期刊文献+
共找到38篇文章
< 1 2 >
每页显示 20 50 100
Flame retardant polyamide 6 by in situ polymerization of ε-caprolactam in the presence of melamine derivatives 被引量:15
1
作者 Zhi Yong Wu Wei Xu +3 位作者 Jin Kui Xia Yao Chi Liu Qian Xin Wu Wei Jian Xu 《Chinese Chemical Letters》 SCIE CAS CSCD 2008年第2期241-244,共4页
An improved method for preparing melamine cyanurate (MCA) based flame retardant polyamide 6 (FRPA6) materials has been proposed. This processing method, i.e., improved in situ polymerization, was used to synthesiz... An improved method for preparing melamine cyanurate (MCA) based flame retardant polyamide 6 (FRPA6) materials has been proposed. This processing method, i.e., improved in situ polymerization, was used to synthesize flame retardant PA6. In situ formed MCA nanoparticles were supposed to be linked to PA6 chains in the ε-caprolactam hydrolytic polymerization system to obtain startype polymers for the first time. Through TEM photographs, it can be found that the in situ formed MCA nanoparticles with diametric size of less than 50 nm, are nanoscaled, highly uniformly dispersed in the PA6 matrix. Synthesized flame retardant PA6 have good fire performance which can achieve UL-94 V-0 rating at 1.6 mm thickness with the presence of 7.34 wt.% MCA in the matrix. 展开更多
关键词 Polyamide 6 in situ polymerization Melamine cyanurate NANOPARTICLES
下载PDF
In situ polymerization coating and characteristics of coated NPK compound fertilizer 被引量:4
2
作者 WANG Zhenghui ZHU Boming 《Journal of Northeast Agricultural University(English Edition)》 CAS 2007年第2期148-152,共5页
Controlled release NPK compound fertilizers were prepared by means of in situ polymerization of monomers on the surface of fertilizer granules at room temperature. Methacrylate, α-methyl acrylic acid, and ethylene di... Controlled release NPK compound fertilizers were prepared by means of in situ polymerization of monomers on the surface of fertilizer granules at room temperature. Methacrylate, α-methyl acrylic acid, and ethylene dimethylacrylate were used as monomers, Dibenzoyl peroxide as initiator, and cobalt naphthenate, and triethyl amine as promoters. The structures of coating materials were characterized by IR spectra. The thermogravimetric analysis result indicated that the coating materials were of good thermal stability. The mean thickness of single coating measured with screw gauge was ca. 140 μm. The morphologies of uncoated and coated fertilizer granules analyzed by using scanning electron microscopy were changed from porosities and gullies to hills and plain. The release rate of coated compound fertilizers in water could be controlled by the hydrophicity and thickness of coating. The increase in coating hydrophicity caused the increase in release rate of fertilizer. The increase in thickness of coating slowed the release rate. 展开更多
关键词 in situ polymerization coated compound fertilizer controlled release
下载PDF
Synthesis of PMA/Eu_2O_3 porous-layered nanocomposite by in situ polymerization and its morphology
3
作者 MO Zunli LIU Yanzhi +3 位作者 WANG Kunjie LI Hejun CHEN Hong SUN Yinxia 《Rare Metals》 SCIE EI CAS CSCD 2006年第1期63-67,共5页
The PMA/Eu2O3 porous and layered nanocomposite was prepared by in situ polymerization and characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscope (... The PMA/Eu2O3 porous and layered nanocomposite was prepared by in situ polymerization and characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscope (SEM), and inflared ray (IR). Microscopic investigation of the nanocomposite was carded out by atomic force microscopy (AFM). The results showed that the shape of the composite was layered and porous. Eu2O3 was grafted when methyl acrylate (MA) polymerized; thus Eu2O3 particles appeared on both sides of the chains of polymeric methyl acrylate (PMA). 展开更多
关键词 NANOCOMPOSITE porous-layered nanocomposite in situ polymerization synthesis rare earth
下载PDF
In situ polymerization preparation and characterization of Li_4Ti_5O_(12)-polyaniline anode material
4
作者 何则强 熊利芝 +3 位作者 陈上 吴显明 刘文萍 黄可龙 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第S1期262-266,共5页
