Microplastics(MPs)become ubiquitous in soil and are an environmental and public health concern worldwide.However,the status of MPs in natural and farmland soils in remote areas remains poorly understood.In this study,...Microplastics(MPs)become ubiquitous in soil and are an environmental and public health concern worldwide.However,the status of MPs in natural and farmland soils in remote areas remains poorly understood.In this study,we investigated the characteristics of MPs in natural and farmland soils along two transects in the Qilian Mountains of the northern Tibetan Plateau.The average abundance of MPs in natural and farmland soils was 29,778 and 56,123 items kg^(-1),respectively,with a detection size range of 10-1000μm.MPs in the size range of 10-100μm accounted for 84.1%of particles detected.Among the 21 polymers detected,polyethylene dominated in both farmland and natural soils.The shape of MPs was dominated by fragments(95.8%),followed by fibers(3.8%)and beads(0.4%).The abundance of MPs was positively correlated with increasing altitude in natural soils.There was no significant correlation between the abundance of MPs and soil physicochemical properties due to the narrow range of values of soil physicochemical properties.With the growing concern regarding MPs pollution,research on the status of MPs in high altitude and remote areas is critical to understanding their global cycle.展开更多
Since the 1990s,the Qinghai–Tibetan Plateau(QTP)has experienced a strikingly warming and wetter climate that alters the thermal and hydrological properties of frozen ground.A positive correlation between the warming ...Since the 1990s,the Qinghai–Tibetan Plateau(QTP)has experienced a strikingly warming and wetter climate that alters the thermal and hydrological properties of frozen ground.A positive correlation between the warming and thermal degradation in permafrost or seasonally frozen ground(SFG)has long been recognized.Still,a predictive relationship between historical wetting under warming climate conditions and frozen ground has not yet been well demonstrated,despite the expectation that it will become even more important because precipitation over the QTP has been projected to increase continuously in the near future.This study investigates the response of the thermal regime to historical wetting in both permafrost and SFG areas and examines their relationships separately using the Community Land Surface Model version 4.5.Results show that wetting before the 1990s across the QTP mainly cooled the permafrost body in the arid and semiarid zones,with significant correlation coefficients of 0.60 and 0.48,respectively.Precipitation increased continually at the rate of 6.16 mm decade–1 in the arid zone after the 1990s but had a contrasting warming effect on permafrost through a significant shortening of the thawing duration within the active layer.However,diminished rainfall in the humid zone after the 1990s also significantly extended the thawing duration of SFG.The relationship between the ground thawing index and precipitation was significantly negatively correlated(−0.75).The dual effects of wetting on the thermal dynamics of the QTP are becoming critical because of the projected increases in future precipitation.展开更多
The study area lies in the Dadu River drainage area in upstream Yangtze River.The spatial distribution of subalpine coniferous forests in 1989 and 2009 was extracted by means of a combined method of object orientation...The study area lies in the Dadu River drainage area in upstream Yangtze River.The spatial distribution of subalpine coniferous forests in 1989 and 2009 was extracted by means of a combined method of object orientation and visual interpretation,and then the overlaying analysis of these data was conducted.The type and spatial location of succession were discovered and served as the sample of dependant variable.Meanwhile,supported by GIS technology and based on DEM and thematic data,the eight variables including altitude,slope,sin and cosin of aspect,curvity of land surface,and distance to residential area,cultivated land and road were extracted served as the sample of spatial succession of subalpine coniferous forests to fit Logistic Regression,and then the contribution of each independent variable as well as the spatial property of the occurrence probability of succession was calculated.The results suggested that,during the succession of subalpine coniferous forests to meadow,the closer to the residential area and cultivated land,the greater the contribution to succession is.In particular,when the distance to the residential area decreases by one unit,the probability for its conversion to meadow will be increased by 1.15 times.During the succession of subalpine coniferous forests to deciduous-broadleaved shrubs,the sin of aspect and distance to residential area contribute more,and the probability of succession increases with increasing degree of northwardness,i.e.when the degree of northwardness increases by one unit,the probability will be increased by 1.2 times.The quantitative analysis of spatial succession property of subalpine coniferous forests will supply scientific basis to the protection and restoration of subalpine coniferous forests.展开更多
A crucial region for China's ‘Grain-forGreen Policy' is located within a traditional farmpastoral area, between 2000 to 3000 m above sea level, on the eastern Qinghai-Tibetan Plateau.However, the responses of...A crucial region for China's ‘Grain-forGreen Policy' is located within a traditional farmpastoral area, between 2000 to 3000 m above sea level, on the eastern Qinghai-Tibetan Plateau.However, the responses of soil organic carbon(SOC) to different land-use patterns in this region are unclear. Here, we determined the SOC(0–20 cm) content of grasslands and forests that are being converted from farmlands, as well as in abandoned arable land and arable land in this region. The factors influencing the reclaimed lands were analyzed along altitudes from 2030 to 3132 m. Our results showed that SOC content was higher for grassland and abandoned arable land than forest and arable land. The SOC content increased with the increase in altitude for total land-use patterns. Further, the grassland and abandoned arable land had higher SOC content than the forest with almost parallel trends along the increase in altitude. However, the proportion of regulated factors of altitude and species richness varied among forest, grassland, and abandoned arable land. Our results indicated that the land-use pattern of returning farmland to grassland and abandoned arable land was more effective in terms of the SOC storage in the superficial layer in this altitude range in the Qinghai-Tibetan Plateau, thereby being beneficial to optimizing land management in this region.展开更多
Using path analysis, correlation analysis, partial correlation analysis and system dynamics method to study the driving force of cultivated land in Qinghai Lake Area, and using gradually regression analysis to establi...Using path analysis, correlation analysis, partial correlation analysis and system dynamics method to study the driving force of cultivated land in Qinghai Lake Area, and using gradually regression analysis to establish the driving force model of utilized change of cultivated land. Driving factors, action mechanism and process of utilized change of cultivated land were analyzed, and the differences during all factors were compared. The study provides some decision basis for sustainable utilization and management of land resources in Qinghai Lake Area.展开更多
