of submicron cubic boron nitride(c BN) powder and hexagonal BN(h BN) powder as starting materials, were sintered at pressures of 6.5–10.0 GPa and temperature of1750℃ without additives. In this paper, the sintering behavior and mechanical properties of samples were investigated.The XRD patterns of samples reveal that single cubic phase was observed when the sintering pressure exceeded 7.5 GPa and h BN contents ranged from 20 vol.% to 24 vol.%, which is ascribed to like-internal pressure generated at grain-to-grain contact under high pressure. Transmission electron microscopy(TEM) analysis shows that after high pressure and high temperature(HPHT) treatments, the submicron c BN grains abounded with high-density nanotwins and stacking faults, and this contributed to the outstanding mechanical properties of Pc BN. The pure bulk Pc BN that was obtained at 7.7 GPa/1750℃ possessed the outstanding properties, including a high Vickers hardness(~ 61.5 GPa), thermal stability(~ 1290℃ in air),and high density(~ 3.46 g/cm^3). 展开更多
关键词 PcBN compact high temperature and high pressure sintering PcBN without additive
下载PDF
B-C Bond in Diamond Single Crystal Synthesized with h-BN Additive at High Pressure and High Temperature 被引量:2
14
作者 李勇 周振翔 +4 位作者 管学茂 李尚升 王应 贾晓鹏 马红安 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第2期137-140,共4页
The synthesis of diamond single crystal in the Fe64Ni36-C system with h-BN additive is investigated at pressure 6.5 GPa and temperature range of 1300-1400℃. The color of the obtained diamond crystals translates from ... The synthesis of diamond single crystal in the Fe64Ni36-C system with h-BN additive is investigated at pressure 6.5 GPa and temperature range of 1300-1400℃. The color of the obtained diamond crystals translates from yellow to dark green with increasing the h-BN addition. Fourier-transform infrared (FTIR) results indicate that sp2 hybridization B-N-B and B-N structures generate when the additive content reaches a certain value in the system. The two peaks are located at 745 and 1425cm-1, respectively. Fhrthermore, the FTIR characteristic peak resulting from nitrogen pairs is noticed and it tends to vanish when the h-BN addition reaches 1.1 wt%. Furthermore, Raman peak of the synthesized diamond shifts down to a lower wavenumber with increasing the h-BN ~ddition content in the synthesis system. 展开更多
关键词 BN in of B-C Bond in Diamond Single Crystal Synthesized with h-BN Additive at high pressure and high temperature with
下载PDF
P-Wave Velocity in Rocks of Dabieshan, China at High Pressure and High Temperature: Constraints for Composition of Lower Crust and Crust-Mantle Recycling 被引量:1
15
作者 Zhao Zhidan Zhou Wenge +2 位作者 Xie Hongsen Guo Jie Xu Zuming(Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002)Zhang Zeming(Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037) 《Journal of Earth Science》 SCIE CAS CSCD 1999年第4期295-298,共4页
P-wave velocities in the rocks of Dabieshan, central China were measured at pressures up to 5.0 GPa and temperatures up to 1 300℃. The ultrahigh pressure eclogites have the highest density and P-wave velocity (Vp) an... P-wave velocities in the rocks of Dabieshan, central China were measured at pressures up to 5.0 GPa and temperatures up to 1 300℃. The ultrahigh pressure eclogites have the highest density and P-wave velocity (Vp) and lower anisotropy. Pressure derivatives of the eclogites range from 0. 22 to 0. 33 km. s-1 GPa-1. Average temperature derivative of the eclogites is - 3. 41×10-4 km. s-1. °C -1. The density and VP of the eclogites imply that there will be two united possibilities related to crust-mantle recycling after the eclogite formed in the deep lithosphere. One is that some eclogites in the deep lithosphere were detached and sunk into deeper mantle due to their denser density. Another is that some eclogites returned to the crust and exposed to the surface.Small amounts (<12%) of eclogites may be still exist in the deep crust beneath Dabieshan based on our calculation. 展开更多
