In the present study,we synthesized CeO2 catalysts doped with various transition metals(M=Co,Fe,or Cu)using a supercritical water hydrothermal route,which led to the incorporation of the metal ions in the CeO2 lattice...In the present study,we synthesized CeO2 catalysts doped with various transition metals(M=Co,Fe,or Cu)using a supercritical water hydrothermal route,which led to the incorporation of the metal ions in the CeO2 lattice,forming solid solutions.The catalysts were then used for the selective catalytic reduction(SCR)of NO by CO.The Cu‐doped catalyst exhibited the highest SCR activity;it had a T50(i.e.,50%NO conversion)of only 83°C and a T90(i.e.,90%NO conversion)of 126°C.Such an activity was also higher than in many state‐of‐the‐art catalysts.In situ diffuse reflectance Fourier transform infrared spectroscopy suggested that the MOx‐CeO2 catalysts(M=Co and Fe)mainly followed an Eley‐Rideal reaction mechanism for CO‐SCR.In contrast,a Langmuir‐Hinshelwood SCR reaction mechanism occurred in CuO‐CeO2 owing to the presence of Cu+species,which ensured effective adsorption of CO.This explains why CuO‐CeO2 exhibited the highest activity with regard to the SCR of NO by CO.展开更多
In this paper,the Fourier transform near-infrared(FTNIR)diffuse reflectance spectroscopy is applied for the rapid determination of protein in millet.The partial least-squares(PLS)regression is successfully used as an ...In this paper,the Fourier transform near-infrared(FTNIR)diffuse reflectance spectroscopy is applied for the rapid determination of protein in millet.The partial least-squares(PLS)regression is successfully used as an effective multivariate calibration technique.The calibration set is composed of 20 standard millet samples that the protein contents were determined by the traditional Kjeldahl method.The optimal model dimension is found to be 5 by cross-validation.22 millet samples were determined by the proposed FTNIR-PLS method.The correlation coefficient between the concentration values obtained by the FTNIR-PLS method and the traditional Kjeldahl method is 0.9805.The standard error of prediction(SEP)is 0.28% and the mean recovery is 100.2%.The proposed method has been successfully applied for the routine analysis of protein in about 10,000 grain samples.展开更多
The present work establishes a systematic approach based on the application of in-situ Fourier transform infrared spectroscopy (FTIR) for the investigation of the crystal structure, thermal stability, redox behavior...The present work establishes a systematic approach based on the application of in-situ Fourier transform infrared spectroscopy (FTIR) for the investigation of the crystal structure, thermal stability, redox behavior (temperature-programmed reduction/temperatureprogrammed re-oxidation) as well as the catalytic properties of Co3O4 thin films. The syntheses of Co3O4 were achieved by chemical vapor deposition in the temperature range of 400-500℃. The structure analysis of the as-prepared material revealed the presence of two prominent IR bands peaking at 544 cm-1 (υ1) and 650 cm-1 (υ2) respectively, which originate from the stretching vibrations of the Co-O bond, characteristic of the Co3O4 spinel. The lattice stability limit of Co3O4 was estimated to be above 650℃. The redox properties of the spinel structure were determined by integrating the area under the emission bands υ1 and υ2 as a function of the temperature. Moreover, Co3O4 has been successfully tested as a catalyst towards complete oxidation of dimethyl ether below 340 ℃. The exhaust gas analysis during the catalytic process by in situ absorption FTIR revealed that only CO2 and H2O were detected as the final products in the catalytic reaction. The redox behavior suggests that the oxidation of dimethyl ether over Co3O4 follows a Mars-van Krevelen type mechanism. The comprehensive application of in situ FTIR provides a novel diagnostic tool in characterization and performance test of catalysts.展开更多
The active sites for hydrogenation over Ru/SBA‐15catalysts were identified using in situ Fourier‐transform infrared spectroscopy.The amount of active sites was proportional to the interfacial circumference of the Ru...The active sites for hydrogenation over Ru/SBA‐15catalysts were identified using in situ Fourier‐transform infrared spectroscopy.The amount of active sites was proportional to the interfacial circumference of the Ru particles.In contrast,the rate of hydrogen spillover from Ru to the support was inversely proportional to the size of the Ru metal particles.Consequently,a catalyst with small Ru metal particles has a high rate of hydrogen spillover but a low density of active sites,whereas one with large Ru particles has a low rate of hydrogen spillover but a high density of active sites.The formation of these active sites is probably an intermediate step in hydrogen spillover.展开更多