Under the influence of the natural and human factors, water table of irri- gated area Changes frequently, but it is mainly affected by irrigation water infiltration replenishment during the irrigation. 5 groundwater o...Under the influence of the natural and human factors, water table of irri- gated area Changes frequently, but it is mainly affected by irrigation water infiltration replenishment during the irrigation. 5 groundwater observation wells were constructed in experimental plot of the Daxia irrigated area to carry out the experiment of the effect of irrigation on groundwater dynamic change in this research. The results showed that the groundwater stage dynarnic change rule of spring and seedling irri- gation stage in the typical plot was fit to the hydrological geology condition of grade- I terrace of Huangshui river valley. On the whole, lateral canal water direction formed a line effect. The No. 1 and No. 2 observation well were the closest to the lateral canal, which received more supplies, and the water level was the highest; the No, 3 observation well took the second place; The No. 4 and No. 5 observation well accepted least supplies, and the water level was the lowest. The rangeability of water table of spring irrigation period was significantly higher than that of seedling irrigation period, this is mainly due to the difference value of intake water volume and drainage water volume of spring irrigation phase was significantly higher than the seedling irrigation phase.展开更多
The applicability of statistics-based landslide susceptibility assessment methods is affected by the number of historical landslides.Previous studies have proposed support vector machine(SVM)as a small-sample learning...The applicability of statistics-based landslide susceptibility assessment methods is affected by the number of historical landslides.Previous studies have proposed support vector machine(SVM)as a small-sample learning method.However,those studies demonstrated that different parameters can affect model performance.We optimized the SVM and obtained models as 5-fold cross validation(5-CV)SVM,genetic algorithm(GA)SVM,and particle swarm optimization(PSO)SVM.This study compared the prediction performances of logistic regression(LR),5-CV SVM,GA SVM,and PSO SVM on landslide susceptibility mapping,to explore the spatial distribution of landslide susceptibility in the study area in Tibetan Plateau,China.A geospatial database was established based on 392 historical landslides and 392 non-landslides in the study area.We used 11 influencing factors of altitude,slope,aspect,curvature,lithology,normalized difference vegetation index(NDVI),distance to road,distance to river,distance to fault,peak ground acceleration(PGA),and rainfall to construct an influencing factor evaluation system.To evaluate the models,four susceptibility maps were compared via receiver operating characteristics(ROC)curve and the results showed that prediction rates for the models are 84%(LR),87%(5-CV SVM),85%(GA SVM),and 90%(PSO SVM).We also used precision,recall,F1-score and accuracy to assess the quality performance of these models.The results showed that the PSO SVM had greater potential for future implementation in the Tibetan Plateau area because of its superior performance in the landslide susceptibility assessment.展开更多
In China trilingual education, as an important part of Chinese national education, is likely to be not only required, but essential. However, among the tremendous achievements, there still exist some problems, such as...In China trilingual education, as an important part of Chinese national education, is likely to be not only required, but essential. However, among the tremendous achievements, there still exist some problems, such as different standard in educational management and requirements, insufficiency of trilingual teachers and unreasonableness in teacher structure, shortage both in the number and characteristics of trilingual teaching materials, lateness in the study on TETAC and insufficiency of study result, and backwardness in teaching approaches and methods, etc.展开更多
Located on the northeast margin of the Qiangtang terrane between the Jinshajiang suture zone and Bangonghu-Nujiang suture zone,the Dongmozhazhua and Mohailaheng Pb-Zn deposits in the Yushu area of Qinghai Province are...Located on the northeast margin of the Qiangtang terrane between the Jinshajiang suture zone and Bangonghu-Nujiang suture zone,the Dongmozhazhua and Mohailaheng Pb-Zn deposits in the Yushu area of Qinghai Province are representative Pb-Zn deposits of the Pb-Zn-Cu polymetallic mineralization belt in the northern part of the Nujiang-Lancangjiang-Jinshajiang area,which are in the front belt of the Yushu thrust nappe system.The formed environments of these two deposits are different from those of sediment-hosted base metal deposits elsewhere in the world.The authors hold that they were formed during the Indian-Asian continental collision and developed within the fold-thrust belt combined with thrust and strike-slip-related Cenozoic basins in the interior of the collisional zone.Studying on the metallogenic epochs of these two deposits is helpful to the understanding of ore-forming regularity of the regional Pb-Zn-Cu mineralization belt and also to the search for new deposits in this region.The age of the Dongmozhazhua deposit has been determined by the Rb-Sr isochron method for sphalerite residues,whereas the age of the Mohailaheng deposit has been determined by the Rb-Sr isochron method for sphalerite residues and the Sm-Nd isochron method for fluorite.The age of the Dongmozhazhua deposit is 35.0-±0.0 Ma ((87Sr/86Sr)0=0.708807) for sphalerite residues.The age of the Mohailaheng deposit is 32.2±0.4 Ma ((87Sr/86Sr)o=0.708514) for sphalerite residues and 31.8±0.3 Ma ((143Nd/144Nd)o=0.512362) for fluorite with an average of 32.0 Ma.Together with the regional geological setting during mineralization,a possible tectonic model for metallogeny of the Dongmozhazhua and Mohailaheng Pb-Zn deposits has been established.These two ages are close to the ages of the Pb-Zn deposits in the Lanping and Tuotuohe basins,indicating that it is possible that the narrow 1000-kilometer-long belt controlled by a thrust nappe system on the eastern and northern margins of the Tibetan plateau could be a giant Pb-Zn mineralized belt.展开更多
How the Altyn Tagh fault(ATF) extends eastwards is one of the key questions in the study of the growth of the Qinghai–Tibetan Plateau. Detailed fieldwork at the easternmost part of the ATF shows that the ATF extends ...How the Altyn Tagh fault(ATF) extends eastwards is one of the key questions in the study of the growth of the Qinghai–Tibetan Plateau. Detailed fieldwork at the easternmost part of the ATF shows that the ATF extends eastward and bypasses the Kuantan Mountain;it does not stop at the Kuantan Mountain, but connects with the northern Heishan fault in the east. The ATF does not enter the Alxa Block but extends eastward along the southern Alxa Block to the Jintanan Mountain. The Heishan fault is not a thrust fault but a sinistral strike-slip fault with a component of thrusting and is a part of the ATF. Further to the east, the Heishan fault may connect with the Jintananshan fault. A typical strike-slip duplex develops in the easternmost part of the ATF. The cut and deformed Quaternary sediments and displaced present gullies along the easternmost ATF indicate that it is an active fault. The local highest Mountain(i.e., the Kuantan Mountain) in the region forms in a restraining bend of the ATF due to the thrusting and uplifting. The northward growth of the Qinghai–Tibetan Plateau and the active deformation in South Mongolia are realized by sinistral strike-slipping on a series of NE–SW-trending faults and thrusting in restraining bends along the strike-slip faults with the northeastward motion of blocks between these faults.展开更多
