期刊文献+
共找到101篇文章
< 1 2 6 >
每页显示 20 50 100
In situ observation of the electrochemical behavior of Li–CO_(2)/O_(2)batteries in an environmental transmission electron microscope
1
作者 Peng Jia Yunna Guo +5 位作者 Dongliang Chen Jingming Yao Xuedong Zhang Jianguo Lu Yuqing Qiao Liqiang Zhang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期244-255,共12页
Li–CO_(2)/O_(2)batteries,a promising energy storage technology,not only provide ultrahigh discharge capacity but also capture CO_(2)and turn it into renewable energy.Their electrochemical reaction pathways'ambigu... Li–CO_(2)/O_(2)batteries,a promising energy storage technology,not only provide ultrahigh discharge capacity but also capture CO_(2)and turn it into renewable energy.Their electrochemical reaction pathways'ambiguity,however,creates a hurdle for their practical application.This study used copper selenide(CuSe)nanosheets as the air cathode medium in an environmental transmission electron microscope to in situ study Li–CO_(2)/O_(2)(mix CO_(2)as well as O_(2)at a volume ratio of 1:1)and Li–O_(2)batteries as well as Li–CO_(2)batteries.Primary discharge reactions take place successively in the Li–CO_(2)/O_(2)–CuSe nanobattery:(I)4Li^(+)+O_(2)+4e^(−)→2Li_(2)O;(II)Li_(2)O+CO_(2)→Li_(2)CO_(3).The charge reaction proceeded via(III)2Li_(2)CO_(3)→4Li^(+)+2CO_(2)+O_(2)+4e^(−).However,Li–O_(2)and Li–CO_(2)nanobatteries showed poor cycling stability,suggesting the difficulty in the direct decomposition of the discharge product.The fluctuations of the Li–CO_(2)/O_(2)battery's electrochemistry were also shown to depend heavily on O_(2).The CuSe‐based Li–CO_(2)/O_(2)battery showed exceptional electrochemical performance.The Li^–CO_(2)/O_(2)battery offered a discharge capacity apex of 15,492 mAh g^(−1) and stable cycling 60 times at 100 mA g^(−1).Our research offers crucial insight into the electrochemical behavior of Li–CO_(2)/O_(2),Li–O_(2),and Li–CO_(2)nanobatteries,which may help the creation of high‐performance Li–CO_(2)/O_(2)batteries for energy storage applications. 展开更多
关键词 CuSe nanosheets electrochemical reaction in situ environmental transmission electron microscopy Li-CO_(2)battery Li-CO_(2)/O_(2)battery Li-O_(2)battery
下载PDF
Oxidation behavior of cobalt nanoparticles studied by in situ environmental transmission electron microscopy 被引量:4
2
作者 Dejiong Zhang Chuanhong Jin +2 位作者 Z.Y.Li Ze Zhang Jixue Li 《Science Bulletin》 SCIE EI CAS CSCD 2017年第11期775-778,共4页
The dynamics of oxidation of cobalt nanoparticles were directly revealed by in situ environmental transmission electron microscopy.Firstly,cobalt nanoparticles were oxidized to polycrystalline cobalt monoxide,then to ... The dynamics of oxidation of cobalt nanoparticles were directly revealed by in situ environmental transmission electron microscopy.Firstly,cobalt nanoparticles were oxidized to polycrystalline cobalt monoxide,then to polycrystalline tricobalt tetroxide,in the presence of oxygen with a low partial pressure.Numerous cavities(or voids) were formed during the oxidation,owing to the Kirkendall effect.Analysis of the oxides growth suggested that the oxidation of cobalt nanoparticles followed a parabolic rate law,which was consistent with diffusion-limited kinetics.In situ transmission electron microscopy allowed potential atomic oxidation pathways to be considered.The outward diffusion of cobalt atoms inside the oxide layer controlled the oxidation,and formed the hollow structure.Irradiation by the electron beam,which destroyed the sealing effect of graphite layer coated on the cobalt surface and resulted in fast oxidation rate,played an important role in activating and promoting the oxidations.These findings further our understanding on the microscopic kinetics of metal nanocrystal oxidation and knowledge of energetic electrons promoting oxidation reaction. 展开更多
关键词 COBALT Nanoparticle Oxidation dynamics Parabolic rate environmental transmission electron microscopy (ETEM) electron irradiation