Very long chain fatty acids (VLCFAs) are accumulated in cells and blood in patients with peroxisomal diseases, such as adrenoleukodystrophy (ALD) and Zellwger Syndrome (ZS). The purpose of this study is to investigate...Very long chain fatty acids (VLCFAs) are accumulated in cells and blood in patients with peroxisomal diseases, such as adrenoleukodystrophy (ALD) and Zellwger Syndrome (ZS). The purpose of this study is to investigate usefulness of Fourier transform infrared spectroscopy (FTIR) with attenuated total reflection (ATR) analysis method for clinical diagnosis of those diseases, thereby we measured the infrared spectra of the sera of patients and healthy controls. Correlation coefficients between 2nd derivative FTIR spectra of the serum samples and the VLCFA content ratio which is used as a clinical parameter to date were comprehensively calculated to investigate which wavenumber showed high correlation with the VLCFA ratio. Multiple regression analysis using the serum FTIR spectra showed that high correlations were observed with VLCFA ratios (C26:0/C22:0 ratio), and we could construct a suitable regression model (R2 = 0.97, p ﹣19). In addition, the model system using various VLCFAs in newborn bovine serum also showed that several FTIR peaks in 800 ~ 900 cm﹣1 region were found to have good correlation with VLCFA ratios. Our results support that FTIR analysis is useful for diagnosis of peroxisomal diseases.展开更多
Background:Cotton fiber maturity is an important property that partially determines the processing and performance of cotton.Due to difficulties of obtaining fiber maturity values accurately from every plant of a gene...Background:Cotton fiber maturity is an important property that partially determines the processing and performance of cotton.Due to difficulties of obtaining fiber maturity values accurately from every plant of a genetic population,cotton geneticists often use micronaire(MIC) and/or lint percentage for classifying immature phenotypes from mature fiber phenotyp es although they are complex fiber traits.The recent development of an algorithm for determining cotton fiber maturity(MIR)from Fourier transform infrared(FT-IR)spectra explores a novel way to measure fiber maturity efficiently and accurately.However,the algorithm has not been tested with a genetic population consisting of a large number of progeny pla,nts.Results:The merits and limits of the MIC-or lint percentage-bas ed phenotyping method were demonstrated by comparing the observed phenotypes with the predicted phenotypes based on their DNA marker genotypes in a genetic population consisting of 708 F2 plants with various fiber maturity.The observed MIC-based fiber phenotypes matched to the predicted phenotypes better than the observed lint percenta ge-based fiber phenotypes.The lint percentage was obtained from each of F2 plants,whereas the MIC values were unable to be obtained from the entire population since certain F2 plants produced insufficient fiber mass for their measurements.To test the feasibiility of cotton fiber infrared maturity(MIR)as a viable phenotyping tool for genetic analyses,we me asured FT-IR spectra from the second population composed of 80 F2 plants with various fiber maturities,determined MIR values using the algorithms,and compared them with their genotypes in addition to other fiber phenotypes.The results showed that MIR values were successfully obtained from each of the F2 plants,and the observed MIR-based phenotypes fit well to the predicted phenotypes based on their DNA marker genotypes as well as the observed phenotypes based on a combination of MIC and lint percentage.Conclusions:The M,R value obtained from FT-IR spectra of cotton fibers is able to accurately assess fiber maturity of all plants of a population in a quantitative way.The technique provides an option for cotton geneticists to determine fiber maturity rapidly and efficiently.展开更多