Qaidam basin is located at northeast Qinghai—Xizang (Tibet) plateau, and surrounded by east Kunlun, south Qilian and Altun mountain systems. The purpose of this paper is to study the Cenozoic basin evolutionary stage...Qaidam basin is located at northeast Qinghai—Xizang (Tibet) plateau, and surrounded by east Kunlun, south Qilian and Altun mountain systems. The purpose of this paper is to study the Cenozoic basin evolutionary stages, structural styles of the Qaidam, and the denudation in adjacent mountain systems through seismic profile interpretation and complemented by field observation. The Qaidam basin has experienced two tectonic stages of Paleogene—early Miocene (65~12Ma) and late Miocene—present (12~0Ma). The former is characterized by differential uplift of the mountains and subsidence of the basin, and the latter by intense compression, wrench, thrusting and folding. The compressional structural styles are mainly distributed in the Circle Hero—Range Depression of southwest Qaidam, such as Nanyishan, Youquanzi, Younan, Youshashan anticline belts and thrust faults. The wrench structural styles of the northern Qaidam include en echelon uplifts (fault—block outcrops) such as Seshitengshan, Luliangshan, Xitieshan and Eimnikshan, which are mainly composed of pre\|Sinian and Paleozoic rocks; en echelon anticlines such as Lenghu—Nanbaxian belts; and en echelon depressions such as Kunteyi, Senan and Yibei depressions, which are mainly composed of Mesozoic and Cenozoic rocks.展开更多
[Objective] The aim was to study the characteristics of climate changes in the surrounding area of Qinghai Lake.[Method] Based on the data of temperature,precipitation and sunshine hours from 5 representative meteorol...[Objective] The aim was to study the characteristics of climate changes in the surrounding area of Qinghai Lake.[Method] Based on the data of temperature,precipitation and sunshine hours from 5 representative meteorological stations in the surrounding area of Qinghai Lake during 1961-2007,the annual,seasonal and decadal variation of meteorological factors were analyzed.[Result] In recent 47 years,temperature showed obvious increase trend in the surrounding area of Qinghai Lake,and annual average temperature increased with the climatic tendency of ≥0.30 ℃/10 a,while annual average minimum temperature increased more significant than annual average temperature and annual average maximum temperature;annual mean precipitation decreased with the climatic tendency of-3.67 mm/10 a,and precipitation in spring and autumn reduced obviously,while precipitation in summer and winter increased slightly;annual sunshine hours also showed decrease trend with the climatic tendency of-1.79 h/10 a,while sunshine hours decreased most obviously in summer,and next came winter,while there was no obvious decrease in spring and autumn.[Conclusion] The study could provide theoretical references for the effective prevention of meteorological disasters in the surrounding area of Qinghai Lake.展开更多
[Objective] The research aimed to study the resistance of four kinds of desert plants in Qinhai Lake area.[Method] By contrasting the resistance indexes of four kinds of plants which included Ephedra intermedia,Stelle...[Objective] The research aimed to study the resistance of four kinds of desert plants in Qinhai Lake area.[Method] By contrasting the resistance indexes of four kinds of plants which included Ephedra intermedia,Stellera chamaejasme,Achnatherum splendens and Xanthopappus subacaulis,the resistance of four kinds of plants in Qinghai Lake area was analyzed.The resistance indexes included the soluble protein,MDA,free Pro content and the activities of SOD,POD,CAT.Moreover,the resistance of four kinds of plants was evaluated comprehensively by using Fuzzy membership function method.[Result] Under the low-temperature and arid adversity in Qinghai Lake area,SOD activity presented as Stellera chamaejasme>Xanthopappus subacaulis>Ephedra intermedia>Achnatherum splendens,and CAT activity presented as Stellera chamaejasme>Xanthopappus subacaulis>Achnatherum splendens>Ephedra intermedia.Under the same high-salt environment,CAT activity of Stellera chamaejasme was eight times higher than that of Ephedra intermedia.It illustrated that the salt resistance of Stellera chamaejasme was stronger than that of Ephedra intermedia.The free Pro content showed as Xanthopappus subacaulis>Ephedra intermedia>Stellera chamaejasme>Achnatherum splendens.Under the same adversity,Pro content of Ephedra intermedia was 2.83 times of Stellera chamaejasme.It was because that MDA content in Stellera chamaejasme was the lowest,and the membranous peroxide harm was the smallest.It caused that Pro content (stress penetration material) was low.It also illustrated that the resistance of Stellera chamaejasme was stronger than that of Ephedra intermedia.The comprehensive evaluation of Fuzzy membership function showed that the resistance presented as Xanthopappus subacaulis>Stellera chamaejasme>Ephedra intermedia>Achnatherum splendens.[Conclusion] The research provided the theory basis for the breeding of drought-resistance new variety and the development of good germ plasm resource in Qinghai Lake area.展开更多
Climate warming and livestock grazing are known to have great influences on alpine ecosystems like those of the Qinghai-Tibetan Plateau (QTP) in China. However, it is lacking of studies on the effects of warming and...Climate warming and livestock grazing are known to have great influences on alpine ecosystems like those of the Qinghai-Tibetan Plateau (QTP) in China. However, it is lacking of studies on the effects of warming and grazing on plant and soil properties in these alpine ecosystems. In this study, we reported the related research from manipulative experiment in 2010-2012 in the QTP. The aim of this study was to investigate the individual and combined effects of warming and clipping on plant and soil properties in the alpine meadow ecosystem. Infrared radiators were used to simulate climate warming starting in July 2010, while clipping was performed once in Octo- ber 2011 to simulate the local livestock grazing. The experiment was designed as a randomized block consisting of five replications and four treatments: control (CK), warming (W), clipping (C) and warming+clipping combination (WC). The plant and soil properties were investigated in the growing season of the alpine meadow in 2012. The results showed that W and WC treatments significantly decreased relative humidity at 20-cm height above ground as well as significantly increases air temperature at the same height, surface temperature, and soil temperature at the depth of 0-30 cm. However, the C treatment did not significantly decrease soil moisture and soil temperature at the depth of 0-60 cm. Relative to CK, vegetation height and species number increased significantly in W and WC treatment, respectively, while vegetation aboveground biomass decreased significantly in C treatment in the early growing season. However, vegetation cover, species diversity, belowground biomass and soil properties at the depth of 0-30 cm did not differ significantly in W, C and WC treatments. Soil moisture increased at the depth of 40-100 cm in W and WC treatments, while belowground biomass, soil activated carbon, organic carbon and total nitrogen increased in the 30-50 cm soil layer in W, C and WC treatments. Although the initial responses of plant and soil properties to experimental warming and clipping were slow and weak, the drought induced by the down- ward shift of soil moisture in the upper soil layers may induce plant belowground biomass to transfer to the deeper soil layers. This movement would modify the distributions of soil activated carbon, organic carbon and total nitrogen However, long-term data collection is needed to further explain this interesting phenomenon.展开更多