Li4Ti5O12 powders were prepared by so-gel method using tetrabutyl titanate,lithium acetate and absolute alcohol as starting materials.Li4Ti5O12-polyaniline(Li4Ti5O12-PAn)composite was prepared by in situ polymerizatio... Li4Ti5O12 powders were prepared by so-gel method using tetrabutyl titanate,lithium acetate and absolute alcohol as starting materials.Li4Ti5O12-polyaniline(Li4Ti5O12-PAn)composite was prepared by in situ polymerization method using aniline, ammonium persulfate and hydrochloricarried as starting materials.Li4Ti5O12-PAn composite was characterized by X-ray diffractometry(XRD),infrared spectrum(IR)combined with electrochemical tests.The results show that the electrical conductivity is enhanced obviously due to the introduction of PAn to Li4Ti5O12.Li4Ti5O12-PAn composite exhibits better high-rate capability and cyclability than Li4Ti5O12.The composite can deliver a specific capacity of 191.3 and 148.9 mA·h/g,only 0.13%and 0.61%of the capacity is lose after being discharged 80 times at 0.1C and 2.0C,respectively. 展开更多
关键词 LI4TI5O12 POLYANILinE in situ polymerization method lithium ion batteries
下载PDF
STUDY ON NYLON 6/SUPERFINE RUBBER PARTICLES COMPOSITES VIA IN SITU POLYMERIZATION
5
作者 于建 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2003年第3期339-346,共8页
Two highly cross-linked superfine styrene-butadiene rubber particles, one with 1 wt% of carboxyl groups and theother without such groups having particle sizes of 130-150 nm and 80-100 nm respectively, were used to pre... Two highly cross-linked superfine styrene-butadiene rubber particles, one with 1 wt% of carboxyl groups and theother without such groups having particle sizes of 130-150 nm and 80-100 nm respectively, were used to prepare nylon6/rubber composites via in situ polymerization. It was found that carboxylic styrene-butadiene dispersed uniformly in nylonmatrix and there was strong interfacial interaction because of the graft polymer formed by the reaction of nylon with carboxylgroup of the rubber, resulting in considerably improved impact strength with almost unchanged tensile strength. However,the addition of styrene-butadiene without carboxyl groups showed intensive agglomeration of the rubber particles and weakinterfacial interactions, and the toughness of the materials was improved slightly. The crystallization and rheological behavior of the composites were also discussed. 展开更多
关键词 Nylon 6 Superfine rubber particles in situ polymerization
下载PDF
Thermal Stability and Crystallinity Study of Polystyrene/SiO2 Nano-Composites Synthesis via Microwave-Assisted In Situ Polymerization
6
作者 Nikesh Samarth Linchon Mehta +2 位作者 Vinayak Kamble Malhari Kulkarni Prakash Mahanwar 《Open Journal of Synthesis Theory and Applications》 CAS 2016年第2期15-23,共9页
Serials of polystyrene/SiO<sub>2</sub> Nano composites (PS/SiO<sub>2</sub>) with different content of inorganic fillers were successfully prepared by the in situ bulk radical polymerization of ... Serials of polystyrene/SiO<sub>2</sub> Nano composites (PS/SiO<sub>2</sub>) with different content of inorganic fillers were successfully prepared by the in situ bulk radical polymerization of styrene under microwave irradiation. The effect of the amount of Nano SiO<sub>2</sub> on the properties of the PS/SiO<sub>2</sub> Nanocomposites along with the average relative molecular masses (Mn, Mz and Mw) was investigated by thermal analysis and X-Ray Diffraction (XRD). Their structural model was proposed on the basis of the Optical Microscopy, FTIR (Fourier Transform Infrared) analysis, differential scanning calorimetry (DSC), gel permeation chromatography (GPC) and X-Ray Diffraction (XRD). The dispersion of nanoparticles in Polystyrene is observed in the magnified image. The effect of microwave irradiation power on molecular weight of polystyrene was also studied. It was found that, the microwave assisted reaction needs less time as compare to conventional polymerization and found to be in between 10 to 15 min. 展开更多
关键词 Nanocomposites in situ polymerization Bulk polymerization Nano SiO2
下载PDF
Progress and perspectives of in situ polymerization method for lithium-based batteries 被引量:2
7
作者 Guanyou Xiao Hao Xu +2 位作者 Chen Bai Ming Liu Yan-Bing He 《Interdisciplinary Materials》 2023年第4期609-634,共26页