Bi12O17Br2and Bi4O5Br2visible‐light driven photocatalysts,were respectively fabricated by hydrothermal and room‐temperature deposition methods with the use of BiBr3and NaOH as precursors.Both Bi12O17Br2and Bi4O5Br2w...Bi12O17Br2and Bi4O5Br2visible‐light driven photocatalysts,were respectively fabricated by hydrothermal and room‐temperature deposition methods with the use of BiBr3and NaOH as precursors.Both Bi12O17Br2and Bi4O5Br2were composed of irregular nanosheets.The Bi4O5Br2nanosheets exhibited high and stable visible‐light photocatalytic efficiency for ppb‐level NO removal.The performance of Bi4O5Br2was markedly higher than that of the Bi12O17Br2nanosheets.The hydroxyl radical(?OH)was determined to be the main reactive oxygen species for the photo‐degradation processes of both Bi12O17Br2and Bi4O5Br2.However,in situ diffuse reflectance infrared Fourier transform spectroscopy analysis revealed that Bi12O17Br2and Bi4O5Br2featured different conversion pathways for visible light driven photocatalytic NO oxidation.The excellent photocatalytic activity of Bi4O5Br2resulted from a high surface area and large pore volumes,which facilitated the transport of reactants and intermediate products,and provided more active sites for photochemical reaction.Furthermore,the Bi4O5Br2nanosheets produced more?OH and presented stronger valence band holeoxidation.In addition,the oxygen atoms of NO could insert into oxygen‐vacancies of Bi4O5Br2,whichprovided more active sites for the reaction.This work gives insight into the photocatalytic pollutant‐degradation mechanism of bismuth oxyhalide.展开更多
In situ studies of catalysts play valuable roles in observing phase transformation, understanding the corresponding surface chemistry and the mechanism of the reaction. In this paper, ceria promoted cobalt oxide was p...In situ studies of catalysts play valuable roles in observing phase transformation, understanding the corresponding surface chemistry and the mechanism of the reaction. In this paper, ceria promoted cobalt oxide was prepared by the calcination method and investigated for the CO oxidation. The microstructure and morphology of CeO2-Co3O4 were investigated by the Scanning Electron Microscope, High-resolution transmission electron microscopy, Raman and X-ray photoelectron spectroscopy characterization. The effect of CeO2 doping on Co3O4 for CO oxidation was characterized by in situ X-ray Diffraction (in situ XRD) and in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS). In situ XRD was carried out under H2 atmosphere to evaluate the redox property of catalysts. The results indicated that the ceria doping can enhance the reducibility of Co2+ and promote the Co3+-Co2+-Co3+ cycle, owing to the oxygen replenish property of CeO2. Furthermore, adsorbed carbonate species on the surface of CeO2-Co3O4 were investigated by in situ-DRIFTS experiment. It was turned out that carbonate species on ceria promoted cobalt oxide catalysts showed different IR peaks compared with pure cobalt oxide. The carbonate species on ceria promoted catalyst are more active, and similar to free state carbonate species with weak bonding to catalyst surface, which can effectively inhibit catalyst inactivation. This study revealed the mechanism of ceria promoting CO oxidation over cobalt oxide, which will provide theoretical support for the design of efficient CO oxidation catalysts.展开更多
Ganoderma lucidum(G. lucidum) spores as a valuable Chinese herbal medicine have vast marketable prospect for its bioactivities and medicinal efficacy. This study aims at the development of an effective and simple anal...Ganoderma lucidum(G. lucidum) spores as a valuable Chinese herbal medicine have vast marketable prospect for its bioactivities and medicinal efficacy. This study aims at the development of an effective and simple analytical method to distinguish G. lucidum spores from its fruiting body, which is of essential importance for the quality control and fast discrimination of raw materials of Chinese herbal medicine. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy combined with the appropriate chemometric methods including penalized discriminant analysis, principal component discriminant analysis and partial least squares discriminant analysis has been proven to be a rapid and powerful tool for discrimination of G. lucidum spores and its fruiting body with classification accuracy of 99%. The model leads to a well-performed selection of informative spectral absorption bands which improve the classification accuracy, reduce the model complexity and enhance the quantitative interpretations of the chemical constituents of G. lucidum spores regarding its anticancer effects.展开更多
