Drugs for the treatment and prevention of nervous system diseases must permeate the bloodbrain barrier to take effect.In vitro models of the blood-brain barrier are therefore important in the investigation of drug per...Drugs for the treatment and prevention of nervous system diseases must permeate the bloodbrain barrier to take effect.In vitro models of the blood-brain barrier are therefore important in the investigation of drug permeation mechanisms.However,to date,no unified method has been described for establishing a blood-brain barrier model.Here,we modified an in vitro model of the blood-brain barrier by seeding brain microvascular endothelial cells and astrocytes from newborn rats on a polyester Transwell cell culture membrane with 0.4-μm pores,and conducted transepithelial electrical resistance measurements,leakage tests and assays for specific bloodbrain barrier enzymes.We show that the permeability of our model is as low as that of the bloodbrain barrier in vivo.Our model will be a valuable tool in the study of the mechanisms of action of neuroprotective drugs.展开更多
Summary: An early embryo co-culture system with human decidual stromal cells was established to study its effect on early embryonic cleavage and growth in vitro. Three hundred and eight 2-cell mouse embryos were co-cu...Summary: An early embryo co-culture system with human decidual stromal cells was established to study its effect on early embryonic cleavage and growth in vitro. Three hundred and eight 2-cell mouse embryos were co-cultured with human decidual stromal cell monolayer in MEM+0. 4 % bovine serum albumin (BSA) and 163 embryos cultured in MEM+15 % FCS alone as control. Among the mouse 2-cell embryos co-cultured with human decidual stromal cells, 72.73 % developed to the morula stage and 67.21 % cavitated to blastocysts with 59. 74 % hatching, as compared with 61. 34 % to morula stage, 48. 47 % to blastocysts and none hatching in the controls, respectively. Co-cultured embryos cleaved slightly faster than controls and showed no or less fragmentation than those in the control. These results suggested that human decidual stromal cells can support early embryonic development and yield a reasonable number of embryos with good quality up to blastocyst stage.展开更多
Natural foods,such as whole pulses,are recommended in the dietary guidelines of the US and China.The plant cell wall structure in whole pulses has important implications for the nutritional functionalities of starch.I...Natural foods,such as whole pulses,are recommended in the dietary guidelines of the US and China.The plant cell wall structure in whole pulses has important implications for the nutritional functionalities of starch.In this study,garbanzo bean cells with varying degrees of cell wall integrity were subjected to dry heat treatment(DHT)and used to elucidate the food structure-starch digestion properties of pulse food.The morphological features suggested that all cell samples do not exhibit remarkable changes after being subjected to DHT.Molecular rearrangement and the crystallite disruption of starch granules entrapped in cells occurred during DHT as assessed by the crystal structure and thermal properties.DHT decreased the inhibitory effects of enzymes of both the soluble and insoluble components,but the digestion rate and extent of slightly and highly damaged cell samples did not exhibit significant differences compared with their native counterparts.We concluded that the starch digestion of pulse cotyledon cells is primarily determined by the intactness of the cellular structure.This study reveals the role of food structure on the ability to retain the desirable nutritional properties of starch after subjection to physical modification.展开更多
AIM: To investigate cytokine production and cell surface phenotypes of dendritic cells (DC) in the presence of epithelial cells stimulated by probiotics.METHODS: Mouse DC were cultured alone or together with mouse...AIM: To investigate cytokine production and cell surface phenotypes of dendritic cells (DC) in the presence of epithelial cells stimulated by probiotics.METHODS: Mouse DC were cultured alone or together with mouse epithelial cell monolayers in normal or in- verted systems and were stimulated with heat-killed probiotic bacteria, Bifidobacterium lactis ADO 11 (BL), Bifidobacterium bilfidum BGN4 (BB), Lactobacillus casei IBS041 (LC), and Lactobacillus acidophilus AD031 (LA), for 12 h. Cytokine levels in the culture supernatants were determined by enzyme-linked immunosorbent as say and phenotypic analysis of DC was investigated by flow cytometry.RESULTS: BB and LC in singlecultured DC increased the expression of I-Ad, CD86 and CD40 (I-Ad, 18.51 vs 30.88, 46.11, CD86, 62.74 vs 92.7, 104.12; CD40, 0.67 vs 6.39, 3.37, P 〈 0.05). All of the experimental probiot-ics increased the production of inflammatory cytokines, interleukin (IL)-6 and tumor necrosis factor (TNF)-α. However, in the normal coculture systems, LC and LA decreased the expression of I-A^α (39.46 vs 30.32, 33.26, P 〈 0.05), and none of the experimental probiotics increased the levels of IL-6 or TNF-α. In the inverted coculture systems, LC decreased the expression of CD40 (1.36 vs -2.27, P 〈 0.05), and all of the experimental probiotics decreased the levels of IL-6. In addition, BL increased the production of IL-10 (103.8 vs 166.0, P 〈 0.05) and LC and LA increased transforming growth factor-13 secretion (235.9 vs 618.9, 607.6, P 〈 0.05).CONCLUSION: These results suggest that specific pro- biotic strains exert differential immune modulation mediated by the interaction of dendritic cells and epithelial cells in the homeostasis of gastrointestinal tract.展开更多
AIM: To explore whether a co-culture of cynomolgus monkey embryonic stem (cES) cells with embryonic liver cells could promote their differentiation into hepatocytes. METHODS: Mouse fetal liver-derived cells (MFLCs) we...AIM: To explore whether a co-culture of cynomolgus monkey embryonic stem (cES) cells with embryonic liver cells could promote their differentiation into hepatocytes. METHODS: Mouse fetal liver-derived cells (MFLCs) were prepared as adherent cells from mouse embryos on embryonic d (ED) 14, after which undifferentiated cES cells were co-cultured with MFLCs. The induction of cES cells along a hepatic lineage was examined in MFLC- assisted differentiation, spontaneous differentiation, and growth factors (GF) and chemicals-induced differentiations (GF-induced differentiation) using retinoic acid, leukemia inhibitory factor (LIF), FGF2, FGF4, hepatocyte growth factor (HGF), oncostatin M (OSM), and dexamethasone. RESULTS: The mRNA expression of α-fetoprotein, albumin (ALB), α-1-antitrypsin, and hepatocyte nuclear factor 4α was observed earlier in the differentiating cES cells co-cultured with MFLCs, as compared to cES cells undergoing spontaneous differentiation and those subjected to GF-induced differentiation. The expression of cytochrome P450 7a1, a possible marker for embryonic endoderm-derived mature hepatocytes, was only observed in cES cells that had differentiated in a co-culture with MFLCs. Further, the disappearance of Oct3/4, a representative marker of an undifferentiated state, was noted in cells co-cultured with MFLCs, but not in those undergoing spontaneous or GF-induced differentiation. Immunocytochemical analysis revealed an increased ratio of ALB-immunopositive cells among cES cells co-cultured with MFLCs, while glycogen storageand urea synthesis were also demonstrated. CONCLUSION: MFLCs showed an ability to induce cES cells to differentiate toward hepatocytes. The co-culture system with MFLCs is a useful method for induction of hepatocyte-like cells from undifferentiated cES cells.展开更多