The application of lithium-based batteries is challenged by the safety issues of leakage and flammability of liquid electrolytes.Polymer electrolytes(PEs)can address issues to promote the practical use of lithium meta... The application of lithium-based batteries is challenged by the safety issues of leakage and flammability of liquid electrolytes.Polymer electrolytes(PEs)can address issues to promote the practical use of lithium metal batteries.However,the traditional preparation of PEs such as the solution-casting method requires a complicated preparation process,especially resulting in side solvents evaporation issues.The large thickness of traditional PEs reduces the energy density of the battery and increases the transport bottlenecks of lithium-ion.Meanwhile,it is difficult to fill the voids of electrodes to achieve good contact between electrolyte and electrode.In situ polymerization appears as a facile method to prepare PEs possessing excellent interfacial compatibility with electrodes.Thus,thin and uniform electrolytes can be obtained.The interfacial impedance can be reduced,and the lithium-ion transport throughput at the interface can be increased.The typical in situ polymerization process is to implant a precursor solution containing monomers into the cell and then in situ solidify the precursor under specific initiating conditions,and has been widely applied for the preparation of PEs and battery assembly.In this review,we focus on the preparation and application of in situ polymerization method in gel polymer electrolytes,solid polymer electrolytes,and composite polymer electrolytes,in which different kinds of monomers and reactions for in situ polymerization are discussed.In addition,the various compositions and structures of inorganic fillers,and their effects on the electrochemical properties are summarized.Finally,challenges and perspectives for the practical application of in situ polymerization methods in solid-state lithium-based batteries are reviewed. 展开更多
关键词 in situ polymerization interface compatibility lithium-based batteries polymer electrolytes
原文传递
A fiber-reinforced solid polymer electrolyte by in situ polymerization for stable lithium metal batteries
8
作者 Yifan Xu Ruo Zhao +7 位作者 Lei Gao Tingsong Gao Wenjuan Wang Juncao Bian Songbai Han Jinlong Zhu Qiang Xu Yusheng Zhao 《Nano Research》 SCIE EI CSCD 2023年第7期9259-9266,共8页
Solid polymer electrolytes(SPEs)by in situ polymerization are attractive due to their good interfacial contact with electrodes.Previously reported in situ polymerized SPEs,however,suffer from the low polymerization de... Solid polymer electrolytes(SPEs)by in situ polymerization are attractive due to their good interfacial contact with electrodes.Previously reported in situ polymerized SPEs,however,suffer from the low polymerization degree that causes poor mechanical strength,Li dendrite penetration,and performance decay in Li-metal batteries.Although highly polymerized SPEs are more stable than lowly polymerized ones,they are restricted by their sluggish long-chain mobility and poor ionic conductivity.In this work,a three-dimensional fibrous membrane with ion selectivity was prepared and used as a functional filler for the in situ formed SPE.The obtained SPE has high stability due to its high polymerization degree after the long-term heating process.The fibrous membrane plays a vital role in improving the SPE’s properties.The rich anion-adsorption sites on the fibrous membrane can alleviate the polarization effect and benefit a uniform current distribution at the interface.The fibrous nanostructure can efficiently interact with the polymeric matrix,providing rich hopping sites for fast Li+migration.Consequently,the obtained SPE enables a uniform Li deposition and long-term cycling performance in Li-metal batteries.This work reported an in situ formed SPE with both high polymerization degree and ionic conductivity,paving the way for designing high-performance SPEs with good comprehensive properties. 展开更多
关键词 solid polymer electrolytes fibrous solid filler metal-organic frameworks in situ polymerization ion selectivity
原文传递
Gel electrolyte via in situ polymerization to promote durable lithium-air batteries
9
作者 Renfei Cao Kai Chen +4 位作者 Yangfeng Cui Jianwei Liu Wanqiang Liu Gang Huang Xinbo Zhang 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第12期366-370,共5页