原文传递
Visualization of atomic scale reaction dynamics of supported nanocatalysts during oxidation and ammonia synthesis using in-situ environmental(scanning) transmission electron microscopy
3
作者 Michael R.Ward Robert W.Mitchell +1 位作者 Edward D.Boyes Pratibha L.Gai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第6期281-290,I0007,共11页
Reaction dynamics in gases at operating temperatures at the atomic level are the basis of heterogeneous gas-solid catalyst reactions and are crucial to the catalyst function.Supported noble metal nanocatalysts such as... Reaction dynamics in gases at operating temperatures at the atomic level are the basis of heterogeneous gas-solid catalyst reactions and are crucial to the catalyst function.Supported noble metal nanocatalysts such as platinum are of interest in fuel cells and as diesel oxidation catalysts for pollution control,and practical ruthenium nanocatalysts are explored for ammonia synthesis.Graphite and graphitic carbons are of interest as supports for the nanocatalysts.Despite considerable literature on the catalytic processes on graphite and graphitic supports,reaction dynamics of the nanocatalysts on the supports in different reactive gas environments and operating temperatures at the single atom level are not well understood.Here we present real time in-situ observations and analyses of reaction dynamics of Pt in oxidation,and practical Ru nanocatalysts in ammonia synthesis,on graphite and related supports under controlled reaction environments using a novel in-situ environmental(scanning) transmission electron microscope with single atom resolution.By recording snapshots of the reaction dynamics,the behaviour of the catalysts is imaged.The images reveal single metal atoms,clusters of a few atoms on the graphitic supports and the support function.These all play key roles in the mobility,sintering and growth of the catalysts.The experimental findings provide new structural insights into atomic scale reaction dynamics,morphology and stability of the nanocatalysts. 展开更多
关键词 in-situ visualization Atomic scale reaction dynamics in-situ environmental scanning transmission electron microscopy with single atom resolution Supported nanoparticles Ammonia synthesis Oxidation reactions
下载PDF
A review of in situ transmission electron microscopy study on the switching mechanism and packaging reliability in non-volatile memory 被引量:3
4
作者 Xin Yang Chen Luo +7 位作者 Xiyue Tian Fang Liang Yin Xia Xinqian Chen Chaolun Wang Steve Xin Liang Xing Wu Junhao Chu 《Journal of Semiconductors》 EI CAS CSCD 2021年第1期62-76,共15页
Non-volatile memory(NVM)devices with non-volatility and low power consumption properties are important in the data storage field.The switching mechanism and packaging reliability issues in NVMs are of great research i... Non-volatile memory(NVM)devices with non-volatility and low power consumption properties are important in the data storage field.The switching mechanism and packaging reliability issues in NVMs are of great research interest.The switching process in NVM devices accompanied by the evolution of microstructure and composition is fast and subtle.Transmission electron microscopy(TEM)with high spatial resolution and versatile external fields is widely used in analyzing the evolution of morphology,structures and chemical compositions at atomic scale.The various external stimuli,such as thermal,electrical,mechanical,optical and magnetic fields,provide a platform to probe and engineer NVM devices inside TEM in real-time.Such advanced technologies make it possible for an in situ and interactive manipulation of NVM devices without sacrificing the resolution.This technology facilitates the exploration of the intrinsic structure-switching mechanism of NVMs and the reliability issues in the memory package.In this review,the evolution of the functional layers in NVM devices characterized by the advanced in situ TEM technology is introduced,with intermetallic compounds forming and degradation process investigated.The principles and challenges of TEM technology on NVM device study are also discussed. 展开更多