The metastasis in which the cancer cells degrade the extracellular matrix (ECM) and invade to the sur- rounding and far tissues of the body is the leading cause of mortality in cancer patients, With a lot of advance...The metastasis in which the cancer cells degrade the extracellular matrix (ECM) and invade to the sur- rounding and far tissues of the body is the leading cause of mortality in cancer patients, With a lot of advancement in the field, yet the biological cause of metastasis are poorly understood, The microfluidic system provides advanced technology to reconstruct a variety of in vivo-like environment for studying the interactions between tumor ceils (TCs) and endothelial ceils (ECs). This review gives a brief account of both two-dimensional models and three-dimensional microfluidic systems for the analysis of TCs-ECs co- culture as well as their applications to anti-cancer drug screening, Furthermore, the advanced methods for analyzing cell-to-cell interactions at single-cell level were also discussed,展开更多
AIM: To investigate whether the function of hepatocytes co-cultured with bone marrow mesenchymal stem cells (MSCs) could be maintained in serum from acute-on- chronic liver failure (ACLF) patients.METHODS: Hepat...AIM: To investigate whether the function of hepatocytes co-cultured with bone marrow mesenchymal stem cells (MSCs) could be maintained in serum from acute-on- chronic liver failure (ACLF) patients.METHODS: Hepatocyte supportive functions and cy- totoxicity of sera from 18 patients with viral hepatitis B-induced ACLF and 18 healthy volunteers were evalu- ated for porcine hepatocytes co-cultured with MSCs and hepatocyte mono-layered culture, respectively. Chemo- kine profile was also examined for the normal serum and liver failure serum.RESULTS: Hepatocyte growth factor (HGF) and Tumor necrosis factor; tumor necrosis factor (TNF)-a were re- markably elevated in response to ACLF while epidermal growth factor (EGF) and VEGF levels were significantly decreased. Liver failure serum samples induced a higher detachment rate, lower viability and decreased liver sup- port functions in the homo-hepatocyte culture. Hepato-cytes co-cultured with MSCs could tolerate the cytotoxic- ity of the serum from ACLF patients and had similar liver support functions compared with the hepatocytes cul- tured with healthy human serum in vitro. In addition, co- cultured hepatocytes maintained a proliferative capability despite of the insult from liver failure serum.CONCLUSION: ACLF serum does not impair the cell morphology, viability, proliferation and overall metabolic capacities of hepatocyte co-cultured with MSCs in vitro.展开更多
Sites of implantation with compromised biology may be unable to achieve the required level of angiogenic and osteogenic regeneration. The specific function and contribution of different cell types to the formation of ...Sites of implantation with compromised biology may be unable to achieve the required level of angiogenic and osteogenic regeneration. The specific function and contribution of different cell types to the formation of prevascularized, osteogenic networks in co-culture remains unclear. To determine how bone marrow-derived mesenchymal stromal cells (BMSCs) and endothelial cells (ECs) contribute to cellular proangiogenic differentiation, we analysed the differentiation of BMSCs and ECs in standardized monolayer, Transwell and co-cultures. BMSCs were derived from the iliac bone marrow of five patients, characterized and differentiated in standardized monolayers, permeable Transwells and co-cultures with human umbilical vein ECs (HUVECs). The expression levels of CD31, von Willebrand factor, osteonectin (ON) and Runx2 were assessed by quantitative reverse transcriptase polymerase chain reaction. The protein expression of alkaline phosphatase, ON and CD31 was demonstrated via histochemical and immunofluorescence analysis. The results showed that BMSCs and HUVECs were able to retain their lineage-specific osteogenic and angiogenic differentiation in direct and indirect co-cultures. In addition, BMSCs demonstrated a supportive expression of angiogenic function in co-culture, while HUVEC was able to improve the expression of osteogenic marker molecules in BMSCs.展开更多
By co-culturing humm mesenchymal stem cells (hMSCs) and human umbilical rein endothelial cells (HUVECs) under hypoxia and creating a microenvironment similar to that of transplanted hMSCs for the treatment of avascula...By co-culturing humm mesenchymal stem cells (hMSCs) and human umbilical rein endothelial cells (HUVECs) under hypoxia and creating a microenvironment similar to that of transplanted hMSCs for the treatment of avascular ni ANFH, the effect of hMSCs on survival, apoptosis, migration and angiogenesis of human umbilical vein endothelial cells (HUVECs) under the hypoxic condition were investigated in vitro. hMSCs and HUVECs were cultured and identified in vitro. Three kinds of conditioned media, CdM-CdMNOR, CdM-CdMHYP and HUVEC-CdMHYP were prepared. HUVECs were cultured with these conditioned media under hypoxia. The survival rate, apoptosis rate, migration and angiogenesis of HUVECs were respectively detected by CCK-8, flow cytometry, Transwell and tube formation assay. The content of SDF-1α, VEGF and IL-6 in CdM was determined by ELISA. Our results showed that hMSCs and HUVECs were cultured and identified successfully. Compared with MSC-CdMNOR and HUVEC-CdMHYP groups, the survival rate, migra-tion and angiogenesis of HUVECs in MSC-CdMHYP group were significantly increased while the apoptosis rate was declined (P<0.05). Moreover, the expression of SDF-1α, VEGF and IL-6 in MSC-CdMHYP group was up-regulated. Under hypoxia, the apoptosis of HUVECs was inhibited while survival, migration and angiogenesis were improved by co-culture of hMSCs and HUVECs. The underlying mechanism may be that hMSCs could secrete a number of cytokines and improve niche, which might be helpful in the treatment of femoral head necrosis.展开更多