Aprotic lithium-air batteries(LABs)have been known as the holy grail of energy storage systems due to their extremely high energy density.However,their real-world application is still hindered by the great challenges ... Aprotic lithium-air batteries(LABs)have been known as the holy grail of energy storage systems due to their extremely high energy density.However,their real-world application is still hindered by the great challenges from the Li anode side,like dendrite growth and corrosion reactions,thus a pure oxygen atmosphere is usually adopted to prolong the lifetime of LABs,which is a major obstacle to fully liberate the energy density advantages of LABs.Here,a gel polymer electrolyte has been designed through in-situ polymerization of 1,3-dioxolane(DOL)by utilizing the unique semi-open nature of LABs to protect the Li anode to conquer its shortcomings,enabling the high-performance running of LABs in the ambient air.Unlike common liquid electrolytes,the in-situ formed gel polymer electrolyte could facilitate constructing a gradient SEl film with the gradual decrease of organic components from top to bottom,preventing the Li anode from dendrite growth and air-induced corrosion reactions and thus realizing durable Li repeated plating/stripping(2000h).Benefiting from the anode protection effects of the gradient SEI film,the LABs display a long lifetime of 17o cycles,paving an avenue for practical,long-term,and high-efficiency operation of LABs. 展开更多
关键词 in situ polymerization Gel electrolyte Gradient sei film Lithium anode Lithium-air batteries
原文传递
In Situ Directional Polymerization of Poly(1,3-dioxolane)Solid Electrolyte Induced by Cellulose Paper-Based Composite Separator for Lithium Metal Batteries
10
作者 Jian Ma Yueyue Wu +5 位作者 Hao Jiang Xin Yao Fan Zhang Xianglong Hou Xuyong Feng Hongfa Xiang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期134-143,共10页
In traditional in situ polymerization preparation for solid-state electrolytes,initiators are directly added to the liquid precursor.In this article,a novel cellulose paper-based composite separator is fabricated,whic... In traditional in situ polymerization preparation for solid-state electrolytes,initiators are directly added to the liquid precursor.In this article,a novel cellulose paper-based composite separator is fabricated,which employs alumina as the inorganic reinforcing material and is loaded with polymerization initiator aluminum trifluoromethanesulfonate.Based upon this,a separator-induced in situ directional polymerization technique is demonstrated,and the extra addition of initiators into liquid precursors is no longer required.The polymerization starts from the surface and interior of the separator and extends outward with the gradually dissolving of initiators into the precursor.Compared with its traditional counterpart,the separator-induced poly(1,3-dioxolane)electrolyte shows improved interfacial contact as well as appropriately mitigated polymerization rate,which are conducive to practical applications.Electrochemical measurement results show that the prepared poly(1,3-dioxolane)solid electrolyte possesses an oxidation potential up to 4.4 V and a high Li+transference number of 0.72.After 1000 cycles at 2 C rate(340 mA g^(−1)),the assembled Li||LiFePO_(4)solid battery possesses a 106.8 mAh g^(−1)discharge capacity retention and 83.5%capacity retention ratio,with high average Coulombic efficiency of 99.5%achieved.Our work may provide new ideas for the design and application of in situ polymerization technique for solid electrolytes and solid batteries. 展开更多
关键词 cellulose paper-based composite separator in situ directional polymerization lithium metal battery poly-DOL electrolyte solid-state electrolyte
下载PDF
In situ polymerization on biomacromolecules for nanomedicines 被引量:3
11
作者 Xiangqian Jia Luyao Wang Juanjuan Du 《Nano Research》 SCIE EI CAS CSCD 2018年第10期5028-5048,共21页
Biopharmaceuticals, including proteins, DNAs, and RNAs, hold vast promise for the treatment of many disorders, such as cancer, diabetes, autoimmune diseases, infectious diseases, and rare diseases. The application of ... Biopharmaceuticals, including proteins, DNAs, and RNAs, hold vast promise for the treatment of many disorders, such as cancer, diabetes, autoimmune diseases, infectious diseases, and rare diseases. The application of biopharmaceuticals, however, is limited by their poor stability, immunogenicity, suboptimal pharmacokinetic performance, undesired tissue distribution, and low penetration through biological barriers. In situ polymerization provides an appealing and promising platform to improve the pharmacological characteristics of biopharmaceuticals. Instead of the traditional "grafting to" polymer-biomolecule conjugation, in situ polymerization grows polymers on the surfaces of the biomacromolecules, resulting in easier purification procedures, high conjugation yields, and unique structures. Herein, this review surveys recent advances in the polymerization methodologies. Additionally, we further review improved therapeutic performance of the resultant nanomedicines. Finally, the opportunities, as well as the challenges, of these nanocomposites in the biomedical fields are discussed. 展开更多