In this work,a series of BiOBr nanoplates with oxygen vacancies(OVs)were synthesized by a solvothermal method using a water/ethylene glycol solution.The number of OVs and facets of BiOBr were tuned by changing the wat...In this work,a series of BiOBr nanoplates with oxygen vacancies(OVs)were synthesized by a solvothermal method using a water/ethylene glycol solution.The number of OVs and facets of BiOBr were tuned by changing the water/ethylene glycol ratio.Although the role of OVs in photocatalysis has been investigated,the underlying mechanisms of charge transfer and reactant activation remain unknown.To unravel the effect of OVs on the reactant activation and photocatalytic NO oxidation process,in situ diffuse reflectance infrared Fourier transform spectroscopy,so‐called DRIFTS,and theoretical calculations were performed and their results combined.The photocatalytic efficiency of the as‐prepared BiOBr was significantly increased by increasing the amount of OVs.The oxygen vacancies had several effects on the photocatalysts,including the introduction of intermediate energy levels that enhanced light absorption,promoted electron transfer,acted as active sites for catalytic reaction and the activation of oxygen molecules,and facilitated the conversion of the intermediate products to the final product,thus increasing the overall visible light photocatalysis efficiency.The present work provides new insights into the understanding of the role of OVs in photocatalysts and the mechanism of photocatalytic NO oxidation.展开更多
This study investigated the positive effect of surface modification with ozone on the photocatalytic performance of anatase TiO2 with dominated(001) facets for toluene degradation.The performance of photocatalyst wa...This study investigated the positive effect of surface modification with ozone on the photocatalytic performance of anatase TiO2 with dominated(001) facets for toluene degradation.The performance of photocatalyst was tested on a home-made volatile organic compounds degradation system. The ozone modification, toluene adsorption and degradation mechanism were established by a combination of various characterization methods, in situ diffuse reflectance infrared fourier transform spectroscopy, and density functional theory calculation.The surface modification with ozone can significantly enhance the photocatalytic degradation performance for toluene. The abundant unsaturated coordinated 5 c-Ti sites on(001)facets act as the adsorption sites for ozone. The formed Ti–O bonds reacted with H2O to generate a large amount of isolated Ti5 c-OH which act as the adsorption sites for toluene,and thus significantly increase the adsorption capacity for toluene. The outstanding photocatalytic performance of ozone-modified TiO2 is due to its high adsorption ability for toluene and the abundant surface hydroxyl groups, which produce very reactive OH·radicals under irradiation. Furthermore, the O2 generated via ozone dissociation could combine with the photogenerated electrons to form superoxide radicals which are also conductive to the toluene degradation.展开更多
A titania pillared interlayered clay(Ti-PILC) supported vanadia catalyst(V2O5/TiO2-PILC) was prepared by wet impregnation for the selective catalytic reduction(SCR) of NO with ammonia. Compared to the traditiona...A titania pillared interlayered clay(Ti-PILC) supported vanadia catalyst(V2O5/TiO2-PILC) was prepared by wet impregnation for the selective catalytic reduction(SCR) of NO with ammonia. Compared to the traditional V2O5/TiO2 and V2O5-MoO3/TiO2 catalysts, the V2O5/TiO2-PILC catalyst exhibited a higher activity and better SO2 and H2O resistance in the NH3-SCR reaction. Characterization using TPD, in situ DRIFT and XPS showed that surface sulfate and/or sulfite species and ionic SO4^(2-)species were formed on the catalyst in the presence of SO2. The ionic SO4^(2-) species on the catalyst surface was one reason for deactivation of the catalyst in SCR. The formation of the ionic SO4^(2-) species was correlated with the amount of surface adsorbed oxygen species. Less adsorbed oxygen species gave less ionic SO4^(2-) species on the catalyst.展开更多
The semimetal Bi has received increasing interest as an alternative to noble metals for use in plasmonic photocatalysis. To enhance the photocatalytic efficiency of metallic Bi, Bi microspheres modified by SiO2 nanopa...The semimetal Bi has received increasing interest as an alternative to noble metals for use in plasmonic photocatalysis. To enhance the photocatalytic efficiency of metallic Bi, Bi microspheres modified by SiO2 nanoparticles were fabricated by a facile method. Bi-O-Si bonds were formed between Bi and SiO2, and acted as a transportation channel for hot electrons. The SiO2@Bi microspheres exhibited an enhanced plasmon-mediated photocatalytic activity for the removal of NO in air under 280 nm light irradiation, as a result of the enlarged specific surface areas and the promotion of electron transfer via the Bi-O-Si bonds. The reaction mechanism of photocatalytic oxidation of NO by SiO2@Bi was revealed with electron spin resonance and in situ diffuse reflectance infrared Fourier transform spectroscopy experiments, and involved the chain reaction NO -> NO2 -> NO3- with center dot OH and center dot O-2(-) radicals as the main reactive species. The present work could provide new insights into the in-depth mechanistic understanding of Bi plasmonic photocatalysis and the design of high-performance Bi-based photocatalysts. (C) 2017, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.展开更多