Based on the study of magnetostratigraphy,magnetic susceptibility and grain size of Garze A section on the southeastern margin of the Qinghai-Tibetan Plateau since the late early-Pleistocene,the basal age of Garze loe...Based on the study of magnetostratigraphy,magnetic susceptibility and grain size of Garze A section on the southeastern margin of the Qinghai-Tibetan Plateau since the late early-Pleistocene,the basal age of Garze loess is located at~1.16 MaBP and a series of abrupt paleoclimatic changes is detected.The times of abrupt changes are of distinct series features,and the interval between each two adjacent abrupt changes is~50 kyr or~100 kyr.The most significant abrupt changes occur at around 1.06,0.85,0.6,0.46,0.39 and 0.14 MaBP.There is a chronological link between the abrupt changes of paleoclimate and the formation of river terraces and it is almost simultaneous with a strengthening trend of neotectonic activities.Therefore,maybe the climatic transition controll the timing of terrace formation,and the tectonic uplift originate potential energy and has a direct effect on channel incision, both the climatic transition and the tectonic uplift are important.Terraces are the products of the interaction of instable climatic variations and tectonic uplift.Like the loess-paleosol sequences,river terrace sequences are also controlled by the climate-tectonic coupling system and are ruled by climate-tectonic gyration with a~100 kyr paracycle,which may be the short eccentricity period of the earth.展开更多
Objective The Juhugeng mining area in Qinghai Province of northwest China has attracted wide attention among geologists for it hosts typical coal measure gases.The shale gas reservoirs were reformed by intensive struc...Objective The Juhugeng mining area in Qinghai Province of northwest China has attracted wide attention among geologists for it hosts typical coal measure gases.The shale gas reservoirs were reformed by intensive structural movements during geological periods,展开更多
The Zoige Wetland is located in the northeastern Qinghai-Tibetan Plateau, which is highly sensitive to global environment change and human disturbance because of its high elevation and cold environment, thus, it's a ...The Zoige Wetland is located in the northeastern Qinghai-Tibetan Plateau, which is highly sensitive to global environment change and human disturbance because of its high elevation and cold environment, thus, it's a hotspot for land use and land cover change (LUCC) research. We used Landsat MSS images from 1975, Landsat ETM images from 2000, and Landsat TM images fi:om 1990 and 2005 to assess the LUCC in the study area, using GIS techniques, as well as topographic, vegetation, and soil maps combined with field investigations. The monitoring result shows that the study area's environment degraded rapidly between 1975 and 2005, including wetland shrinkage from 5,308 km2 to 4,980 lan2, sandy land expansion from 112 krn2 to 137 krn2, forest land decreasing from 5,686 km2 to 5,443 km2, and grassland degradation from 12,309 km2 to 10,672 km2. According to the analysis of meteorological data and social-economic statistical data, we concluded that the LUCC in the Zoige Wetland was caused by both natural and anthropogenic factors, but human activities were primarily responsible for the observed LUCC, thereby, we suggest human behaviors must be adjusted to control environmental degradation.展开更多
Biodiversity distribution patterns are a basic and long-standing but crucial aspect of ecology research.These patterns form the primary source of data used to develop biodiversity protection practices,especially in mo...Biodiversity distribution patterns are a basic and long-standing but crucial aspect of ecology research.These patterns form the primary source of data used to develop biodiversity protection practices,especially in mountain ecosystems.Shrubs comprise one of the main types of vegetation on the Qinghai–Tibetan Plateau,where they serve vital ecological functions.In this study,we used a community phylogenetic approach to examine the distribution patterns of shrub communities along the longitudinal and latitudinal gradients on the northeastern Qinghai–Tibetan Plateau.We observed significant latitudinal trends in both the phylogenetic diversity(PD)and net relatedness index(NRI)values of shrub communities,such that the former decreased and the latter increased with increasing latitude.However,no significant PD,NRI and nearest taxon index(NTI)distribution patterns were observed along a longitudinal gradient.A further analysis revealed that the combination of temperature-related and precipitation-related climate variables most strongly affected the PD,NRI and NTI values of shrub communities,indicating that the latitudinal patterns in the PD,NRI and NTI of a shrub community may be determined mainly by interactions with these climate factors.展开更多
The hydrogen isotopic composition of plant leaf wax(δDwax) is used as an important tool for paleohydrologic reconstruction. However, the understanding of the relative importance of environmental and biological fact...The hydrogen isotopic composition of plant leaf wax(δDwax) is used as an important tool for paleohydrologic reconstruction. However, the understanding of the relative importance of environmental and biological factors in determining δDwax values still remains incomplete. To identify the effects of soil moisture and plant physiology on δDwax values in an arid ecosystem, and to explore the implication of these values for paleoclimatic reconstruction, we measured δD values of soil water(δDwater) and δDwax values in surface soils along two distance transects extending from the lakeshore to wetland to dryland around Lake Qinghai and Lake Gahai on the northeast Qinghai-Tibetan Plateau. The results showed that the δDwater values were negatively correlated with soil water content(SWC)(R^2=0.9166), and ranged from –67‰ to –46‰ with changes in SWC from 6.2% to 42.1% in the arid areas of the Gangcha(GCh) and Gahai(GH) transects. This indicated that evaporative D-enrichment in soil water was sensitive to soil moisture in an arid ecosystem. Although the shift from grasses to shrubs with increasing aridity occurred in the arid area of the GH transect, the δDwax values in surface soils from the arid areas of the two transects still showed a negative correlation with SWC(R^2=0.6835), which may be due to the controls of primary evaporative D-enrichment in the soil water and additional transpirational D-enrichment in the leaf water on the δDwaxvalues. Our preliminary research suggested that δDwax values can potentially be applied as a paleo-humidity indicator on the northeast Qinghai-Tibetan Plateau.展开更多
Recently, canopy transpiration (Ec) has been often estimated by xylem sap-flow measurements. However, there is a significant time lag between sap flow measured at the base of the stem and canopy transpiration due to...Recently, canopy transpiration (Ec) has been often estimated by xylem sap-flow measurements. However, there is a significant time lag between sap flow measured at the base of the stem and canopy transpiration due to the capacitive exchange between the transpiration stream and stem water storage. Significant errors will be introduced in canopy conductance (gc) and canopy transpiration estimation if the time lag is neglected. In this study, a cross-correlation analysis was used to quantify the time lag, and the sap flowbased transpiration was measured to pararneterize Jarvistype models of gc and thus to simulate Ec of Populus cathayana using the Penman-Monteith equation. The results indicate that solar radiation (Rs) and vapor pressure deficit (VPD) are not fully coincident with sap flow and have an obvious lag effect; the sap flow lags behind Rs and precedes VPD, and there is a 1-h time shift between Eo and sap flow in the 30-min interval data set. A parameterized Jarvis-type gc model is suitable to predict P. cathayana transpiration and explains more than 80% of the variation observed in go, and the relative error was less than 25%, which shows a preferable simulation effect. The root mean square error (RMSEs) between the predicted and measured Ec were 1.91×10^-3 (with the time lag) and 3.12×10^-3cm h^-1 (without the time lag). More importantly, Ec simulation precision that incorporates time lag is improved by 6% compared to the results without the time lag, with the mean relative error (MRE) of only 8.32% and the mean absolute error (MAE) of 1.48 × 10^-3 cm h^-1.展开更多