We induced human placenta-derived mesenchymal stem cells (hPMSCs) to differentiate into neural cells by adding chemical reagents, despite the fact that toxic chemicals induce cell shrinkage or cytoskeletal formation...We induced human placenta-derived mesenchymal stem cells (hPMSCs) to differentiate into neural cells by adding chemical reagents, despite the fact that toxic chemicals induce cell shrinkage or cytoskeletal formation, which does not represent a proper cell differentiation process. The present study established a co-culture system with hPMSCs and neural cells and analyzed the influence of neural cells on hPMSC differentiation in a co-culture system, hPMSCs were isolated and purified from human full-term placenta using collagenase digestion. Fetal neural cells were co-cultured with hPMSCs for 48 hours using the Transwell co-culture system, hPMSCs co-cultured with neural cells exhibited a slender morphology with a filament. After 96 hours, hPMSCs expressed neuron-specific enolase, which suggested that co-culture of hPMSCs and neural cells induced neural differentiation of hPMSCs.展开更多
Lysophosphatidic acid(LPA)is a small molecule glycerophospholipid,which regulates multiple downstream signalling pathways through G-protein-coupled receptors to achieve numerous functions on oocyte maturation and embr...Lysophosphatidic acid(LPA)is a small molecule glycerophospholipid,which regulates multiple downstream signalling pathways through G-protein-coupled receptors to achieve numerous functions on oocyte maturation and embryo development.In this study,sheep in vitro fertilized embryos were applied to investigate the effects of LPA on early embryos development and embryonic stem cell establishment.At first,the maturation medium containing estrus female sheep serum and synthetic oviduct fluid(SOF)were optimized for sheep IVF,and then the effects of LPA were investigated.From 0.1 to 10μmol L^(–1),LPA had no significant effect on the cleavage rate(P>0.05),but the maturation rate and blastocyst rate increased dependently with LPA concentration(P<0.05),and the blastocyst morphology was normal.When the LPA concentration was 15μmol L^(–1),the maturation rate,cleavage rate and blastocyst rate decreased significantly(P<0.05),and the blastocyst exhibited abnormal morphology and could not develop into highquality blastocyst.Besides,the exogenous LPA increases the expression of LPAR2,LPAR4,TE-related gene CDX-2and pluripotency-related gene OCT-4 in sheep early IVF embryos with the raise of LPA concentration from 0.1 to 10μmol L^(–1).The expression of LPAR2,LPAR4,CDX-2 and OCT-4 from the LPA-0.1μmol L^(–1)to LPA-10μmol L^(–1)groups in early embryos were extremely significant(P<0.05),while the expression of these genes significantly decreased in 15μmol L^(–1)LPA-treated embryos compared with LPA-10μmol L^(–1)group(P<0.05).The inner cell mass in 15μmol L^(–1)LPA-treated embryos was also disturbed,and the blastocysts formation was abnormal.Secondly,the sheep IVF blastocysts were applied to establish embryonic stem cells.The results showed that LPA made the blastocyst inoculated cells grow towards TSC-like cells.They enhanced the fluorescence intensity and mRNA abundance of OCT-4 and CDX-2 as the concentration increased from 0 to 10μmol L^(–1),while 15μmol L^(–1)LPA decreased OCT-4 and CDX-2 expression in the derived cells.The expression of CDX-2 and OCT-4 in the blastocyst inoculated cells of LPA-1μmol L^(–1)group and LPA-10μmol L^(–1)group extremely significantly increased(P<0.05),but there was significant decrease in LPA-15μmol L^(–1)group compared with LPA-10μmol L^(–1)group(P<0.05).Meanwhile,the protein expression of LPAR2 and LPAR4 remarkably increased after treatment of LPA at 10μmol L^(–1)concentration.This study references the IVF embryo production and embryonic stem cell research of domestic animals.展开更多
This study examined the osteogenic effect of electromagnetic fields (EMF) under the simulated in vivo conditions. Rat bone marrow mesenchymal stem cells (BMSCs) and rat osteoblasts were co-cultured and exposed to ...This study examined the osteogenic effect of electromagnetic fields (EMF) under the simulated in vivo conditions. Rat bone marrow mesenchymal stem cells (BMSCs) and rat osteoblasts were co-cultured and exposed to 50 Hz, 1.0 mT EMF for different terms. Unexposed single-cultured BMSCs and osteoblasts were set as controls. Cell proliferation features of single-cultured BMSCs and osteoblasts were studied by using a cell counting kit (CCK-8). For the co-culture system, cells in each group were randomly chosen for alkaline phosphatase (ALP) staining on the day 7. When EMF exposure lasted for 14 days, dishes in each group were randomly chosen for total RNA extraction and von Kossa staining. The mRNA expression of osteogenic markers was detected by using real-time PCR. Our study showed that short-term EMF exposure (2 h/day) could obviously promote prolifera- tion of BMSCs and osteoblasts, while long-term EMF (8 h/day) could promote osteogenic differen- tiation significantly under co-cultured conditions. Under EMF exposure, osteogenesis-related mRNA expression changed obviously in co-cultured and single-cultured cells. It was noteworthy that most osteogenic indices in osteoblasts were increased markedly after co-culture except Bmp2, which was increased gradually when ceils were exposed to EMF. Compared to other indices, the expression of Bmp2 in BMSCs was increased sharply in both single-cultured and co-cultured groups when they were exposed to EMF. The mRNA expression of Bmp2 in BMSCs was approximately four times higher in 8-h EMF group than that in the unexposed group. Our results suggest that Bmp2-mediated cellular interaction induced by EMF exposure might play an important role in the osteogenic differ- entiation of BMSCs.展开更多
BACKGROUND: Differentiation of liver progenitor cells(LPCs) to functional hepatocytes holds great potential to develop new strategies for hepatocyte transplantation and the screening of drug-induced cytotoxicity. H...BACKGROUND: Differentiation of liver progenitor cells(LPCs) to functional hepatocytes holds great potential to develop new strategies for hepatocyte transplantation and the screening of drug-induced cytotoxicity. However, reports on the efficient and convenient hepatic differentiation of LPCs to hepatocytes are few. The present study aims to investigate the possibility of generating functional hepatocytes from LPCs in an indirect co-culture system.METHODS: Mouse LPCs were co-cultured in Transwell plates with an immortalized human hepatic stellate cell line(HSCLi) we previously established. The morphology, expression of hepatic markers, and functions of mouse LPC-derived cells were monitored and compared with those of conventionally cultured LPCs. RESULTS: Co-culturing with HSC-Li cells induced differentiation of mouse LPCs into functional hepatocyte-like cells. The differentiated cells were morphologically transformed into hepatocyte-like cells 3 days after co-culture initiation. In addition, the differentiated cells expressed liver-specific genes and possessed hepatic functions, including glycogen storage, lowdensity lipoprotein uptake, albumin secretion, urea synthesis, and cytochrome P450 1A2 enzymatic activity.CONCLUSIONS: Our method, which employs indirect co-culture with HSC-Li cells, can efficiently induce the differentiation of LPCs into functional hepatocytes. This finding suggests that this co-culture system can be a useful method for the efficient generation of functional hepatocytes from LPCs.展开更多