关键词 in situ polymerization NANOMEDICinE controlled radicalpolymerization NANOCAPSULES protein therapy gene therapy
原文传递
In situ polymerization of 1,3-dioxolane infiltrating 3D garnet framework with high ionic conductivity and excellent interfacial stability for integrated solid-state Li metal battery 被引量:2
12
作者 Lin-Hui Chen Ze-Ya Huang +4 位作者 Shi-Le Chen Rong-Ao Tong Hai-Long Wang Gang Shao Chang-An Wang 《Rare Metals》 SCIE EI CAS CSCD 2022年第11期3694-3705,共12页
The polymer-ceramic composite electrolyte is considered as one of promising electrolytes for solid-state battery.However,in previous research,ceramic particles are usually dispersed in polymer matrix and could not for... The polymer-ceramic composite electrolyte is considered as one of promising electrolytes for solid-state battery.However,in previous research,ceramic particles are usually dispersed in polymer matrix and could not form continuous Li+conductive channels.The agglomeration of ceramic particles could also lead to low ionic conductivity and poor interfacial electrode/electrolyte contact.In this paper,self-supported porous Li_(6.4)La_(3) Zr_(1.4)Ta_(0.6)O_(12)(LLZTO) electrolyte is synthesized by gelcasting process,which possesses three-dimensional(3D) interconnected pore channels and relatively high strength.The 1,3-dioxolane(DOL) could penetrate into the porous LLZTO framework for its excellent fluidity.The subsequent in situ polymerization process by thermal treatment could completely fill the internal pores and improve the interfacial contact with electrode.The resulting 3D composite electrolyte with dual continuous Li+transport channels in ceramic and polymer components exhibits high ionic conductivity of 2.8 × 10^(-4) S·cm^(-1) at room temperature and low Li/electrolyte interfacial resistance of 94 Ω·cm^(2) at 40 ℃.The corresponding Li/Li symmetric cell delivers stable voltage profiles for over 600 h under 0.1 and 0.2 mA·cm^(-2).The solid-state Li/LiFePO_(4) battery shows superior rate and cycling performance under 0.1 C and 0.2 C.This work guides the preparation of composite electrolyte with dual continuous Li+conductive paths as well as high ceramic ratio and interface modification strategy for solid-state Li metal battery. 展开更多
关键词 Garnet electrolyte 1 3-dioxolane(DOL) in situ polymerization Three-dimensional(3D)composite electrolyte Continuous Li^(+)conductive channel
原文传递
SYNTHESIS AND CHARACTERIZATION OF POLY(ε-CAPROLACTONE)/Fe_3O_4 NANOCOMPOSITES BY IN SITU POLYMERIZATION
13
作者 Guang-shuo Wang Ling Wang +6 位作者 魏志勇 Lin Sang Xu-feng Dong 齐民 Guang-yi Chen Ying Chang Wan-xi Zhang 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2013年第7期1011-1021,共11页
A series of magnetic nanoeomposites based on poly(s-caprolactone) (PCL) and Fe3O4 nanoparticles were prepared using a facile in situ polymerization method. The chemical structures of the PCL/Fe3O4 nanocomposites w... A series of magnetic nanoeomposites based on poly(s-caprolactone) (PCL) and Fe3O4 nanoparticles were prepared using a facile in situ polymerization method. The chemical structures of the PCL/Fe3O4 nanocomposites were characterized by Fourier transform infrared (FTIR) spectroscopy. Results of wide-angle X-ray diffraction (WAXD) showed that the incorporation of the Fe3O4 nanoparticles did not affect the crystallization structure of the PCL. Both scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the morphology and dispersion of the Fe3O4 nanoparticles within the as-synthesized nanocomposites. Results of differential scanning calorimetry (DSC) and polarizing optical microscopy (POM) showed that the crystallization temperature was raised and the spherulites size decreased by the presence of Fe3O4 nanoparticles in the nanocomposites due to the heterogeneous nucleation effect. The thermal stability of the PCL was depressed by incorporation of Fe3O4 nanoparticles from thermogravimetric analysis (TGA). The superparamagnetic behavior of the PCL/Fe3O4 nanocomposites was testified by the superconducting quantum interference device (SQUID) magnetometer analysis. The obtained biodegradable nanocomposites will have a great potential in magnetic resonance imaging contrast and targeted drug delivery. 展开更多
关键词 Poly(ε-eaprolactone) FE3O4 NANOCOMPOSITES in situ polymerization.