基金financial support from the National Natural Science Foundation of China(42322105,42071082)Outstanding Youth Fund of Gansu Province(23JRRA612)。
文摘Microplastics(MPs)become ubiquitous in soil and are an environmental and public health concern worldwide.However,the status of MPs in natural and farmland soils in remote areas remains poorly understood.In this study,we investigated the characteristics of MPs in natural and farmland soils along two transects in the Qilian Mountains of the northern Tibetan Plateau.The average abundance of MPs in natural and farmland soils was 29,778 and 56,123 items kg^(-1),respectively,with a detection size range of 10-1000μm.MPs in the size range of 10-100μm accounted for 84.1%of particles detected.Among the 21 polymers detected,polyethylene dominated in both farmland and natural soils.The shape of MPs was dominated by fragments(95.8%),followed by fibers(3.8%)and beads(0.4%).The abundance of MPs was positively correlated with increasing altitude in natural soils.There was no significant correlation between the abundance of MPs and soil physicochemical properties due to the narrow range of values of soil physicochemical properties.With the growing concern regarding MPs pollution,research on the status of MPs in high altitude and remote areas is critical to understanding their global cycle.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41905008, 41975007, and 42075081)the Innovation and Entrepreneurship Training Program for College Students of Chengdu University of Information Technology (CUIT) (202210621003, 202210621039, 202110621015)provided by the Scientific Research Foundation of CUIT (KYTZ202126)
文摘Since the 1990s,the Qinghai–Tibetan Plateau(QTP)has experienced a strikingly warming and wetter climate that alters the thermal and hydrological properties of frozen ground.A positive correlation between the warming and thermal degradation in permafrost or seasonally frozen ground(SFG)has long been recognized.Still,a predictive relationship between historical wetting under warming climate conditions and frozen ground has not yet been well demonstrated,despite the expectation that it will become even more important because precipitation over the QTP has been projected to increase continuously in the near future.This study investigates the response of the thermal regime to historical wetting in both permafrost and SFG areas and examines their relationships separately using the Community Land Surface Model version 4.5.Results show that wetting before the 1990s across the QTP mainly cooled the permafrost body in the arid and semiarid zones,with significant correlation coefficients of 0.60 and 0.48,respectively.Precipitation increased continually at the rate of 6.16 mm decade–1 in the arid zone after the 1990s but had a contrasting warming effect on permafrost through a significant shortening of the thawing duration within the active layer.However,diminished rainfall in the humid zone after the 1990s also significantly extended the thawing duration of SFG.The relationship between the ground thawing index and precipitation was significantly negatively correlated(−0.75).The dual effects of wetting on the thermal dynamics of the QTP are becoming critical because of the projected increases in future precipitation.
基金Supported by National Natural Science Foundation of China(40901057)Key Project of Chinese National Programs for Fundamental Research and Development(2010CB951704)~~
文摘The study area lies in the Dadu River drainage area in upstream Yangtze River.The spatial distribution of subalpine coniferous forests in 1989 and 2009 was extracted by means of a combined method of object orientation and visual interpretation,and then the overlaying analysis of these data was conducted.The type and spatial location of succession were discovered and served as the sample of dependant variable.Meanwhile,supported by GIS technology and based on DEM and thematic data,the eight variables including altitude,slope,sin and cosin of aspect,curvity of land surface,and distance to residential area,cultivated land and road were extracted served as the sample of spatial succession of subalpine coniferous forests to fit Logistic Regression,and then the contribution of each independent variable as well as the spatial property of the occurrence probability of succession was calculated.The results suggested that,during the succession of subalpine coniferous forests to meadow,the closer to the residential area and cultivated land,the greater the contribution to succession is.In particular,when the distance to the residential area decreases by one unit,the probability for its conversion to meadow will be increased by 1.15 times.During the succession of subalpine coniferous forests to deciduous-broadleaved shrubs,the sin of aspect and distance to residential area contribute more,and the probability of succession increases with increasing degree of northwardness,i.e.when the degree of northwardness increases by one unit,the probability will be increased by 1.2 times.The quantitative analysis of spatial succession property of subalpine coniferous forests will supply scientific basis to the protection and restoration of subalpine coniferous forests.
基金supported by the National Key Research and Development Project of China (Grant Nos. 2016YFC0501903, 2016YFC0501901)Province Natural Foundation of Qinghai (Grant Nos. 2016-ZJ-910, 2017-S-1-04)+2 种基金the Qinghai Provincial High-end and Innovative 1000 Talents PlanQinghai Innovation Platform Construction Project (Grant Nos. 2017-ZJ-Y20, 2017-ZJ-Y13)National Natural Foundation of China (Grant Nos. 31572354, 31472135)
文摘A crucial region for China's ‘Grain-forGreen Policy' is located within a traditional farmpastoral area, between 2000 to 3000 m above sea level, on the eastern Qinghai-Tibetan Plateau.However, the responses of soil organic carbon(SOC) to different land-use patterns in this region are unclear. Here, we determined the SOC(0–20 cm) content of grasslands and forests that are being converted from farmlands, as well as in abandoned arable land and arable land in this region. The factors influencing the reclaimed lands were analyzed along altitudes from 2030 to 3132 m. Our results showed that SOC content was higher for grassland and abandoned arable land than forest and arable land. The SOC content increased with the increase in altitude for total land-use patterns. Further, the grassland and abandoned arable land had higher SOC content than the forest with almost parallel trends along the increase in altitude. However, the proportion of regulated factors of altitude and species richness varied among forest, grassland, and abandoned arable land. Our results indicated that the land-use pattern of returning farmland to grassland and abandoned arable land was more effective in terms of the SOC storage in the superficial layer in this altitude range in the Qinghai-Tibetan Plateau, thereby being beneficial to optimizing land management in this region.
基金Supported by The Regional Sustainable Development of the Qing-TibetPlateau(2004)~~
文摘Using path analysis, correlation analysis, partial correlation analysis and system dynamics method to study the driving force of cultivated land in Qinghai Lake Area, and using gradually regression analysis to establish the driving force model of utilized change of cultivated land. Driving factors, action mechanism and process of utilized change of cultivated land were analyzed, and the differences during all factors were compared. The study provides some decision basis for sustainable utilization and management of land resources in Qinghai Lake Area.