关键词 MEMORY transmission electron microscopy in situ characterization PACKAGE RELIABILITY
下载PDF
In situ atomic-scale tracking of unusual interface reaction circulation and phase reversibility in(de)potassiated alloy-typed anode
5
作者 Lin Su Ruining Fu +4 位作者 Shuangying Lei Yuchen Pan Chongyang Zhu Pengcheng Liu Feng Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期241-249,I0006,共10页
Alloy-typed anode materials,endowed innately with high theoretical specific capacity,hold great promise as an alternative to intercalation-typed counterparts for alkali-ion batteries.Despite tremendous efforts devoted... Alloy-typed anode materials,endowed innately with high theoretical specific capacity,hold great promise as an alternative to intercalation-typed counterparts for alkali-ion batteries.Despite tremendous efforts devoted to addressing drastic volume change and severe pulverization issues of such anodes,the underlying mechanisms involving dynamic phase evolutions and reaction kinetics have not yet been fully comprehended.Herein,taking antimony(Sb)anode as a representative paradigm,its microscopic operating mechanisms down to the atomic scale during live(de)potassiation cycling are systematically unraveled using in situ transmission electron microscopy.Highly reversible phase transformations at single-particle level,that are Sb←→KSb_(2)←→KSb←→K_5Sb_(4)←→K_(3)Sb,were revealed during cycling.Meanwhile,multiple phase interfaces associated with different reaction kinetics coexisted and this phenomenon was properly elucidated in the context of density functional theory calculations.Impressively,previously unexplored unidirectional circulation of reaction interfaces within individual Sb particle is confirmed for both potassiation and depotassiation.Based on the empirical results,the surface diffusion-mediated potassiation-depotassiation pathways at single-particle level are suggested.This work affords new insights into energy storage mechanisms of Sb anode and valuable guidance for targeted optimization of alloy-typed anodes(not limited to Sb)toward advanced potassium-ion batteries. 展开更多
关键词 Alloy-typed anode Potassium storage mechanism in situ transmission electron microscopy Reaction interface
下载PDF
Interface charges boosted ultrafast lithiation in Li_4Ti_5O_12 revealed by in-situ electron holography 被引量:5
6
作者 Yuren Wen Xiao Chen +1 位作者 Xia Lu Lin Gu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第5期1397-1401,共5页
It is still a great challenge at present to combine the high rate capability of the electrochemical capacitor with the high electrochemical capacity feature of rechargeable battery in energy storage and transport devi... It is still a great challenge at present to combine the high rate capability of the electrochemical capacitor with the high electrochemical capacity feature of rechargeable battery in energy storage and transport devices. By studying the lithiation mechanism of Li_4Ti_5O_12 (LTO) using in-situ electron holography, we find that double charge layers are formed at the interface of the insulating Li_4Ti_5O_12 (Li_4) phase and the semiconducting Li_7Ti_5O_12 (Li_7) phase, and can greatly boost the lithiation kinetics. The electron wave phase of the LTO particle is found to gradually shrink with the interface movement, leaving a positive electric field from Li_7 to Li_4 phase. Once the capacitive interface charges are formed, the lithiation of the core/shell particle could be established within 10 s. The ultrafast kinetics is attributed to the built-in interface potential and the mixed Ti3+/Ti4+ sites at the interface that could be maximally lowering the thermodynamic barrier for Li ion migration. 展开更多