文摘In the present study,we synthesized CeO2 catalysts doped with various transition metals(M=Co,Fe,or Cu)using a supercritical water hydrothermal route,which led to the incorporation of the metal ions in the CeO2 lattice,forming solid solutions.The catalysts were then used for the selective catalytic reduction(SCR)of NO by CO.The Cu‐doped catalyst exhibited the highest SCR activity;it had a T50(i.e.,50%NO conversion)of only 83°C and a T90(i.e.,90%NO conversion)of 126°C.Such an activity was also higher than in many state‐of‐the‐art catalysts.In situ diffuse reflectance Fourier transform infrared spectroscopy suggested that the MOx‐CeO2 catalysts(M=Co and Fe)mainly followed an Eley‐Rideal reaction mechanism for CO‐SCR.In contrast,a Langmuir‐Hinshelwood SCR reaction mechanism occurred in CuO‐CeO2 owing to the presence of Cu+species,which ensured effective adsorption of CO.This explains why CuO‐CeO2 exhibited the highest activity with regard to the SCR of NO by CO.
文摘In this paper,the Fourier transform near-infrared(FTNIR)diffuse reflectance spectroscopy is applied for the rapid determination of protein in millet.The partial least-squares(PLS)regression is successfully used as an effective multivariate calibration technique.The calibration set is composed of 20 standard millet samples that the protein contents were determined by the traditional Kjeldahl method.The optimal model dimension is found to be 5 by cross-validation.22 millet samples were determined by the proposed FTNIR-PLS method.The correlation coefficient between the concentration values obtained by the FTNIR-PLS method and the traditional Kjeldahl method is 0.9805.The standard error of prediction(SEP)is 0.28% and the mean recovery is 100.2%.The proposed method has been successfully applied for the routine analysis of protein in about 10,000 grain samples.
文摘The present work establishes a systematic approach based on the application of in-situ Fourier transform infrared spectroscopy (FTIR) for the investigation of the crystal structure, thermal stability, redox behavior (temperature-programmed reduction/temperatureprogrammed re-oxidation) as well as the catalytic properties of Co3O4 thin films. The syntheses of Co3O4 were achieved by chemical vapor deposition in the temperature range of 400-500℃. The structure analysis of the as-prepared material revealed the presence of two prominent IR bands peaking at 544 cm-1 (υ1) and 650 cm-1 (υ2) respectively, which originate from the stretching vibrations of the Co-O bond, characteristic of the Co3O4 spinel. The lattice stability limit of Co3O4 was estimated to be above 650℃. The redox properties of the spinel structure were determined by integrating the area under the emission bands υ1 and υ2 as a function of the temperature. Moreover, Co3O4 has been successfully tested as a catalyst towards complete oxidation of dimethyl ether below 340 ℃. The exhaust gas analysis during the catalytic process by in situ absorption FTIR revealed that only CO2 and H2O were detected as the final products in the catalytic reaction. The redox behavior suggests that the oxidation of dimethyl ether over Co3O4 follows a Mars-van Krevelen type mechanism. The comprehensive application of in situ FTIR provides a novel diagnostic tool in characterization and performance test of catalysts.
基金supported by the National Natural Science Foundation of China(21303163)the Natural Science Foundation of Zhejiang Province(LY13B030006,LY17B060006)+1 种基金the Qianjiang Talent Project in Zhejiang Province(QJD1302011)the Scientific Research Fund of Zhejiang Provincial Education Department(Y201328681)~~
文摘The active sites for hydrogenation over Ru/SBA‐15catalysts were identified using in situ Fourier‐transform infrared spectroscopy.The amount of active sites was proportional to the interfacial circumference of the Ru particles.In contrast,the rate of hydrogen spillover from Ru to the support was inversely proportional to the size of the Ru metal particles.Consequently,a catalyst with small Ru metal particles has a high rate of hydrogen spillover but a low density of active sites,whereas one with large Ru particles has a low rate of hydrogen spillover but a high density of active sites.The formation of these active sites is probably an intermediate step in hydrogen spillover.