基金Supported by Water Consumption Coefficient Research in Irrigated Area in the Yellow River Areas in Qinghai Province(QX2012-019)
文摘Under the influence of the natural and human factors, water table of irri- gated area Changes frequently, but it is mainly affected by irrigation water infiltration replenishment during the irrigation. 5 groundwater observation wells were constructed in experimental plot of the Daxia irrigated area to carry out the experiment of the effect of irrigation on groundwater dynamic change in this research. The results showed that the groundwater stage dynarnic change rule of spring and seedling irri- gation stage in the typical plot was fit to the hydrological geology condition of grade- I terrace of Huangshui river valley. On the whole, lateral canal water direction formed a line effect. The No. 1 and No. 2 observation well were the closest to the lateral canal, which received more supplies, and the water level was the highest; the No, 3 observation well took the second place; The No. 4 and No. 5 observation well accepted least supplies, and the water level was the lowest. The rangeability of water table of spring irrigation period was significantly higher than that of seedling irrigation period, this is mainly due to the difference value of intake water volume and drainage water volume of spring irrigation phase was significantly higher than the seedling irrigation phase.
基金financially supported by the National Natural Science Foundation of China(41977213)the Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0906)+3 种基金Science and Technology Department of Sichuan Province(2021YJ0032)Sichuan Transportation Science and Technology Project(2021-A-03)Sichuan Science and Technology Program(2022NSFSC0425)CREC Sichuan Eco-City Investment Co,Ltd.(R110121H01092)。
文摘The applicability of statistics-based landslide susceptibility assessment methods is affected by the number of historical landslides.Previous studies have proposed support vector machine(SVM)as a small-sample learning method.However,those studies demonstrated that different parameters can affect model performance.We optimized the SVM and obtained models as 5-fold cross validation(5-CV)SVM,genetic algorithm(GA)SVM,and particle swarm optimization(PSO)SVM.This study compared the prediction performances of logistic regression(LR),5-CV SVM,GA SVM,and PSO SVM on landslide susceptibility mapping,to explore the spatial distribution of landslide susceptibility in the study area in Tibetan Plateau,China.A geospatial database was established based on 392 historical landslides and 392 non-landslides in the study area.We used 11 influencing factors of altitude,slope,aspect,curvature,lithology,normalized difference vegetation index(NDVI),distance to road,distance to river,distance to fault,peak ground acceleration(PGA),and rainfall to construct an influencing factor evaluation system.To evaluate the models,four susceptibility maps were compared via receiver operating characteristics(ROC)curve and the results showed that prediction rates for the models are 84%(LR),87%(5-CV SVM),85%(GA SVM),and 90%(PSO SVM).We also used precision,recall,F1-score and accuracy to assess the quality performance of these models.The results showed that the PSO SVM had greater potential for future implementation in the Tibetan Plateau area because of its superior performance in the landslide susceptibility assessment.
文摘In China trilingual education, as an important part of Chinese national education, is likely to be not only required, but essential. However, among the tremendous achievements, there still exist some problems, such as different standard in educational management and requirements, insufficiency of trilingual teachers and unreasonableness in teacher structure, shortage both in the number and characteristics of trilingual teaching materials, lateness in the study on TETAC and insufficiency of study result, and backwardness in teaching approaches and methods, etc.
文摘Located on the northeast margin of the Qiangtang terrane between the Jinshajiang suture zone and Bangonghu-Nujiang suture zone,the Dongmozhazhua and Mohailaheng Pb-Zn deposits in the Yushu area of Qinghai Province are representative Pb-Zn deposits of the Pb-Zn-Cu polymetallic mineralization belt in the northern part of the Nujiang-Lancangjiang-Jinshajiang area,which are in the front belt of the Yushu thrust nappe system.The formed environments of these two deposits are different from those of sediment-hosted base metal deposits elsewhere in the world.The authors hold that they were formed during the Indian-Asian continental collision and developed within the fold-thrust belt combined with thrust and strike-slip-related Cenozoic basins in the interior of the collisional zone.Studying on the metallogenic epochs of these two deposits is helpful to the understanding of ore-forming regularity of the regional Pb-Zn-Cu mineralization belt and also to the search for new deposits in this region.The age of the Dongmozhazhua deposit has been determined by the Rb-Sr isochron method for sphalerite residues,whereas the age of the Mohailaheng deposit has been determined by the Rb-Sr isochron method for sphalerite residues and the Sm-Nd isochron method for fluorite.The age of the Dongmozhazhua deposit is 35.0-±0.0 Ma ((87Sr/86Sr)0=0.708807) for sphalerite residues.The age of the Mohailaheng deposit is 32.2±0.4 Ma ((87Sr/86Sr)o=0.708514) for sphalerite residues and 31.8±0.3 Ma ((143Nd/144Nd)o=0.512362) for fluorite with an average of 32.0 Ma.Together with the regional geological setting during mineralization,a possible tectonic model for metallogeny of the Dongmozhazhua and Mohailaheng Pb-Zn deposits has been established.These two ages are close to the ages of the Pb-Zn deposits in the Lanping and Tuotuohe basins,indicating that it is possible that the narrow 1000-kilometer-long belt controlled by a thrust nappe system on the eastern and northern margins of the Tibetan plateau could be a giant Pb-Zn mineralized belt.
基金funded by the National Natural Science Foundation of China(Nos.41972224,41572190)the National Key Research and Development Program of China from the Ministry of Science and Technology of China(No.2017YFC0601301)the China Geological Survey(DD20190004)。
文摘How the Altyn Tagh fault(ATF) extends eastwards is one of the key questions in the study of the growth of the Qinghai–Tibetan Plateau. Detailed fieldwork at the easternmost part of the ATF shows that the ATF extends eastward and bypasses the Kuantan Mountain;it does not stop at the Kuantan Mountain, but connects with the northern Heishan fault in the east. The ATF does not enter the Alxa Block but extends eastward along the southern Alxa Block to the Jintanan Mountain. The Heishan fault is not a thrust fault but a sinistral strike-slip fault with a component of thrusting and is a part of the ATF. Further to the east, the Heishan fault may connect with the Jintananshan fault. A typical strike-slip duplex develops in the easternmost part of the ATF. The cut and deformed Quaternary sediments and displaced present gullies along the easternmost ATF indicate that it is an active fault. The local highest Mountain(i.e., the Kuantan Mountain) in the region forms in a restraining bend of the ATF due to the thrusting and uplifting. The northward growth of the Qinghai–Tibetan Plateau and the active deformation in South Mongolia are realized by sinistral strike-slipping on a series of NE–SW-trending faults and thrusting in restraining bends along the strike-slip faults with the northeastward motion of blocks between these faults.