关键词 ECLOGITE P-wave velocity density high pressure high temperature lower crust
下载PDF
Synthesis and characterizations of boron and nitrogen co-doped high pressure and high temperature large single-crystal diamonds with increased mobility 被引量:2
16
作者 苗辛原 马红安 +4 位作者 张壮飞 陈良超 周丽娟 李敏斯 贾晓鹏 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第6期625-630,共6页
We synthesized and investigated the boron-doped and boron/nitrogen co-doped large single-crystal diamonds grown under high pressure and high temperature(HPHT) conditions(5.9 GPa and 1290℃). The optical and electrical... We synthesized and investigated the boron-doped and boron/nitrogen co-doped large single-crystal diamonds grown under high pressure and high temperature(HPHT) conditions(5.9 GPa and 1290℃). The optical and electrical properties and surface characterization of the synthetic diamonds were observed and studied. Incorporation of nitrogen significantly changed the growth trace on surface of boron-containing diamonds. X-ray photoelectron spectroscopy(XPS) measurements showed good evident that nitrogen atoms successfully incorporate into the boron-rich diamond lattice and bond with carbon atoms. Raman spectra showed differences on the as-grown surfaces and interior between boron-doped and boron/nitrogen co-doped diamonds. Fourier transform infrared spectroscopy(FTIR) measurements indicated that the nitrogen incorporation significantly decreases the boron acceptor concentration in diamonds. Hall measurements at room temperature showed that the carriers concentration of the co-doped diamonds decreases, and the mobility increases obviously. The highest hole mobility of sample BNDD-1 reached 980 cm^(2)·V^(-1)·s^(-1), possible reasons were discussed in the paper. 展开更多
关键词 high pressure and high temperature(HPHT) DIAMOND growth of crystal boron and nitrogen codoped diamond
下载PDF
Synthesis of large diamond crystals containing high-nitrogen concentration at high pressure and high temperature using Ni-based solvent by temperature gradient method 被引量:1
17
作者 黄国锋 贾晓鹏 +4 位作者 李尚升 张亚飞 李勇 赵明 马红安 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第11期662-666,共5页
This paper reprots that with Ni-based catalyst/solvent and with a dopant of NAN3, large green single crystal diamonds with perfect shape are successfully synthesized by temperature gradient method under high pressure ... This paper reprots that with Ni-based catalyst/solvent and with a dopant of NAN3, large green single crystal diamonds with perfect shape are successfully synthesized by temperature gradient method under high pressure and high temperature in a China-type cubic anvil high-pressure apparatus (SPD-6 × 1200), and the highest nitrogen concentration reaches approximately 121-1257 ppm calculated by infrared absorption spectra. The synthesis conditions are about 5.5 CPa and 1240-1300 ℃. The growth behaviour of diamond with high-nitrogen concentration is investigated in detail. The results show that, with increasing the content of NaN3 added in synthesis system, the width of synthesis temperature region for growth high-quality diamonds becomes narrower, and the morphology of diamond crystal is changed from cube-octahedral to octahedral at same temperature and pressure, the crystal growth rate is slowed down, nevertheless, the nitrogen concentration doped in synthetic diamond increases. 展开更多
关键词 high temperature and high pressure nitrogen-doped diamond crystal temperature gra- dient method additive NaN3
下载PDF
Explanation of Pressure Effect for High Temperature Superconductors Using Pressure Dependent Schrodinger Equation and String Theory 被引量:2
18
作者 Einas Mohamed Ahmed Mohamed Nagwa Idriss Ali Ahmed +3 位作者 Musa Ibrahim Babiker Hussein Rasha Abd Elhai Mohammad Taha Mohammed Idriss Ahmed Mubarak Dirar Abd-Alla 《Natural Science》 2020年第1期28-34,共7页