Objective:To characterize the infection patterns and growth characteristics of the Zika virus(ZIKV)strain JMB-185 from Indonesia in various mammalian cell lines.Methods:ZIKV was grown in human(A549,HEK293,HepG2,Huh7,J...Objective:To characterize the infection patterns and growth characteristics of the Zika virus(ZIKV)strain JMB-185 from Indonesia in various mammalian cell lines.Methods:ZIKV was grown in human(A549,HEK293,HepG2,Huh7,Jurkat,and THP-1)and non-human mammalian(RAW264.7,Vero,and Vero76)cell lines.Viral replication kinetics were measured using plaque assay,while intra-and extracellular viral RNA concentrations were assessed using RT-PCR.Flow cytometry was used to quantify the infected cells and cell viability was measured using an MTT assay.The ability of ZIKV to infect cell lines was visualized using a fluorescence immunostaining assay.Results:This ZIKV strain preferentially infected the lung,kidney,and liver cell lines A549,HEK293,Huh7,Vero,and Vero76,but not the immune cells Jurkat,RAW264.7,and THP-1.By contrast,the ZIKV showed no sign of infection in HepG2 cells,while maintaining viral titer over 3 days post-infection,with no infection recorded in immunostaining,no increase in viral RNA,and no indication of cell deterioration.Conclusions:The Indonesian ZIKV strain has a similar infection profile as other strains,except for its poor infectivity on HepG2 cells.Information on the growth characteristics of Indonesia ZIKV will help expand our understanding of the biology of ZIKV which will be useful for various applications including antiviral discovery.展开更多
BACKGROUND: Animal experiments and clinical studies about tissue engineering method applied to repair nerve injury mainly focus on seeking ideal artificial nerve grafts, nerve conduit and seed cells. Autologous nerve...BACKGROUND: Animal experiments and clinical studies about tissue engineering method applied to repair nerve injury mainly focus on seeking ideal artificial nerve grafts, nerve conduit and seed cells. Autologous nerve, allogeneic nerve and xenogeneic nerve are used to bridge nerve defects, it is one of the methods to promote the repair of nerve injury by culturing and growing Schwann cells, which can secrete various neurotrophic factor activities, in the grafts. OBJECTIVE : To observe the effect of acellular nerve grafts co-cultured with Schwann cells in repairing defects of sciatic nerve. DESIGN: An observational comparative study.SETTING: Tissue Engineering Laboratory of China Medical University.MATERIALS: The experiment was carried out in the Tissue Engineering Laboratory of China Medical University between April 2004 and April 2005. Forty neonatal Sprague-Dawley rats of 5-8 days (either males or females) and 24 male Wistar rats of 180-220 g were provided by the experimental animal center of China Medical University. METHODS: ① Culture of Schwann cells: The bilateral sciatic nerves and branchial plexus were isolated from the 40 neonatal SD rats. The sciatic nerves were enzymatically digested with collagenase and dispase, isolatd, purified and cultured with the method of speed-difference adhersion, and identified with the SABC immunohistochemical method. ② Model establishment: In vitro Schwann cells were microinjected into 10-mm long acellular nerve grafts repairing a surgically created gap in the rat sciatic nerve. According to the different grafted methods, the animals were randomly divided into three groups: autografts (n=8), acellular nerve grafts (n=8), or acellular nerve grafts with Schwann cells (n=8). ③ The regenerated nerve fiber number and average diameter of myeline sheath after culture were statistically anlayzed. MAIN OUTCOME MEASURES: ① The regenerated nerve ultrastructure, total number and density of myelinated nerve fibers, and the thickness of myeline sheath were observed under electron microscope. ② The images were processed with the Mias-1000 imaging analytical system to calculate the number of myelinated nerve fibers, and the thickness of myeline sheath. RESULTS: All the 24 Wistar rats were involved in the analysis of results. ① Results observed under transmission electron microscope: The regenerated myelinated nerve fibers in the group of acellular nerve grafts with Schwann cells were more even than those in the group of acellular nerve grafts, the number of myelinated nerve fibers and thickness of myelin sheath were close to those in the allografts group (P 〉 0.05), but significantly different from those in the group of acellular nerve grafts (P 〈 0.05). ② Results observed under scanning electron microscope: A great amount of Schwann cells with two polars were observed in the group of grafts with Schwann cells, the feature of cultured Schwann cells showed shoulder by shoulder, head to head. ③ The number of myelinated nerve fibers and thickness of myelin sheath analyzed by Mias-1000 imaging system in the group of acellular nerve grafts with Schwann cells were close to those in the autografts group (P 〉 0.05), but significantly different from those in the group of acellular nerve grafts (P 〈 0.05).CONCLUSION: Host axonal regeneration is significantly increased after implant of acellular nerve grafts. Acellular nerve grafts with Schwann cells offers a novel approach for repairing the gap of nerve defect.展开更多
Schwann cells play an important role in the peripheral nervous system, especially in nerve repair following injury, so artificial nerve regen- eration requires an effective technique for obtaining purified Schwann cel...Schwann cells play an important role in the peripheral nervous system, especially in nerve repair following injury, so artificial nerve regen- eration requires an effective technique for obtaining purified Schwann cells. In vivo and in vitro pre-degeneration of peripheral nerves have been shown to obtain high-purity Schwann cells. We believed that in vitro pre-degeneration was simple and controllable, and available for the clinic. Thus, we co-cultured the crushed sciatic nerves with bone marrow-derived cells in vitro. Results demonstrated that, 3 hours after injury, a large number of mononuclear cells moved to the crushed nerves and a large number of bone marrow-derived cells infiltrated the nerve segments. These changes promoted the degradation of the nerve segments, and the dedifferentiation and proliferation of Schwann cells. Neural cell adhesion molecule and glial fibrillary acidic protein expression were detected in the crushed nerves. Schwann cell yield was 9.08 ± 2.01 ×104/mg. The purity of primary cultured Schwann cells was 88.4 ± 5.79%. These indicate a successful new method for ob- taining Schwann cells of high purity and yield from adult crushed sciatic nerve using bone marrow-derived cells.展开更多