文摘Very long chain fatty acids (VLCFAs) are accumulated in cells and blood in patients with peroxisomal diseases, such as adrenoleukodystrophy (ALD) and Zellwger Syndrome (ZS). The purpose of this study is to investigate usefulness of Fourier transform infrared spectroscopy (FTIR) with attenuated total reflection (ATR) analysis method for clinical diagnosis of those diseases, thereby we measured the infrared spectra of the sera of patients and healthy controls. Correlation coefficients between 2nd derivative FTIR spectra of the serum samples and the VLCFA content ratio which is used as a clinical parameter to date were comprehensively calculated to investigate which wavenumber showed high correlation with the VLCFA ratio. Multiple regression analysis using the serum FTIR spectra showed that high correlations were observed with VLCFA ratios (C26:0/C22:0 ratio), and we could construct a suitable regression model (R2 = 0.97, p ﹣19). In addition, the model system using various VLCFAs in newborn bovine serum also showed that several FTIR peaks in 800 ~ 900 cm﹣1 region were found to have good correlation with VLCFA ratios. Our results support that FTIR analysis is useful for diagnosis of peroxisomal diseases.
基金supported by the USDA-ARS Research Project#6054-21000-017-0ODCotton Incorporated-sponsored project#19-858
文摘Background:Cotton fiber maturity is an important property that partially determines the processing and performance of cotton.Due to difficulties of obtaining fiber maturity values accurately from every plant of a genetic population,cotton geneticists often use micronaire(MIC) and/or lint percentage for classifying immature phenotypes from mature fiber phenotyp es although they are complex fiber traits.The recent development of an algorithm for determining cotton fiber maturity(MIR)from Fourier transform infrared(FT-IR)spectra explores a novel way to measure fiber maturity efficiently and accurately.However,the algorithm has not been tested with a genetic population consisting of a large number of progeny pla,nts.Results:The merits and limits of the MIC-or lint percentage-bas ed phenotyping method were demonstrated by comparing the observed phenotypes with the predicted phenotypes based on their DNA marker genotypes in a genetic population consisting of 708 F2 plants with various fiber maturity.The observed MIC-based fiber phenotypes matched to the predicted phenotypes better than the observed lint percenta ge-based fiber phenotypes.The lint percentage was obtained from each of F2 plants,whereas the MIC values were unable to be obtained from the entire population since certain F2 plants produced insufficient fiber mass for their measurements.To test the feasibiility of cotton fiber infrared maturity(MIR)as a viable phenotyping tool for genetic analyses,we me asured FT-IR spectra from the second population composed of 80 F2 plants with various fiber maturities,determined MIR values using the algorithms,and compared them with their genotypes in addition to other fiber phenotypes.The results showed that MIR values were successfully obtained from each of the F2 plants,and the observed MIR-based phenotypes fit well to the predicted phenotypes based on their DNA marker genotypes as well as the observed phenotypes based on a combination of MIC and lint percentage.Conclusions:The M,R value obtained from FT-IR spectra of cotton fibers is able to accurately assess fiber maturity of all plants of a population in a quantitative way.The technique provides an option for cotton geneticists to determine fiber maturity rapidly and efficiently.