A pressure dependent Schrodinger equation is used to find the conditions that lead to superconductivity. When no pressure is exerted, the superconductor resistance vanishes beyond a critical temperature related to the... A pressure dependent Schrodinger equation is used to find the conditions that lead to superconductivity. When no pressure is exerted, the superconductor resistance vanishes beyond a critical temperature related to the repulsive force potential of the electron gass, where one assuming the electron total energy to be thermal, where applying mechanical pressure destroys Sc when it exceeds a certain critical value. However when the electron total energy is an assumed to be that of the free electron model and that the pressure is thermal and mechanical, the situation is different. The quantum expression for resistance shows that the increase of mechanical pressure increases the critical temperature. Such phenomenon is observed in high temperature cupper group. 展开更多
关键词 pressure DEPENDENT SCHRODinGER Equation Superconductivity Critical temperature pressure high temperature Superconductor
下载PDF
Stability of Titanium-aluminium Nitride (Ti_2AlN) at High Pressure and High Temperatures 被引量:1
19
作者 安佩 寇自力 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第5期914-919,共6页
The stability of Ti2AlN at high pressure of 5 GPa and different temperatures of 700-1 600 ℃ was investigated using X-ray diffraction (XRD),scanning electron microscopy (SEM) equipped with an energy dispersive spe... The stability of Ti2AlN at high pressure of 5 GPa and different temperatures of 700-1 600 ℃ was investigated using X-ray diffraction (XRD),scanning electron microscopy (SEM) equipped with an energy dispersive spectrometer (EDS).Ti2AlN was found to be stable at temperatures as high as 1 400 ℃under 5 GPa for 20 min,and was proved that it held better structure stability than Ti2AlC under 5 GPa through comparative experiments of Ti2AlN and Ti2AlC (representative compounds of M2AX phases (211 phase)).The reaction process at high pressure had some difference from that at ambient pressure/vacuum,and Ti2AlN directly decomposed to TiN and TiAl at 5 GPa and 1 500 ℃ for 20 min.Moreover,the mechanism of phase segregation was discussed.In addition,the behavior of Ti2AlN contacting with Zr at high pressure and high temperature (HPHT) was also studied. 展开更多
关键词 Ti2AlN high pressure and high temperature STABILITY X-rMechanism and Kinetic Model of
下载PDF
Effects of Combined Instantaneous High-Pressure and Medium Temperature on Peroxidase Activity in Wax Gourd Juices 被引量:1
20
作者 CHEN Cong gui, WANG Wu, ZHANG Li, FANG Hong mei and HE Jing min (School of Biology and Food Engineering, Hefei University of Technology, Hefei 230061, P.R.China) 《Agricultural Sciences in China》 CAS CSCD 2003年第9期1030-1034,共5页
Based on the instantaneous pressurization and depressurization produced by high pressure single pole cylinder pump and valve, the effects of the continuous processing on the peroxidase (POD) activity in wax gourd ju... Based on the instantaneous pressurization and depressurization produced by high pressure single pole cylinder pump and valve, the effects of the continuous processing on the peroxidase (POD) activity in wax gourd juices were investigated. Results showed that the processing factors such as pressure, temperature, pH and processing time are important to the POD activity. POD in crude juices could be inactivated apparently above 50 MPa(pH 4.6, 35℃, 4 min), and activated at 20 MPa ( P < 0.01). Its remarkable inactivation could also be observed at 45 and 55℃ (20 MPa, pH 4.6, 4 min), and the evident activation appears at the material temperature 35℃ ( P < 0.01). The pH 3.0 could destroy POD almost completely (20 MPa, 35℃, 4 min), while pH 6.0 could not influence apparently the POD activity in crude juices( P > 0.05). In addition, the rules of POD activity along with the treatment time are variational under different processing pressures. The higher the treating pressure is, the shorter the processing time is needed to inactivate POD. 展开更多
关键词 instantaneous high pressure Medium temperature Combined process POD ACTIVITY
下载PDF
上一页 1 2 236 下一页 到第
使用帮助 返回顶部