BACKGROUND Stem cells are undifferentiated cells that possess the potential for self-renewal with the capacity to differentiate into multiple lineages.In humans,their limited numbers pose a challenge in fulfilling the...BACKGROUND Stem cells are undifferentiated cells that possess the potential for self-renewal with the capacity to differentiate into multiple lineages.In humans,their limited numbers pose a challenge in fulfilling the necessary demands for the regeneration and repair of damaged tissues or organs.Studies suggested that mesenchymal stem cells(MSCs),necessary for repair and regeneration via transplantation,require doses ranging from 10 to 400 million cells.Furthermore,the limited expansion of MSCs restricts their therapeutic application.AIM To optimize a novel protocol to achieve qualitative and quantitative expansion of MSCs to reach the targeted number of cells for cellular transplantation and minimize the limitations in stem cell therapy protocols.METHODS Human umbilical cord(hUC)tissue derived MSCs were obtained and re-cultured.These cultured cells were subjected to the following evaluation pro-cedures:Immunophenotyping,immunocytochemical staining,trilineage differentiation,population doubling time and number,gene expression markers for proliferation,cell cycle progression,senescence-associatedβ-galactosidase assay,human telomerase reverse transcriptase(hTERT)expression,mycoplasma,cytomegalovirus and endotoxin detection.RESULTS Analysis of pluripotent gene markers Oct4,Sox2,and Nanog in recultured hUC-MSC revealed no significant differences.The immunophenotypic markers CD90,CD73,CD105,CD44,vimentin,CD29,Stro-1,and Lin28 were positively expressed by these recultured expanded MSCs,and were found negative for CD34,CD11b,CD19,CD45,and HLA-DR.The recultured hUC-MSC population continued to expand through passage 15.Proliferative gene expression of Pax6,BMP2,and TGFb1 showed no significant variation between recultured hUC-MSC groups.Nevertheless,a significant increase(P<0.001)in the mitotic phase of the cell cycle was observed in recultured hUC-MSCs.Cellular senescence markers(hTERT expression andβ-galactosidase activity)did not show any negative effect on recultured hUC-MSCs.Additionally,quality control assessments consistently confirmed the absence of mycoplasma,cytomegalovirus,and endotoxin contamination.CONCLUSION This study proposes the development of a novel protocol for efficiently expanding stem cell population.This would address the growing demand for larger stem cell doses needed for cellular transplantation and will significantly improve the feasibility of stem cell based therapies.展开更多
Studying the skin care efficacy of recombinant humanized collagen based on in vitro level.The stability of the recombinant humanized collagen was first analyzed by treating at different temperatures,then its skincare ...Studying the skin care efficacy of recombinant humanized collagen based on in vitro level.The stability of the recombinant humanized collagen was first analyzed by treating at different temperatures,then its skincare efficacy based on in vitro level was evaluated by detecting the inhibition rate of elastase,the inhibition rate of collagenase,the protein content of type I collagen in human fibroblasts,the inhibition of reactive oxygen species(ROS)with human keratinocytes,and the effects of the recombinant humanized collagen on the expression of hyaluronic acid(HA),filaggrin(FLG)and transglutaminase 1(TGM1)in keratinocytes.The results showed that recombinant humanized collagen was able to maintain stability at temperatures below 70℃.With regard to its skincare efficacy,recombinant humanized collagen could inhibit elastase and collagenase activities and promote the increase of type I collagen content in human fibroblasts.It also showed good inhibition of ROS in keratinocytes in vitro and could increase the expression of HA,FLG,and TGM1 in keratinocytes.In short,the recombinant humanized collagen exhibited a favourable skin care effect in vitro level.This study proved that it has potential firming,anti-wrinkle,moisturizing,and repairing efficacy,and is a valuable cosmetic raw material.展开更多
Objective:To investigate the effect of abnormal ovarian granulosa cell metabolism on in vitro fertilization and embryo transfer(IVF-ET)outcomes in obese polycystic ovary syndrome(PCOS)patients.Methods:Patients with PC...Objective:To investigate the effect of abnormal ovarian granulosa cell metabolism on in vitro fertilization and embryo transfer(IVF-ET)outcomes in obese polycystic ovary syndrome(PCOS)patients.Methods:Patients with PCOS who met the study criteria were screened according to the inclusion criteria.A total of 32 patients with obese PCOS were recruited into the study group,and 39 patients with non-obese PCOS were recruited into the control group.The general data(age,body mass index,and years of infertility),insulin resistance index(HOMA-IR),follicle-stimulating hormone(FSH),luteinizing hormone(LH),granulosa cell mitochondrial function,and IVF-ET outcome of patients in the study group and control group were retrospectively analyzed.Results:The differences in age and years of infertility between the study group and the control group were insignificant(P>0.05),and the body mass index(BMI)of the study group and control group was 30.5±1.24 kg/m2 and 22.3±1.12 kg/m2,respectively,in which the difference was statistically significant(P<0.05);the HOMA-IR of the study group was significantly higher than that of the control group(P<0.05);the reactive oxygen species(ROS)in the study group was significantly higher than that in the control group(P<0.05),and the ATP content in the study group was significantly lower than that in the control group(P<0.05);comparing the FSH and LH levels between the two groups,the difference was not statistically significant(P>0.05);the rate of IVF-ET failure was significantly higher in the study group than in the control group.Conclusion:PCOS is a complex endocrine disorder,and obesity is one of the independent risk factors for the development of PCOS.展开更多
基金supported by the National Natural Science Foundation of China,No.81374005,30973979grant from the National Science and Technology Support Program during the Twelfth"Five-Year"Plan Period of China,No.2012BAI26B03
文摘Drugs for the treatment and prevention of nervous system diseases must permeate the bloodbrain barrier to take effect.In vitro models of the blood-brain barrier are therefore important in the investigation of drug permeation mechanisms.However,to date,no unified method has been described for establishing a blood-brain barrier model.Here,we modified an in vitro model of the blood-brain barrier by seeding brain microvascular endothelial cells and astrocytes from newborn rats on a polyester Transwell cell culture membrane with 0.4-μm pores,and conducted transepithelial electrical resistance measurements,leakage tests and assays for specific bloodbrain barrier enzymes.We show that the permeability of our model is as low as that of the bloodbrain barrier in vivo.Our model will be a valuable tool in the study of the mechanisms of action of neuroprotective drugs.