文摘Qaidam basin is located at northeast Qinghai—Xizang (Tibet) plateau, and surrounded by east Kunlun, south Qilian and Altun mountain systems. The purpose of this paper is to study the Cenozoic basin evolutionary stages, structural styles of the Qaidam, and the denudation in adjacent mountain systems through seismic profile interpretation and complemented by field observation. The Qaidam basin has experienced two tectonic stages of Paleogene—early Miocene (65~12Ma) and late Miocene—present (12~0Ma). The former is characterized by differential uplift of the mountains and subsidence of the basin, and the latter by intense compression, wrench, thrusting and folding. The compressional structural styles are mainly distributed in the Circle Hero—Range Depression of southwest Qaidam, such as Nanyishan, Youquanzi, Younan, Youshashan anticline belts and thrust faults. The wrench structural styles of the northern Qaidam include en echelon uplifts (fault—block outcrops) such as Seshitengshan, Luliangshan, Xitieshan and Eimnikshan, which are mainly composed of pre\|Sinian and Paleozoic rocks; en echelon anticlines such as Lenghu—Nanbaxian belts; and en echelon depressions such as Kunteyi, Senan and Yibei depressions, which are mainly composed of Mesozoic and Cenozoic rocks.
基金Supported by National Key Technology R & D Program (2007BAC30B02)Science and Technology Key Project of Qinghai Province (2008-N-146)
文摘[Objective] The aim was to study the characteristics of climate changes in the surrounding area of Qinghai Lake.[Method] Based on the data of temperature,precipitation and sunshine hours from 5 representative meteorological stations in the surrounding area of Qinghai Lake during 1961-2007,the annual,seasonal and decadal variation of meteorological factors were analyzed.[Result] In recent 47 years,temperature showed obvious increase trend in the surrounding area of Qinghai Lake,and annual average temperature increased with the climatic tendency of ≥0.30 ℃/10 a,while annual average minimum temperature increased more significant than annual average temperature and annual average maximum temperature;annual mean precipitation decreased with the climatic tendency of-3.67 mm/10 a,and precipitation in spring and autumn reduced obviously,while precipitation in summer and winter increased slightly;annual sunshine hours also showed decrease trend with the climatic tendency of-1.79 h/10 a,while sunshine hours decreased most obviously in summer,and next came winter,while there was no obvious decrease in spring and autumn.[Conclusion] The study could provide theoretical references for the effective prevention of meteorological disasters in the surrounding area of Qinghai Lake.
基金Supported by Young Scientific Research Fund Item of Qinghai University (2009-QN-16)"Monitoring and Breeding Key Technology of Important Biological Species Resource in China and Its Application Demonstration " of National Science and Technology Support Item (2008BAC39B04)
文摘[Objective] The research aimed to study the resistance of four kinds of desert plants in Qinhai Lake area.[Method] By contrasting the resistance indexes of four kinds of plants which included Ephedra intermedia,Stellera chamaejasme,Achnatherum splendens and Xanthopappus subacaulis,the resistance of four kinds of plants in Qinghai Lake area was analyzed.The resistance indexes included the soluble protein,MDA,free Pro content and the activities of SOD,POD,CAT.Moreover,the resistance of four kinds of plants was evaluated comprehensively by using Fuzzy membership function method.[Result] Under the low-temperature and arid adversity in Qinghai Lake area,SOD activity presented as Stellera chamaejasme>Xanthopappus subacaulis>Ephedra intermedia>Achnatherum splendens,and CAT activity presented as Stellera chamaejasme>Xanthopappus subacaulis>Achnatherum splendens>Ephedra intermedia.Under the same high-salt environment,CAT activity of Stellera chamaejasme was eight times higher than that of Ephedra intermedia.It illustrated that the salt resistance of Stellera chamaejasme was stronger than that of Ephedra intermedia.The free Pro content showed as Xanthopappus subacaulis>Ephedra intermedia>Stellera chamaejasme>Achnatherum splendens.Under the same adversity,Pro content of Ephedra intermedia was 2.83 times of Stellera chamaejasme.It was because that MDA content in Stellera chamaejasme was the lowest,and the membranous peroxide harm was the smallest.It caused that Pro content (stress penetration material) was low.It also illustrated that the resistance of Stellera chamaejasme was stronger than that of Ephedra intermedia.The comprehensive evaluation of Fuzzy membership function showed that the resistance presented as Xanthopappus subacaulis>Stellera chamaejasme>Ephedra intermedia>Achnatherum splendens.[Conclusion] The research provided the theory basis for the breeding of drought-resistance new variety and the development of good germ plasm resource in Qinghai Lake area.
基金financially supported by the Hundred Talent Program of Chinese Academy of Sciences and the National Natural Science Foundation of China (41301211, 41201195)
文摘Climate warming and livestock grazing are known to have great influences on alpine ecosystems like those of the Qinghai-Tibetan Plateau (QTP) in China. However, it is lacking of studies on the effects of warming and grazing on plant and soil properties in these alpine ecosystems. In this study, we reported the related research from manipulative experiment in 2010-2012 in the QTP. The aim of this study was to investigate the individual and combined effects of warming and clipping on plant and soil properties in the alpine meadow ecosystem. Infrared radiators were used to simulate climate warming starting in July 2010, while clipping was performed once in Octo- ber 2011 to simulate the local livestock grazing. The experiment was designed as a randomized block consisting of five replications and four treatments: control (CK), warming (W), clipping (C) and warming+clipping combination (WC). The plant and soil properties were investigated in the growing season of the alpine meadow in 2012. The results showed that W and WC treatments significantly decreased relative humidity at 20-cm height above ground as well as significantly increases air temperature at the same height, surface temperature, and soil temperature at the depth of 0-30 cm. However, the C treatment did not significantly decrease soil moisture and soil temperature at the depth of 0-60 cm. Relative to CK, vegetation height and species number increased significantly in W and WC treatment, respectively, while vegetation aboveground biomass decreased significantly in C treatment in the early growing season. However, vegetation cover, species diversity, belowground biomass and soil properties at the depth of 0-30 cm did not differ significantly in W, C and WC treatments. Soil moisture increased at the depth of 40-100 cm in W and WC treatments, while belowground biomass, soil activated carbon, organic carbon and total nitrogen increased in the 30-50 cm soil layer in W, C and WC treatments. Although the initial responses of plant and soil properties to experimental warming and clipping were slow and weak, the drought induced by the down- ward shift of soil moisture in the upper soil layers may induce plant belowground biomass to transfer to the deeper soil layers. This movement would modify the distributions of soil activated carbon, organic carbon and total nitrogen However, long-term data collection is needed to further explain this interesting phenomenon.