基金supported by the National Natural Science Foundation of China(51708078,21576034)Chongqing Postdoctoral Science Foundation funded project(Xm2016027)the Innovative Research Team of Chongqing(CXTDG201602014,CXTDX201601016)~~
文摘Bi12O17Br2and Bi4O5Br2visible‐light driven photocatalysts,were respectively fabricated by hydrothermal and room‐temperature deposition methods with the use of BiBr3and NaOH as precursors.Both Bi12O17Br2and Bi4O5Br2were composed of irregular nanosheets.The Bi4O5Br2nanosheets exhibited high and stable visible‐light photocatalytic efficiency for ppb‐level NO removal.The performance of Bi4O5Br2was markedly higher than that of the Bi12O17Br2nanosheets.The hydroxyl radical(?OH)was determined to be the main reactive oxygen species for the photo‐degradation processes of both Bi12O17Br2and Bi4O5Br2.However,in situ diffuse reflectance infrared Fourier transform spectroscopy analysis revealed that Bi12O17Br2and Bi4O5Br2featured different conversion pathways for visible light driven photocatalytic NO oxidation.The excellent photocatalytic activity of Bi4O5Br2resulted from a high surface area and large pore volumes,which facilitated the transport of reactants and intermediate products,and provided more active sites for photochemical reaction.Furthermore,the Bi4O5Br2nanosheets produced more?OH and presented stronger valence band holeoxidation.In addition,the oxygen atoms of NO could insert into oxygen‐vacancies of Bi4O5Br2,whichprovided more active sites for the reaction.This work gives insight into the photocatalytic pollutant‐degradation mechanism of bismuth oxyhalide.
基金supported by the State Key Research Development Program of China(2016YFA0204200)the National Natural Science Foundation of China(21822603,21577036,21773062)+3 种基金the Shanghai Pujiang Program(17PJD011)the Zhejiang public welfare technology research plan/rural agriculture(LGN18B010001)the Zhejiang provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing(NO:2016KF0005)the scientific research project of Zhejiang provincial education department(Y201839892)~~
文摘In situ studies of catalysts play valuable roles in observing phase transformation, understanding the corresponding surface chemistry and the mechanism of the reaction. In this paper, ceria promoted cobalt oxide was prepared by the calcination method and investigated for the CO oxidation. The microstructure and morphology of CeO2-Co3O4 were investigated by the Scanning Electron Microscope, High-resolution transmission electron microscopy, Raman and X-ray photoelectron spectroscopy characterization. The effect of CeO2 doping on Co3O4 for CO oxidation was characterized by in situ X-ray Diffraction (in situ XRD) and in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS). In situ XRD was carried out under H2 atmosphere to evaluate the redox property of catalysts. The results indicated that the ceria doping can enhance the reducibility of Co2+ and promote the Co3+-Co2+-Co3+ cycle, owing to the oxygen replenish property of CeO2. Furthermore, adsorbed carbonate species on the surface of CeO2-Co3O4 were investigated by in situ-DRIFTS experiment. It was turned out that carbonate species on ceria promoted cobalt oxide catalysts showed different IR peaks compared with pure cobalt oxide. The carbonate species on ceria promoted catalyst are more active, and similar to free state carbonate species with weak bonding to catalyst surface, which can effectively inhibit catalyst inactivation. This study revealed the mechanism of ceria promoting CO oxidation over cobalt oxide, which will provide theoretical support for the design of efficient CO oxidation catalysts.
文摘Ganoderma lucidum(G. lucidum) spores as a valuable Chinese herbal medicine have vast marketable prospect for its bioactivities and medicinal efficacy. This study aims at the development of an effective and simple analytical method to distinguish G. lucidum spores from its fruiting body, which is of essential importance for the quality control and fast discrimination of raw materials of Chinese herbal medicine. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy combined with the appropriate chemometric methods including penalized discriminant analysis, principal component discriminant analysis and partial least squares discriminant analysis has been proven to be a rapid and powerful tool for discrimination of G. lucidum spores and its fruiting body with classification accuracy of 99%. The model leads to a well-performed selection of informative spectral absorption bands which improve the classification accuracy, reduce the model complexity and enhance the quantitative interpretations of the chemical constituents of G. lucidum spores regarding its anticancer effects.
文摘In this work,a series of BiOBr nanoplates with oxygen vacancies(OVs)were synthesized by a solvothermal method using a water/ethylene glycol solution.The number of OVs and facets of BiOBr were tuned by changing the water/ethylene glycol ratio.Although the role of OVs in photocatalysis has been investigated,the underlying mechanisms of charge transfer and reactant activation remain unknown.To unravel the effect of OVs on the reactant activation and photocatalytic NO oxidation process,in situ diffuse reflectance infrared Fourier transform spectroscopy,so‐called DRIFTS,and theoretical calculations were performed and their results combined.The photocatalytic efficiency of the as‐prepared BiOBr was significantly increased by increasing the amount of OVs.The oxygen vacancies had several effects on the photocatalysts,including the introduction of intermediate energy levels that enhanced light absorption,promoted electron transfer,acted as active sites for catalytic reaction and the activation of oxygen molecules,and facilitated the conversion of the intermediate products to the final product,thus increasing the overall visible light photocatalysis efficiency.The present work provides new insights into the understanding of the role of OVs in photocatalysts and the mechanism of photocatalytic NO oxidation.