关键词 Li_4Ti_5O_12 in-situ transmission electron microscopy (TEM) Off-axis electron holography interface charge
下载PDF
The mechanism of room-temperature oxidation of a HF-etched Ti3C2Tx MXene determined via environmental transmission electron microscopy and molecular dynamics
7
作者 Yuying Liu Zhihao Shi +5 位作者 Tingbin Liang Dehui Zheng Zhichao Yang Zhen Wang Jian Zhou Shuangbao Wang 《InfoMat》 SCIE CSCD 2024年第7期114-127,共14页
The oxidation chemistry of two-dimensional transition metal carbide MXenes has brought new research significance to their protection and application.However,the oxidation behavior and degradation mechanism of MXenes,i... The oxidation chemistry of two-dimensional transition metal carbide MXenes has brought new research significance to their protection and application.However,the oxidation behavior and degradation mechanism of MXenes,in particular with time under oxygen conditions at room tem-perature,remain largely unexplored.Here,several experimental and theo-retical techniques are used to determine a very early stage of the oxidation mechanism of HF-etched Ti3C2Tx(a major member of MXenes and Tx=surface functional groups)in an oxygen environment at room temper-ature.Aberration-corrected environmental transmission electron micros-copy coupled with reactive molecular dynamics simulations show that the crystal plane-dependent oxidation rate of Ti3C2Tx and oxide expansion are attributed to differences in the coordination and charge of superficial Ti atoms,and the existence of the channels between neighboring MXene layers on the different crystal planes.The complementary x-ray photoelec-tron spectroscopy and Raman spectroscopy analyses indicate that the ana-tase and a tiny fraction of brookite TiO2 successively precipitate from the amorphous region of oxidized Ti3C2Tx,grow irregularly and transform to rutile TiO2.Our study reveals the early-stage structural evolution of MXenes in the presence of oxygen and facilitates further tailoring of the MXene per-formance employing oxidation strategy. 展开更多
关键词 aberration-corrected environmental transmission electron microscopy OXIDATION
原文传递
Revealing the dynamics of the alloying and segregation of Pt-Co nanoparticles via in-situ environmental transmission electron microscopy 被引量:1
8
作者 Xing Li Shaobo Cheng +6 位作者 Yanghua He Lixiang Qian Dmitri Zakharov Gang Wu Chongxin Shan Liang Zhang Dong Su 《Nano Research》 SCIE EI CSCD 2023年第2期3055-3062,共8页
Thermal treatment is a general and efficient way to synthesize intermetallic catalysts and may involve complicated physical processes.So far,the mechanisms leading to the size and composition heterogeneity,as well as ... Thermal treatment is a general and efficient way to synthesize intermetallic catalysts and may involve complicated physical processes.So far,the mechanisms leading to the size and composition heterogeneity,as well as the phase segregation behavior in Pt-Co nanoparticles(NPs)are still not well understood.Via in-situ environmental transmission electron microscopy,the formation dynamics and segregation behaviors of Pt-Co alloyed NPs during the thermal treatment were investigated.It is found that Pt-Co NPs on zeolitic imidazolate frameworks-67-derived nanocarbon(NC)are formed consecutively through both particle migration coalescence and the Ostwald ripening process.The existence of Pt NPs is found to affect the movement of Co NPs during their migration.With the help of theoretical calculations,the correlations between the composition and migration of the Pt and Co during the ripening process were uncovered.These complex alloying processes are revealed as key factors leading to the heterogeneity of the synthesized Pt-Co alloyed NPs.Under oxidation environment,the Pt-Co NPs become surface faceted gradually,which can be attributed to the oxygen facilitated relatively higher segregation rate of Co from the(111)surface.This work advances the fundamental understanding of design,synthesis,and durability of the Pt-based nanocatalysts. 展开更多