文摘Summary: An early embryo co-culture system with human decidual stromal cells was established to study its effect on early embryonic cleavage and growth in vitro. Three hundred and eight 2-cell mouse embryos were co-cultured with human decidual stromal cell monolayer in MEM+0. 4 % bovine serum albumin (BSA) and 163 embryos cultured in MEM+15 % FCS alone as control. Among the mouse 2-cell embryos co-cultured with human decidual stromal cells, 72.73 % developed to the morula stage and 67.21 % cavitated to blastocysts with 59. 74 % hatching, as compared with 61. 34 % to morula stage, 48. 47 % to blastocysts and none hatching in the controls, respectively. Co-cultured embryos cleaved slightly faster than controls and showed no or less fragmentation than those in the control. These results suggested that human decidual stromal cells can support early embryonic development and yield a reasonable number of embryos with good quality up to blastocyst stage.
基金the National Natural Science Foundation of China(31701546)the Fundamental Research Funds for the Central Universities of China(2019ZD40)+5 种基金the 111 Project(B17018)for financial supportPearl River Talent Recruitment Program of Guangdong Province(2017GC010229)the Pearl River Nova Program of Guangzhou(201906010079)the National Natural Science Foundation of China(32001691)the special fund for scientific innovation strategyconstruction of high-level academy of agriculture science(R2019YJYB1001)the Application-oriented Projects of Guangdong Province(2017B020232002)。
文摘Natural foods,such as whole pulses,are recommended in the dietary guidelines of the US and China.The plant cell wall structure in whole pulses has important implications for the nutritional functionalities of starch.In this study,garbanzo bean cells with varying degrees of cell wall integrity were subjected to dry heat treatment(DHT)and used to elucidate the food structure-starch digestion properties of pulse food.The morphological features suggested that all cell samples do not exhibit remarkable changes after being subjected to DHT.Molecular rearrangement and the crystallite disruption of starch granules entrapped in cells occurred during DHT as assessed by the crystal structure and thermal properties.DHT decreased the inhibitory effects of enzymes of both the soluble and insoluble components,but the digestion rate and extent of slightly and highly damaged cell samples did not exhibit significant differences compared with their native counterparts.We concluded that the starch digestion of pulse cotyledon cells is primarily determined by the intactness of the cellular structure.This study reveals the role of food structure on the ability to retain the desirable nutritional properties of starch after subjection to physical modification.
基金Supported by The Small and Medium Business Administration,No. S1072365the Next-Generation BioGreen 21 Program,No. PJ008005,Rural Development Administration,South Korea
文摘AIM: To investigate cytokine production and cell surface phenotypes of dendritic cells (DC) in the presence of epithelial cells stimulated by probiotics.METHODS: Mouse DC were cultured alone or together with mouse epithelial cell monolayers in normal or in- verted systems and were stimulated with heat-killed probiotic bacteria, Bifidobacterium lactis ADO 11 (BL), Bifidobacterium bilfidum BGN4 (BB), Lactobacillus casei IBS041 (LC), and Lactobacillus acidophilus AD031 (LA), for 12 h. Cytokine levels in the culture supernatants were determined by enzyme-linked immunosorbent as say and phenotypic analysis of DC was investigated by flow cytometry.RESULTS: BB and LC in singlecultured DC increased the expression of I-Ad, CD86 and CD40 (I-Ad, 18.51 vs 30.88, 46.11, CD86, 62.74 vs 92.7, 104.12; CD40, 0.67 vs 6.39, 3.37, P 〈 0.05). All of the experimental probiot-ics increased the production of inflammatory cytokines, interleukin (IL)-6 and tumor necrosis factor (TNF)-α. However, in the normal coculture systems, LC and LA decreased the expression of I-A^α (39.46 vs 30.32, 33.26, P 〈 0.05), and none of the experimental probiotics increased the levels of IL-6 or TNF-α. In the inverted coculture systems, LC decreased the expression of CD40 (1.36 vs -2.27, P 〈 0.05), and all of the experimental probiotics decreased the levels of IL-6. In addition, BL increased the production of IL-10 (103.8 vs 166.0, P 〈 0.05) and LC and LA increased transforming growth factor-13 secretion (235.9 vs 618.9, 607.6, P 〈 0.05).CONCLUSION: These results suggest that specific pro- biotic strains exert differential immune modulation mediated by the interaction of dendritic cells and epithelial cells in the homeostasis of gastrointestinal tract.