原文传递
Thermoelectric properties of Bi_(0.5)Sb_(1.5)Te_3/polyaniline composites prepared by mechanical blending and in-situ polymerization
14
作者 胡淑红 裴浩东 赵新兵 《中国有色金属学会会刊:英文版》 CSCD 2001年第6期876-878,共3页
Bi 0.5 Sb 1.5 Te 3/polyaniline composites were prepared by mechanical blending and in situ polymerization, and their transport properties were measured. It was found that for the composites with 1%, 3%, 5% and 7% poly... Bi 0.5 Sb 1.5 Te 3/polyaniline composites were prepared by mechanical blending and in situ polymerization, and their transport properties were measured. It was found that for the composites with 1%, 3%, 5% and 7% polyaniline (mass fraction) respectively, which were prepared by mechanical blending, the power factors decrease by about 30%, 50%, 55% and 65% compared with the Bi 0.5 Sb 1.5 Te 3 samples, which is mainly due to the remarkable decreases of the electrical conductivity. The electrical conductivity and power factor of the composites samples with 7% polyaniline prepared by in situ polymerization are higher by about 65% and 60%, respectively, than that of the corresponding samples prepared by mechanical blending. 展开更多
关键词 thermoelectric property Bi 0.5 Sb 1.5 Te 3/polyaniline composite mechanical blending in situ polymerization
下载PDF
Mechanistically Novel Frontal-Inspired In Situ Photopolymerization:An Efficient Electrode|Electrolyte Interface Engineering Method for High Energy Lithium Metal Polymer Batteries
15
作者 Ishamol Shaji Diddo Diddens +1 位作者 Martin Winter Jijeesh Ravi Nair 《Energy & Environmental Materials》 SCIE EI CAS 2023年第6期273-282,共10页
The solvent-free in situ polymerization technique has the potential to tailor-make conformal interfaces that are essential for developing durable and safe lithium metal polymer batteries(LMPBs).Hence,much attention ha... The solvent-free in situ polymerization technique has the potential to tailor-make conformal interfaces that are essential for developing durable and safe lithium metal polymer batteries(LMPBs).Hence,much attention has been given to the eco-friendly and rapid ultraviolet(UV)-induced in situ photopolymerization process to prepare solid-state polymer electrolytes.In this respect,an innovative method is proposed here to overcome the challenges of UV-induced photopolymerization(UV-curing)in the zones where UV-light cannot penetrate,especially in LMPBs where thick electrodes are used.The proposed frontal-inspired photopolymerization(FIPP)process is a diverged frontal-based technique that uses two classes(dual)of initiators to improve the slow reaction kinetics of allyl-based monomers/oligomers by at least 50%compared with the conventional UV-curing process.The possible reaction mechanism occurring in FIPP is demonstrated using density functional theory calculations and spectroscopic investigations.Indeed,the initiation mechanism identified for the FIPP relies on a photochemical pathway rather than an exothermic propagating front forms during the UV-irradiation step as the case with the classical frontal photopolymerization technique.Besides,the FIPP-based in situ cell fabrication using dual initiators is advantageous over both the sandwich cell assembly and conventional in situ photopolymerization in overcoming the limitations of mass transport and active material utilization in high energy and high power LMPBs that use thick electrodes.Furthermore,the LMPB cells fabricated using the in situ-FIPP process with high mass loading LiFePO_(4)electrodes(5.2 mg cm^(-2))demonstrate higher rate capability,and a 50%increase in specific capacity against a sandwich cell encouraging the use of this innovative process in large-scale solid-state battery production. 展开更多
关键词 cathodelelectrolyte interface frontal-inspired photopolymerization in situ polymerization lithium metal polymer battery solid polymer electrolyte
下载PDF
Covalent organic frameworks-incorporated thin film composite membranes prepared by interfacial polymerization for efficient CO_(2) separation 被引量:3
16
作者 Haoqing Xu Wenyan Feng +4 位作者 Menglong Sheng Ye Yuan Bo Wang Jixiao Wang Zhi Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第3期152-160,共9页