关键词 intermetallic catalyst ALLOYinG RIPENinG segregation dynamics environmental transmission electron microscopy(ETEM)
原文传递
Atomic-scale insights into the formation of 2D crystals from in situ transmission electron microscopy 被引量:2
9
作者 Yatong Zhu Dundong Yuan +2 位作者 Hao Zhang Tao Xu Litao Sun 《Nano Research》 SCIE EI CAS CSCD 2021年第6期1650-1658,共9页
Two-dimensional(2D)crystals are attractive due to their intriguing structures and properties which are strongly dependent on the synthesis conditions.To achieve their superior properties,it is of critical importance t... Two-dimensional(2D)crystals are attractive due to their intriguing structures and properties which are strongly dependent on the synthesis conditions.To achieve their superior properties,it is of critical importance to fully understand the growth processes and mechanisms for tailored design and controlled growth of 2D crystals.Due to the high spatiotemporal resolution and the capability to mimic the realistic growth conditions,in situ transmission electron microscopy(TEM)becomes an effective way to monitor the growth process in real-time at the atomic scale,which is expected to provide atomic-scale insights into the nucleation and growth of 2D crystals.Here we review the recent in situ TEM works on the formation of 2D crystals under electron irradiation,thermal excitation as well as voltage bias.The underlying mechanisms are also elucidated in detail,providing key insights into the nucleation and formation of 2D crystals. 展开更多
关键词 two-dimensional crystal in situ transmission electron microscopy formation mechanism electron irradiation
原文传递
In-situ imaging the electrochemical reactions of Li-CO_(2) nanobatteries at high temperatures in an aberration corrected environmental transmission electron microscope 被引量:3
10
作者 Peng Jia Meiqi Yu +6 位作者 Xuedong Zhang Tingting Yang Dingding Zhu Tongde Shen Liqiang Zhang Yongfu Tang Jianyu Huang 《Nano Research》 SCIE EI CSCD 2022年第1期542-550,共9页
Rechargeable lithium-carbon dioxide(Li-CO_(2))batteries have attracted much attention due to their high theoretical energy densities and capture of C0_(2).However,the electrochemical reaction mechanisms of rechargeabl... Rechargeable lithium-carbon dioxide(Li-CO_(2))batteries have attracted much attention due to their high theoretical energy densities and capture of C0_(2).However,the electrochemical reaction mechanisms of rechargeable Lo-CO_(2) batteries,particularly the decomposition mechanisms of the discharge product Li_(2)CO_(3) are still unclear,impeding their practical applications.Exploring electrochemistry of Li_(2)CO_(3) is critical for improving the performance of Li-C0_(2) batteries.Herein,in-situ environmental transmission electron microscopy(ETEM)technique was used to study electrochemistry of Li_(2)CO_(3) in Li-C0_(2) batteries during discharge and charge processes.During discharge,Li_(2)CO_(3) was nucleated and accumulated on the surface of the cathode media such as carbon nanotubes(CNTs)and Ag nanowires(Ag NWs),but it was hard to decompose during charging at room temperature.To promote the decomposition of Li2C03,the charge reactions were conducted at high temperatures,during which Li_(2)CO_(3) was decomposed to lithium with release of gases.Density functional theory(DFT)calculations revealed that the synergistic effect of temperature and biasing facilitates the decomposition of Li_(2)CO_(3).This study not only provides a fundamental understanding to the high temperature Li-C0_(2) nanobatteries,but also offers a valid technique,i.e.,discharging/charging at high temperatures,to improve the cyclability of Li-CO_(2) batteries for energy storage applications. 展开更多
关键词 in-situ environmental transmission electron microscopy high temperature Li-C0_(2)nanobatteries ELECTROCHEMISTRY Li2CO3
原文传递
Unraveling the reaction mechanisms of electrode materials for sodiumion and potassium‐ion batteries by in situ transmission electron microscopy 被引量:7