文摘AIM: To explore whether a co-culture of cynomolgus monkey embryonic stem (cES) cells with embryonic liver cells could promote their differentiation into hepatocytes. METHODS: Mouse fetal liver-derived cells (MFLCs) were prepared as adherent cells from mouse embryos on embryonic d (ED) 14, after which undifferentiated cES cells were co-cultured with MFLCs. The induction of cES cells along a hepatic lineage was examined in MFLC- assisted differentiation, spontaneous differentiation, and growth factors (GF) and chemicals-induced differentiations (GF-induced differentiation) using retinoic acid, leukemia inhibitory factor (LIF), FGF2, FGF4, hepatocyte growth factor (HGF), oncostatin M (OSM), and dexamethasone. RESULTS: The mRNA expression of α-fetoprotein, albumin (ALB), α-1-antitrypsin, and hepatocyte nuclear factor 4α was observed earlier in the differentiating cES cells co-cultured with MFLCs, as compared to cES cells undergoing spontaneous differentiation and those subjected to GF-induced differentiation. The expression of cytochrome P450 7a1, a possible marker for embryonic endoderm-derived mature hepatocytes, was only observed in cES cells that had differentiated in a co-culture with MFLCs. Further, the disappearance of Oct3/4, a representative marker of an undifferentiated state, was noted in cells co-cultured with MFLCs, but not in those undergoing spontaneous or GF-induced differentiation. Immunocytochemical analysis revealed an increased ratio of ALB-immunopositive cells among cES cells co-cultured with MFLCs, while glycogen storageand urea synthesis were also demonstrated. CONCLUSION: MFLCs showed an ability to induce cES cells to differentiate toward hepatocytes. The co-culture system with MFLCs is a useful method for induction of hepatocyte-like cells from undifferentiated cES cells.
基金financial support from National Natural Science Foundation of China (Nos. 214350002, 21727814 and 21621003)
文摘The metastasis in which the cancer cells degrade the extracellular matrix (ECM) and invade to the sur- rounding and far tissues of the body is the leading cause of mortality in cancer patients, With a lot of advancement in the field, yet the biological cause of metastasis are poorly understood, The microfluidic system provides advanced technology to reconstruct a variety of in vivo-like environment for studying the interactions between tumor ceils (TCs) and endothelial ceils (ECs). This review gives a brief account of both two-dimensional models and three-dimensional microfluidic systems for the analysis of TCs-ECs co- culture as well as their applications to anti-cancer drug screening, Furthermore, the advanced methods for analyzing cell-to-cell interactions at single-cell level were also discussed,
基金Supported by the National Natural Science Foundation of China,No.30772129Jiangsu Provincial Key Medical Center for Hepatobiliary Disease,No.ZX200605
文摘AIM: To investigate whether the function of hepatocytes co-cultured with bone marrow mesenchymal stem cells (MSCs) could be maintained in serum from acute-on- chronic liver failure (ACLF) patients.METHODS: Hepatocyte supportive functions and cy- totoxicity of sera from 18 patients with viral hepatitis B-induced ACLF and 18 healthy volunteers were evalu- ated for porcine hepatocytes co-cultured with MSCs and hepatocyte mono-layered culture, respectively. Chemo- kine profile was also examined for the normal serum and liver failure serum.RESULTS: Hepatocyte growth factor (HGF) and Tumor necrosis factor; tumor necrosis factor (TNF)-a were re- markably elevated in response to ACLF while epidermal growth factor (EGF) and VEGF levels were significantly decreased. Liver failure serum samples induced a higher detachment rate, lower viability and decreased liver sup- port functions in the homo-hepatocyte culture. Hepato-cytes co-cultured with MSCs could tolerate the cytotoxic- ity of the serum from ACLF patients and had similar liver support functions compared with the hepatocytes cul- tured with healthy human serum in vitro. In addition, co- cultured hepatocytes maintained a proliferative capability despite of the insult from liver failure serum.CONCLUSION: ACLF serum does not impair the cell morphology, viability, proliferation and overall metabolic capacities of hepatocyte co-cultured with MSCs in vitro.
基金supported by the Clinic of Oral and Maxillofacial Surgery and the medical faculty of the Georg-August-University Gottingen, Germany
文摘Sites of implantation with compromised biology may be unable to achieve the required level of angiogenic and osteogenic regeneration. The specific function and contribution of different cell types to the formation of prevascularized, osteogenic networks in co-culture remains unclear. To determine how bone marrow-derived mesenchymal stromal cells (BMSCs) and endothelial cells (ECs) contribute to cellular proangiogenic differentiation, we analysed the differentiation of BMSCs and ECs in standardized monolayer, Transwell and co-cultures. BMSCs were derived from the iliac bone marrow of five patients, characterized and differentiated in standardized monolayers, permeable Transwells and co-cultures with human umbilical vein ECs (HUVECs). The expression levels of CD31, von Willebrand factor, osteonectin (ON) and Runx2 were assessed by quantitative reverse transcriptase polymerase chain reaction. The protein expression of alkaline phosphatase, ON and CD31 was demonstrated via histochemical and immunofluorescence analysis. The results showed that BMSCs and HUVECs were able to retain their lineage-specific osteogenic and angiogenic differentiation in direct and indirect co-cultures. In addition, BMSCs demonstrated a supportive expression of angiogenic function in co-culture, while HUVEC was able to improve the expression of osteogenic marker molecules in BMSCs.
基金supported by agrant from the National Natural Sciences Foundation of China(No.30750010)
文摘By co-culturing humm mesenchymal stem cells (hMSCs) and human umbilical rein endothelial cells (HUVECs) under hypoxia and creating a microenvironment similar to that of transplanted hMSCs for the treatment of avascular ni ANFH, the effect of hMSCs on survival, apoptosis, migration and angiogenesis of human umbilical vein endothelial cells (HUVECs) under the hypoxic condition were investigated in vitro. hMSCs and HUVECs were cultured and identified in vitro. Three kinds of conditioned media, CdM-CdMNOR, CdM-CdMHYP and HUVEC-CdMHYP were prepared. HUVECs were cultured with these conditioned media under hypoxia. The survival rate, apoptosis rate, migration and angiogenesis of HUVECs were respectively detected by CCK-8, flow cytometry, Transwell and tube formation assay. The content of SDF-1α, VEGF and IL-6 in CdM was determined by ELISA. Our results showed that hMSCs and HUVECs were cultured and identified successfully. Compared with MSC-CdMNOR and HUVEC-CdMHYP groups, the survival rate, migra-tion and angiogenesis of HUVECs in MSC-CdMHYP group were significantly increased while the apoptosis rate was declined (P<0.05). Moreover, the expression of SDF-1α, VEGF and IL-6 in MSC-CdMHYP group was up-regulated. Under hypoxia, the apoptosis of HUVECs was inhibited while survival, migration and angiogenesis were improved by co-culture of hMSCs and HUVECs. The underlying mechanism may be that hMSCs could secrete a number of cytokines and improve niche, which might be helpful in the treatment of femoral head necrosis.