基金support was provided by the National Science Foundation of China grant (40472088)
文摘Based on the study of magnetostratigraphy,magnetic susceptibility and grain size of Garze A section on the southeastern margin of the Qinghai-Tibetan Plateau since the late early-Pleistocene,the basal age of Garze loess is located at~1.16 MaBP and a series of abrupt paleoclimatic changes is detected.The times of abrupt changes are of distinct series features,and the interval between each two adjacent abrupt changes is~50 kyr or~100 kyr.The most significant abrupt changes occur at around 1.06,0.85,0.6,0.46,0.39 and 0.14 MaBP.There is a chronological link between the abrupt changes of paleoclimate and the formation of river terraces and it is almost simultaneous with a strengthening trend of neotectonic activities.Therefore,maybe the climatic transition controll the timing of terrace formation,and the tectonic uplift originate potential energy and has a direct effect on channel incision, both the climatic transition and the tectonic uplift are important.Terraces are the products of the interaction of instable climatic variations and tectonic uplift.Like the loess-paleosol sequences,river terrace sequences are also controlled by the climate-tectonic coupling system and are ruled by climate-tectonic gyration with a~100 kyr paracycle,which may be the short eccentricity period of the earth.
基金supported by the National Natural Science Foundation of China(grant No.41572141)
文摘Objective The Juhugeng mining area in Qinghai Province of northwest China has attracted wide attention among geologists for it hosts typical coal measure gases.The shale gas reservoirs were reformed by intensive structural movements during geological periods,
基金support of the National Natural Science Foundation of China(Grant No.41201002)Foundation for Excellent Youth Scholars of Cold and Arid Regions Environmental and Engineering Research Institute,Chinese Academy of Sciences(Grant No.51Y184A61)+1 种基金China Postdoctoral Science Foundation funded project(Grant No.2012M512050)the National Natural Science Foundation of China(Grant No.41130533,41171010)
文摘The Zoige Wetland is located in the northeastern Qinghai-Tibetan Plateau, which is highly sensitive to global environment change and human disturbance because of its high elevation and cold environment, thus, it's a hotspot for land use and land cover change (LUCC) research. We used Landsat MSS images from 1975, Landsat ETM images from 2000, and Landsat TM images fi:om 1990 and 2005 to assess the LUCC in the study area, using GIS techniques, as well as topographic, vegetation, and soil maps combined with field investigations. The monitoring result shows that the study area's environment degraded rapidly between 1975 and 2005, including wetland shrinkage from 5,308 km2 to 4,980 lan2, sandy land expansion from 112 krn2 to 137 krn2, forest land decreasing from 5,686 km2 to 5,443 km2, and grassland degradation from 12,309 km2 to 10,672 km2. According to the analysis of meteorological data and social-economic statistical data, we concluded that the LUCC in the Zoige Wetland was caused by both natural and anthropogenic factors, but human activities were primarily responsible for the observed LUCC, thereby, we suggest human behaviors must be adjusted to control environmental degradation.
基金funded jointly by the Natural Science Foundation of Qinghai Province(2019-ZJ-910)the International Communication and Cooperation Project of Qinghai Province(2019-HZ-807)+1 种基金the National Program on Basic Work Project of China(2015FY11030001)the Qinghai Province High-level Innovative Talents Program
文摘Biodiversity distribution patterns are a basic and long-standing but crucial aspect of ecology research.These patterns form the primary source of data used to develop biodiversity protection practices,especially in mountain ecosystems.Shrubs comprise one of the main types of vegetation on the Qinghai–Tibetan Plateau,where they serve vital ecological functions.In this study,we used a community phylogenetic approach to examine the distribution patterns of shrub communities along the longitudinal and latitudinal gradients on the northeastern Qinghai–Tibetan Plateau.We observed significant latitudinal trends in both the phylogenetic diversity(PD)and net relatedness index(NRI)values of shrub communities,such that the former decreased and the latter increased with increasing latitude.However,no significant PD,NRI and nearest taxon index(NTI)distribution patterns were observed along a longitudinal gradient.A further analysis revealed that the combination of temperature-related and precipitation-related climate variables most strongly affected the PD,NRI and NTI values of shrub communities,indicating that the latitudinal patterns in the PD,NRI and NTI of a shrub community may be determined mainly by interactions with these climate factors.
基金supported by the National Basic Research Program of China (2013CB955901)the National Natural Science Foundation of China (41073018)
文摘The hydrogen isotopic composition of plant leaf wax(δDwax) is used as an important tool for paleohydrologic reconstruction. However, the understanding of the relative importance of environmental and biological factors in determining δDwax values still remains incomplete. To identify the effects of soil moisture and plant physiology on δDwax values in an arid ecosystem, and to explore the implication of these values for paleoclimatic reconstruction, we measured δD values of soil water(δDwater) and δDwax values in surface soils along two distance transects extending from the lakeshore to wetland to dryland around Lake Qinghai and Lake Gahai on the northeast Qinghai-Tibetan Plateau. The results showed that the δDwater values were negatively correlated with soil water content(SWC)(R^2=0.9166), and ranged from –67‰ to –46‰ with changes in SWC from 6.2% to 42.1% in the arid areas of the Gangcha(GCh) and Gahai(GH) transects. This indicated that evaporative D-enrichment in soil water was sensitive to soil moisture in an arid ecosystem. Although the shift from grasses to shrubs with increasing aridity occurred in the arid area of the GH transect, the δDwax values in surface soils from the arid areas of the two transects still showed a negative correlation with SWC(R^2=0.6835), which may be due to the controls of primary evaporative D-enrichment in the soil water and additional transpirational D-enrichment in the leaf water on the δDwaxvalues. Our preliminary research suggested that δDwax values can potentially be applied as a paleo-humidity indicator on the northeast Qinghai-Tibetan Plateau.
基金supported by the Qinghai province natural science foundation project(2015-ZJ-902)the Qinghai province science and technology plan program(2014-NK-A4-4)
文摘Recently, canopy transpiration (Ec) has been often estimated by xylem sap-flow measurements. However, there is a significant time lag between sap flow measured at the base of the stem and canopy transpiration due to the capacitive exchange between the transpiration stream and stem water storage. Significant errors will be introduced in canopy conductance (gc) and canopy transpiration estimation if the time lag is neglected. In this study, a cross-correlation analysis was used to quantify the time lag, and the sap flowbased transpiration was measured to pararneterize Jarvistype models of gc and thus to simulate Ec of Populus cathayana using the Penman-Monteith equation. The results indicate that solar radiation (Rs) and vapor pressure deficit (VPD) are not fully coincident with sap flow and have an obvious lag effect; the sap flow lags behind Rs and precedes VPD, and there is a 1-h time shift between Eo and sap flow in the 30-min interval data set. A parameterized Jarvis-type gc model is suitable to predict P. cathayana transpiration and explains more than 80% of the variation observed in go, and the relative error was less than 25%, which shows a preferable simulation effect. The root mean square error (RMSEs) between the predicted and measured Ec were 1.91×10^-3 (with the time lag) and 3.12×10^-3cm h^-1 (without the time lag). More importantly, Ec simulation precision that incorporates time lag is improved by 6% compared to the results without the time lag, with the mean relative error (MRE) of only 8.32% and the mean absolute error (MAE) of 1.48 × 10^-3 cm h^-1.