11
作者 Hong Wang Fang Liu +1 位作者 Ruohan Yu Jinsong Wu 《Interdisciplinary Materials》 2022年第2期196-212,共17页
Sodium ion batteries(SIBs)and potassium ion batteries(PIBs)have caught numerous attention due to the low cost and abundant availability of sodium and potassium.However,their power density,cycling stability and safety ... Sodium ion batteries(SIBs)and potassium ion batteries(PIBs)have caught numerous attention due to the low cost and abundant availability of sodium and potassium.However,their power density,cycling stability and safety need further improvement for practical applications.Investigations on the reaction mechanisms and structural degradation when cycling are of great importance.In situ transmission electron microscopy(TEM)is one of the most significant techniques to understand and monitor electrochemical processes at an atomic scale with real-time imaging.In this review,the current progress in unraveling reaction mechanisms of electrode materials for SIBs and PIBs via in situ TEM is summarized.First,the importance of in situ TEM is highlighted.Then,based on the three types of electrochemical reaction,i.e.,intercalation reac-tion,conversion reaction and alloying reaction,the structural evolution and reaction kinetics at atomic resolution,and their relation to the electrochemical performance of electrode materials are reviewed and described in detail.Fi-nally,future directions of in situ TEM for SIBs and PIBs are proposed.Therefore,the in‐depth understanding revealed by in situ TEM will give an instructive guide in rational design of electrode materials for high performance electrode materials of SIBs and PIBs. 展开更多
关键词 in situ transmission electron microscopy potassium ion batteries sodiumion batteries
原文传递
Electrospun advanced nanomaterials for in situ transmission electron microscopy:Progress and perspectives 被引量:1
12
作者 Jingyue Zhao Zulin Li +12 位作者 Shiwen Lv Manxi Wang Chuanping Li Xuan Li Hongyang Chen Manxian Li Xiaochuan Chen Feifeng Wang Weiwei Fan Junxiong Wu Ziqiang Wang Xiaoyan Li Yuming Chen 《InfoMat》 SCIE CSCD 2023年第12期1-27,共27页
Electrospun nanofibers(NFs)have shown excellent properties including high porosity,abundant active sites,controllable diameter,uniform and designable structure,high mechanical strength,and superior resistance to exter... Electrospun nanofibers(NFs)have shown excellent properties including high porosity,abundant active sites,controllable diameter,uniform and designable structure,high mechanical strength,and superior resistance to external destruction,which are ideal nanoreactors for in situ characterizations.Among various techniques,in situ transmission electron microscopy(TEM)has enabled operando observation at the atomic level due to its high temporal and spatial resolution combined with excellent sensitivity,which is of great importance for rational materials design and performance improvement.In this review,the basic knowledge of in situ TEM techniques and the advantages of electrospun nanoreactors for in situ TEM characterization are first introduced.The recent development in electrospun nanoreactors for studying the physical properties,structural evolution,phase transition,and formation mechanisms of materials using in situ TEM is then summarized.The electrochemical behaviors of carbon nanofibers(CNFs),metal/metal oxide NFs,and solidelectrolyte interphase for different rechargeable batteries are highlighted.Finally,challenges faced by electrospun nanoreactors for in situ TEM characterization are discussed and potential solutions are proposed to advance this field. 展开更多
关键词 batteries electrospun advanced nanofibers in situ transmission electron microscopy NANOREACTORS
原文传递
In Situ Electrochemical Transmission Electron Microscopy for Sodium-Ion Batteries 被引量:1
13
作者 Shuge Dai Jingwen Zhang +3 位作者 Jiaqi Qu Xing Li Shaobo Cheng Chongxin Shan 《Renewables》 2023年第1期57-72,共16页