基金the National Natural Science Foundation of China (U1632273, 21673214,U1732272, U1832165).
文摘This study investigated the positive effect of surface modification with ozone on the photocatalytic performance of anatase TiO2 with dominated(001) facets for toluene degradation.The performance of photocatalyst was tested on a home-made volatile organic compounds degradation system. The ozone modification, toluene adsorption and degradation mechanism were established by a combination of various characterization methods, in situ diffuse reflectance infrared fourier transform spectroscopy, and density functional theory calculation.The surface modification with ozone can significantly enhance the photocatalytic degradation performance for toluene. The abundant unsaturated coordinated 5 c-Ti sites on(001)facets act as the adsorption sites for ozone. The formed Ti–O bonds reacted with H2O to generate a large amount of isolated Ti5 c-OH which act as the adsorption sites for toluene,and thus significantly increase the adsorption capacity for toluene. The outstanding photocatalytic performance of ozone-modified TiO2 is due to its high adsorption ability for toluene and the abundant surface hydroxyl groups, which produce very reactive OH·radicals under irradiation. Furthermore, the O2 generated via ozone dissociation could combine with the photogenerated electrons to form superoxide radicals which are also conductive to the toluene degradation.
基金supported by the National Natural Science Foundation of China(21277009,21577005)~~
文摘A titania pillared interlayered clay(Ti-PILC) supported vanadia catalyst(V2O5/TiO2-PILC) was prepared by wet impregnation for the selective catalytic reduction(SCR) of NO with ammonia. Compared to the traditional V2O5/TiO2 and V2O5-MoO3/TiO2 catalysts, the V2O5/TiO2-PILC catalyst exhibited a higher activity and better SO2 and H2O resistance in the NH3-SCR reaction. Characterization using TPD, in situ DRIFT and XPS showed that surface sulfate and/or sulfite species and ionic SO4^(2-)species were formed on the catalyst in the presence of SO2. The ionic SO4^(2-) species on the catalyst surface was one reason for deactivation of the catalyst in SCR. The formation of the ionic SO4^(2-) species was correlated with the amount of surface adsorbed oxygen species. Less adsorbed oxygen species gave less ionic SO4^(2-) species on the catalyst.
基金supported by the National Natural Science Foundation of China(21501016,51478070,21406022,21676037)the National Key R&D Project(2016YFC0204702)+4 种基金the Innovative Research Team of Chongqing(CXTDG201602014)the Natural Science Foundation of Chongqing(cstc2016jcyjA 0481,cstc2015jcyjA 0061)the Science and Technology Project of Chongqing Education Commission(KJ1600625,KJ1500637)the Application and Basic Science Project of Ministry of Transport of People's Republic of China(2015319814100)the Innovative Research Project from CTBU(yjscxx2016-060-36)~~
文摘The semimetal Bi has received increasing interest as an alternative to noble metals for use in plasmonic photocatalysis. To enhance the photocatalytic efficiency of metallic Bi, Bi microspheres modified by SiO2 nanoparticles were fabricated by a facile method. Bi-O-Si bonds were formed between Bi and SiO2, and acted as a transportation channel for hot electrons. The SiO2@Bi microspheres exhibited an enhanced plasmon-mediated photocatalytic activity for the removal of NO in air under 280 nm light irradiation, as a result of the enlarged specific surface areas and the promotion of electron transfer via the Bi-O-Si bonds. The reaction mechanism of photocatalytic oxidation of NO by SiO2@Bi was revealed with electron spin resonance and in situ diffuse reflectance infrared Fourier transform spectroscopy experiments, and involved the chain reaction NO -> NO2 -> NO3- with center dot OH and center dot O-2(-) radicals as the main reactive species. The present work could provide new insights into the in-depth mechanistic understanding of Bi plasmonic photocatalysis and the design of high-performance Bi-based photocatalysts. (C) 2017, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.