Thin film composite(TFC)membranes with nanofillers additives for CO_(2)separation show promising applications in energy and environment-related fields.However,the poor compatibility between nanofillers and polymers in... Thin film composite(TFC)membranes with nanofillers additives for CO_(2)separation show promising applications in energy and environment-related fields.However,the poor compatibility between nanofillers and polymers in TFC membranes is the main problem.In this work,covalent organic frameworks(COFs,TpPa-1)with rich ANHA groups were incorporated into polyamide(PA)segment via in situ interfacial polymerization to prepare defect-free TFC membranes for CO_(2)/N_(2)separation.The formed covalent bonds between TpPa-1 and PA strengthen the interaction between nanofillers and polymers,thereby enhancing compatibility.Besides,the incorporated COFs disturb the rigid structure of the PA layer,and provide fast CO_(2)transfer channels.The incorporated COFs also increase the content of effective carriers,which enhances the CO_(2)facilitated transport.Consequently,in CO_(2)/N_(2)mixed gas separation test,the optimal TFC(TpPa_(0.025)-PIP-TMC/m PSf)membrane exhibits high CO_(2)permeance of 854 GPU and high CO_(2)/N_(2)selectivity of 148 at 0.15 MPa,CO_(2)permeance of 456 GPU(gas permeation unit)and CO_(2)/N_(2)selectivity of 92 at 0.5 MPa.In addition,the Tp Pa_(0.025)-PIP-TMC/m PSf membrane also achieves high permselectivty in CO_(2)/CH_(4)mixed gas separation test.Finally,the optimal TFC membrane showes good stability in the simulated flue gas test,revealing the application potential for CO_(2)capture from flue gas. 展开更多
关键词 Covalent organic frameworks CO_(2)/N_(2)separation in situ interfacial polymerization Compatibility Covalent bonds
下载PDF
Tailoring the interaction of covalent organic framework with the polyether matrix toward high-performance solid-state lithium metal batteries 被引量:1
17
作者 Zhen Hou Shuixin Xia +5 位作者 Chaoqun Niu Yuepeng Pang Hao Sun Zhiqi Li Yuxi Xu Shiyou Zheng 《Carbon Energy》 SCIE CAS 2022年第4期506-516,共11页
Solid polymer electrolyte is one of the most promising avenues to construct next-generation energy storage systems with high energy density,high safety,and flexibility,yet the low ionic conductivity at room temperatur... Solid polymer electrolyte is one of the most promising avenues to construct next-generation energy storage systems with high energy density,high safety,and flexibility,yet the low ionic conductivity at room temperature and poor high-voltage tolerance have limited their practical applications.To address the above issues,we design and synthesize a highly crystalline,vinyl-functionalized covalent organic framework(V-COF)rationally grafted with ether-based segments through solvent-free in situ polymerization.V-COF can afford a fast Li+conduction highway along the one-dimensional nanochannels and improve the high-voltage stability of ether-based electrolytes due to the rigid and electrochemically stable networks.The as-formed solid-state electrolyte membranes demonstrate a superior ionic conductivity of 1.1×10^(−4)S cm^(−1)at 40℃,enhanced wide electrochemical window up to 5.0 V,and high Young's modulus of 92 MPa.The Li symmetric cell demonstrates ultralong stable cycling over 600 h at a current density of 0.1 mA cm^(−2)(40℃).The assembled solid-state Li|LiFePO4 cells show a superior initial specific capacity of 136 mAh g^(−1)at 1 C(1 C=170 mA g^(−1))and a high capacity retention rate of 84%after 300 cycles.This study provides a novel and scalable approach toward high-performance solid ether-based lithium metal batteries. 展开更多
关键词 covalent organic framework energy storage in situ polymerization solid polymer electrolyte
下载PDF
INFLUENCE OF THE SOLVENT SWELLING ON MACROMOLECULAR CHOLESTERIC LIQUID CRYSTALLINE STRUCTURE
18
作者 黄勇 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 1999年第6期607-610,共4页
Ethyl-cyanoethyl cellulose [(E-CE)C]/cross-linked polyacrylic acid [PAA] molecular composites with cholesteric order were prepared. It was found that the macromolecular cholesteric structure was changed with the swell... Ethyl-cyanoethyl cellulose [(E-CE)C]/cross-linked polyacrylic acid [PAA] molecular composites with cholesteric order were prepared. It was found that the macromolecular cholesteric structure was changed with the swelling of PAA in the composites. The selective reflection of the cholesteric phase shifted to the longer wavelength and the X-ray diffraction angle shifted to the high angle direction during swelling, which suggested that the cholesteric pitch and the number of the layers of ordered (E-CE)C chains in the cholesteric phase were increased. 展开更多