Sodium-ion batteries(SIBs)possess promising application prospects for large-scale energy storage systems due to the abundance of sodium ions as a resource and their low cost.Development of advanced SIBs requires a cle... Sodium-ion batteries(SIBs)possess promising application prospects for large-scale energy storage systems due to the abundance of sodium ions as a resource and their low cost.Development of advanced SIBs requires a clear understanding of the structures and kinetic/dynamic processes occurring in the cells during the charging/discharging process.In situ transmission electron microscopy(TEM)is a powerful tool for direct visualization of the phase transitions as well as morphological and structural evolutions of the electrodes during the electrochemical reaction process.Herein,we summarize the state-of-the-art in situ TEM studies on SIBs with a specific focus on real-time observations of the electrochemical behavior of battery materials.This review emphasizes the necessity of in situ TEM to elucidate fundamental issues regarding the reaction mechanism,phase transformation,structural evolution,and performance degradation of SIBs.Finally,critical challenges and emerging opportunities for in situ TEM research about SIBs are discussed. 展开更多
关键词 in situ transmission electron microscopy sodiumion batteries ELECTRODE inTERFACES reaction mechanism
原文传递
Correlating the fluctuated growth of carbon nanotubes with catalyst evolution by atmospheric-pressure environmental transmission electron microscopy
14
作者 Rui-Hong Xie Lili Zhang +4 位作者 Ruixue Ma Xin-Yu Jiao Dai-Ming Tang Chang Liu Hui-Ming Cheng 《Nano Research》 SCIE EI CSCD 2023年第11期12781-12787,共7页
Rate-controlled growth of carbon nanotubes(CNTs)and catalyst design are considered efficient ways for the preparation of CNTs with specific structures and properties.However,due to the difficulties in capturing the gr... Rate-controlled growth of carbon nanotubes(CNTs)and catalyst design are considered efficient ways for the preparation of CNTs with specific structures and properties.However,due to the difficulties in capturing the growth process of the CNTs with tiny size under a complex growth environment,the growth kinetics of CNTs and their correlation with the catalyst seed have been seldom revealed.Here,we investigated the growth process of CNTs from Ni nanoparticles(NPs)in real-time under atmospheric pressure using transmission electron microscopy equipped with a closed gas cell.It was found that the growth rates of CNTs fluctuated,and a phase transition from Ni_(3)C to Ni,and a reshaping of the catalyst NPs occurred during the growth process.We demonstrated that CNTs dynamically interacted with the connected catalyst NPs and the fluctuated growth rates of CNTs were correlated with the structure change of catalyst NPs.The origin of the growth rate fluctuation is attributed to the change of carbon concentration gradient in catalyst NPs. 展开更多
关键词 carbon nanotube growth rate nickel catalyst in situ transmission electron microscopy
原文传递
锂离子电池负极材料银纳米线的锂化机制
15
作者 刘海辉 张欣欣 《天津工业大学学报》 CAS 北大核心 2024年第2期55-59,共5页
为了探究银纳米线在不同工作电压下的锂化机制,借助原位透射电子显微镜的高分辨技术和电子衍射技术,研究了在不同的工作电压条件下,银纳米线在锂化过程中的相变过程和形貌变化。结果表明:金属银用于电池负极材料时,其工作电压对电极材... 为了探究银纳米线在不同工作电压下的锂化机制,借助原位透射电子显微镜的高分辨技术和电子衍射技术,研究了在不同的工作电压条件下,银纳米线在锂化过程中的相变过程和形貌变化。结果表明:金属银用于电池负极材料时,其工作电压对电极材料的活性有较大影响;银在低工作电压下的储锂量大,电极材料不易失效;当工作电压为-1 V时,Ag纳米线在储存锂离子过程中会先变成LiAg相,无明显体积形变;后续随着锂化时间增加,Li_(x)Ag合金中x>1时,纳米线粉碎化,生成Li3Ag、Li9Ag4相;当外加的电压为-2 V时,锂离子会快速在纳米线表面运输并与Ag发生反应,导致纳米线破碎。 展开更多
关键词 锂离子电池 负极材料 AG纳米线 锂化反应机制 原位透射电镜
下载PDF
小尺寸金属纳米线力学行为的原位电镜研究进展
16
作者 叶锡涛 陈国靖 +4 位作者 符立波 谢盼 王立华 韩晓东 陈江华 《电子显微学报》 CAS CSCD 北大核心 2024年第2期251-268,共18页
金属纳米线在信息采集、存储以及超灵敏传感器等方面被广泛应用。在实际应用中,金属纳米线常处于应力状态下,对关键器件的性能稳定性有直接影响。原位研究金属纳米线在应力作用下的塑性变形原子机制是确保重要元器件在复杂环境下依旧保... 金属纳米线在信息采集、存储以及超灵敏传感器等方面被广泛应用。在实际应用中,金属纳米线常处于应力状态下,对关键器件的性能稳定性有直接影响。原位研究金属纳米线在应力作用下的塑性变形原子机制是确保重要元器件在复杂环境下依旧保持稳定的物理性能输出的实验依据。本文介绍了纳米力学原位实验技术的研究进展和纳米材料力学性能曲线的测量策略;在此基础上,从材料的尺寸效应出发,总结了不同直径尺寸金属纳米线的位错、孪晶、表面原子扩散等变形机制与纳米线力学性能之间的相关性;展望了小尺寸金属纳米线原位纳米力学技术和原位实验研究的发展方向。 展开更多
关键词 原位研究 透射电子显微镜 原子尺度 金属纳米线 变形机制
下载PDF
金属诱导晶化(MIC)模式非晶晶化的原位透射电子显微学研究
17
作者 向斐斐 李傲 +3 位作者 范浩涵 林杨剑 程峰 葛炳辉 《电子显微学报》 CAS CSCD 北大核心 2024年第1期45-51,共7页
非晶晶化作为一种制备晶体材料的有效方法已得到广泛应用,近年来,采用金属诱导晶化(metal induced crystallization,MIC)法显著降低材料的晶化温度引起了研究者们的兴趣。为探究MIC模式下温度对金属催化剂扩散行为及晶化过程中材料结构... 非晶晶化作为一种制备晶体材料的有效方法已得到广泛应用,近年来,采用金属诱导晶化(metal induced crystallization,MIC)法显著降低材料的晶化温度引起了研究者们的兴趣。为探究MIC模式下温度对金属催化剂扩散行为及晶化过程中材料结构变化的本征影响,本研究以金属Pt诱导非晶硅晶化为例,采用透射电镜结合原位热学研究方法,在原子尺度上直接观察MIC模式下非晶硅的晶化过程。结果显示在550℃下Pt/Si界面处产生了硅化物Pt_(2)Si等化合物,使得材料界面处出现明显的结构变化。而当温度升高至650℃时,Pt会以颗粒移动的形式发生扩散,且扩散过程中会发生明显的几何结构变化。Pt与非晶硅不同的扩散速度会导致界面处出现柯肯达尔孔洞而阻碍界面处两种材料的进一步扩散。当温度升高至700℃时,非晶硅发生晶化,且在此过程中Pt对非晶硅的晶化起了促进作用。 展开更多
关键词 透射电镜 原位 MIC 非晶硅
下载PDF
电迁移诱导W纳米晶表面原子尺度结构演变
18
作者 曹海镟 赵培丽 +2 位作者 贾双凤 郑赫 王建波 《电子显微学报》 CAS CSCD 北大核心 2024年第5期532-539,共8页
体心立方(body⁃centered cubic,BCC)金属W作为微型化器件中重要的互连材料,其电迁移行为对小尺寸集成电路的稳定性至关重要。本文利用原位透射电子显微(transmission electron microscopy,TEM)技术,在原子尺度下研究了电迁移诱导BCC金属... 体心立方(body⁃centered cubic,BCC)金属W作为微型化器件中重要的互连材料,其电迁移行为对小尺寸集成电路的稳定性至关重要。本文利用原位透射电子显微(transmission electron microscopy,TEM)技术,在原子尺度下研究了电迁移诱导BCC金属W表面结构动态演变过程。结果表明,自由表面是主要电迁移路径;而{110}面和<111>方向分别是优选的迁移面迁移方向;电迁移过程中W表面形成特定的原子台阶或锯齿状结构。对于非低能晶面{002},在电流作用下仍能发生定向迁移,形成新的台阶结构。研究结果揭示了电迁移过程中表面结构的演化规律,为优化BCC金属材料的微观结构设计、提高其在高电流密度环境下的结构性能稳定性提供借鉴。 展开更多
关键词 电迁移 低能面 表面原子 原位透射电子显微镜
下载PDF
钠离子电池负极材料原位透射电镜研究
19
作者 陆佳宁 张智 +1 位作者 高义华 邹进 《电子显微学报》 CAS CSCD 北大核心 2024年第3期371-389,共19页
近年来,由于地球上钠资源分布广泛和丰富,钠离子电池的研究引起了人们的极大兴趣。目前,钠离子电池仍面临着能量密度低、循环稳定性不理想等关键科学问题。钠离子电池存储性能的提高需要对其电极材料储钠微观机制的全面和精确的理解。... 近年来,由于地球上钠资源分布广泛和丰富,钠离子电池的研究引起了人们的极大兴趣。目前,钠离子电池仍面临着能量密度低、循环稳定性不理想等关键科学问题。钠离子电池存储性能的提高需要对其电极材料储钠微观机制的全面和精确的理解。尽管研究者们已经开展了大量的原位透射电子显微学研究来揭示钠离子电池负极材料的储钠特性和微观机制,但是相关的综述鲜见报道。鉴于此,本文综述了近年来原位透射电子显微镜在研究钠离子电池负极材料储钠过程中材料的形貌、微观结构和化学成分等的演化与微观机理的研究进展,阐明了钠离子电池负极材料的组成/结构与钠离子电池电化学性能之间的构效关联。本综述旨在为高效钠离子电池负极材料的高效选择和合理设计提供参考。 展开更多
关键词 钠离子电池 负极材料 原位研究 透射电镜
下载PDF
In-situ imaging electrocatalysis in a solid-state Li-O_(2) battery with CuSe nanosheets as air cathode
20
作者 Peng Jia Yunna Guo +4 位作者 Dongliang Chen Xuedong Zhang Jingming Yao Jianguo Lu Liqiang Zhang 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第5期466-470,共5页
The development of highly efficient catalysts in the cathodes of rechargeable Li-O_(2) batteries is a considerable challenge.To enhance the electrochemical performance of the Li-O_(2) battery,it is essential to choose... The development of highly efficient catalysts in the cathodes of rechargeable Li-O_(2) batteries is a considerable challenge.To enhance the electrochemical performance of the Li-O_(2) battery,it is essential to choose a suitable catalyst material.Copper selenide(CuSe)is considered as a more promising cathode catalyst material for Li-O_(2) battery due to its better conductivity and rich electrochemical active sites.However,its electrochemical reaction and fundamental catalytic mechanism remain unclear till now.Herein,in-situ environmental transmission electron microscopy technique was used to study the catalysis mechanism of the CuSe nanosheets in Li-O_(2) batteries during discharge and charge processes.It is found that Li_(2)O was formed and decomposed around the ultrafine-grained Cu during the discharge and charge processes,respectively,demonstrating excellent cycling.This indicate that the freshly formed ultrafine-grained Cu in the conversion reaction catalyzed the latter four-electron-transfer oxygen reduction reaction,leading to the formation of Li_(2)O.Our study provides important understanding of the electrochemistry of the LiO_(2) nanobatteries,which will aid the development of high-performance Li-O_(2) batteries for energy storage applications. 展开更多
关键词 in-situ environmental transmission electron microscopy Lithium oxygen batteries CuSe nanosheets Oxygen reduction reaction Oxygen evolution reaction
原文传递
上一页 1 2 6 下一页 到第
使用帮助 返回顶部