关键词 cholesteic liquid crystal molecular composite ethyl-cyanoethyl cellulose in situ polymerization STRUCTURE
下载PDF
Double-layer solid-state electrolyte enables compatible interfaces for high-performance lithium metal batteries
19
作者 Xiao Chen Qiushi Sun +5 位作者 Jian Xie Cheng Huang Xiongwen Xu Jian Tu Xinbing Zhao Tiejun Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第11期91-99,I0004,共10页
Solid-state lithium metal batteries are promising next-generation batteries for both micro-scale integrated electronic devices and macro-scale electric vehicles.However,electrochemical incompatibility between electrol... Solid-state lithium metal batteries are promising next-generation batteries for both micro-scale integrated electronic devices and macro-scale electric vehicles.However,electrochemical incompatibility between electrolyte and electrodes causes continuous performance degradation.Here,we report a unique design of a double-layer composite solid-state electrolyte(D-CSE),where each layer,composed of both polymer and ceramics,is electrochemically compatible with its contacting electrode(Li anode or LiCoO_(2)cathode).The D-CSE has a small thickness(50μm),high thermal stability(up to 160℃ without noticeable deformation),and good flexibility even at a high ceramics content(66.7 wt%).Large-area selfstanding film can be obtained by a facile coating route.The electrolyte/electrode interface can be further enhanced via forming a soft interface by in-situ polymerization.Quasi-solid-state Li|D-CSE|LiCoO_(2)coin cells with the cathode-supported D-CSE can deliver a high initial discharge capacity of 134 mAh g^(-1) and a high capacity retention of 83%after 200 cycles at 0.5 C and 60℃.Quasi-solid-state Li|D-CSE|LiCoO_(2)pouch cells(designed capacity 8.6 mAh)with the self-standing D-CSE have a high retention of80%after 180 cycles at 2 mA charge and 4 mA discharge.At a high cathode loading(19.1 mg cm^(-2)),the Li|D-CSE|LiCoO_(2)pouch cell still can be stably cycled,and can withstand abuse tests of folding,cutting and nail penetration,indicating practical applications of the D-CSE. 展开更多
关键词 Quasi-solid-state cells Double-layer electrolyte Electrochemical compatibility LICOO2 in situ polymerization
下载PDF
Poly(imine-amide)Hybrid Covalent Adaptable Networks via in situ Oxidation Polymerization
20
作者 Hong-Xuan Chen Ze-Peng Lei +4 位作者 Shao-Feng Huang Huan Jiang Kai Yu Ying-Hua Jin Wei Zhang 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2023年第10期1577-1583,共7页
Polyimine represents a rapidly emerging class of readily accessible and affordable covalent adaptable networks(CANs)that have been extensively studied in the past few years.While being highly malleable and recyclable,... Polyimine represents a rapidly emerging class of readily accessible and affordable covalent adaptable networks(CANs)that have been extensively studied in the past few years.While being highly malleable and recyclable,the pioneering polyimine materials are relatively soft and not suitable for certain applications that require high mechanical performance.Recent studies have demonstrated the possibility of significantly improving polyimine properties by varying its monomer building blocks,but such component variations are usually not straightforward and can be potentially challenging and costly.Herein,we report an in situ oxidation polymerization strategy for preparation of mechanically strong poly(imine-amide)(PIA)hybrid CANs from simple amine and aldehyde monomers.By converting a portion of reversible imine bonds into high-strength amide linkages in situ,the obtained hybrid materials exhibit gradually improved Young’s modulus and ultimate tensile strength as the oxidation level increased.Meanwhile,the PIAs remain reprocessable and can be depolymerized into small molecules and oligomers similar as polyimine.This work demonstrates the great potential of the in situ transformation strategy as a new approach for development of various mechanically tunable CANs from the same starting building blocks. 展开更多
关键词 Covalent adaptable networks Polyimine POLYAMIDE in situ oxidation polymerization
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部