文摘We induced human placenta-derived mesenchymal stem cells (hPMSCs) to differentiate into neural cells by adding chemical reagents, despite the fact that toxic chemicals induce cell shrinkage or cytoskeletal formation, which does not represent a proper cell differentiation process. The present study established a co-culture system with hPMSCs and neural cells and analyzed the influence of neural cells on hPMSC differentiation in a co-culture system, hPMSCs were isolated and purified from human full-term placenta using collagenase digestion. Fetal neural cells were co-cultured with hPMSCs for 48 hours using the Transwell co-culture system, hPMSCs co-cultured with neural cells exhibited a slender morphology with a filament. After 96 hours, hPMSCs expressed neuron-specific enolase, which suggested that co-culture of hPMSCs and neural cells induced neural differentiation of hPMSCs.
基金financially supported by the Science and Technology Major Project of the Inner Mongolia Autonomous Region of China(2020ZD0007)the Major Program of the Inner Mongolia Natural Science Foundation,China(2020ZD10)+3 种基金the National Natural Science Foundation of China(32160172)the Natural Science Foundation of Inner Mongolia Autonomous Region(2020BS03003 and 2020BS03022)the National Transgenic Project of China(2016ZX0801000-002 and 2016ZX08010005-001)the Science and Technology Major Project of the Inner Mongolia Autonomous Region of China(zdzx2018065)。
文摘Lysophosphatidic acid(LPA)is a small molecule glycerophospholipid,which regulates multiple downstream signalling pathways through G-protein-coupled receptors to achieve numerous functions on oocyte maturation and embryo development.In this study,sheep in vitro fertilized embryos were applied to investigate the effects of LPA on early embryos development and embryonic stem cell establishment.At first,the maturation medium containing estrus female sheep serum and synthetic oviduct fluid(SOF)were optimized for sheep IVF,and then the effects of LPA were investigated.From 0.1 to 10μmol L^(–1),LPA had no significant effect on the cleavage rate(P>0.05),but the maturation rate and blastocyst rate increased dependently with LPA concentration(P<0.05),and the blastocyst morphology was normal.When the LPA concentration was 15μmol L^(–1),the maturation rate,cleavage rate and blastocyst rate decreased significantly(P<0.05),and the blastocyst exhibited abnormal morphology and could not develop into highquality blastocyst.Besides,the exogenous LPA increases the expression of LPAR2,LPAR4,TE-related gene CDX-2and pluripotency-related gene OCT-4 in sheep early IVF embryos with the raise of LPA concentration from 0.1 to 10μmol L^(–1).The expression of LPAR2,LPAR4,CDX-2 and OCT-4 from the LPA-0.1μmol L^(–1)to LPA-10μmol L^(–1)groups in early embryos were extremely significant(P<0.05),while the expression of these genes significantly decreased in 15μmol L^(–1)LPA-treated embryos compared with LPA-10μmol L^(–1)group(P<0.05).The inner cell mass in 15μmol L^(–1)LPA-treated embryos was also disturbed,and the blastocysts formation was abnormal.Secondly,the sheep IVF blastocysts were applied to establish embryonic stem cells.The results showed that LPA made the blastocyst inoculated cells grow towards TSC-like cells.They enhanced the fluorescence intensity and mRNA abundance of OCT-4 and CDX-2 as the concentration increased from 0 to 10μmol L^(–1),while 15μmol L^(–1)LPA decreased OCT-4 and CDX-2 expression in the derived cells.The expression of CDX-2 and OCT-4 in the blastocyst inoculated cells of LPA-1μmol L^(–1)group and LPA-10μmol L^(–1)group extremely significantly increased(P<0.05),but there was significant decrease in LPA-15μmol L^(–1)group compared with LPA-10μmol L^(–1)group(P<0.05).Meanwhile,the protein expression of LPAR2 and LPAR4 remarkably increased after treatment of LPA at 10μmol L^(–1)concentration.This study references the IVF embryo production and embryonic stem cell research of domestic animals.
基金supported by a grant from the National Natural Science Foundation of China(No.51077065)
文摘This study examined the osteogenic effect of electromagnetic fields (EMF) under the simulated in vivo conditions. Rat bone marrow mesenchymal stem cells (BMSCs) and rat osteoblasts were co-cultured and exposed to 50 Hz, 1.0 mT EMF for different terms. Unexposed single-cultured BMSCs and osteoblasts were set as controls. Cell proliferation features of single-cultured BMSCs and osteoblasts were studied by using a cell counting kit (CCK-8). For the co-culture system, cells in each group were randomly chosen for alkaline phosphatase (ALP) staining on the day 7. When EMF exposure lasted for 14 days, dishes in each group were randomly chosen for total RNA extraction and von Kossa staining. The mRNA expression of osteogenic markers was detected by using real-time PCR. Our study showed that short-term EMF exposure (2 h/day) could obviously promote prolifera- tion of BMSCs and osteoblasts, while long-term EMF (8 h/day) could promote osteogenic differen- tiation significantly under co-cultured conditions. Under EMF exposure, osteogenesis-related mRNA expression changed obviously in co-cultured and single-cultured cells. It was noteworthy that most osteogenic indices in osteoblasts were increased markedly after co-culture except Bmp2, which was increased gradually when ceils were exposed to EMF. Compared to other indices, the expression of Bmp2 in BMSCs was increased sharply in both single-cultured and co-cultured groups when they were exposed to EMF. The mRNA expression of Bmp2 in BMSCs was approximately four times higher in 8-h EMF group than that in the unexposed group. Our results suggest that Bmp2-mediated cellular interaction induced by EMF exposure might play an important role in the osteogenic differ- entiation of BMSCs.
基金supported by grants from the Chinese High-Tech Research&Development(863)Program(2013AA020102 and 2012AA020204)Science Fund for Creative Research Groups of the National Natural Science Foundation of China(81121002)+3 种基金Fundamental Research Funds for the Central Universities(2014XZZX008 and 2014FZA7010)Zhejiang CTM Science and Technology Project(2011ZB061)Zhejiang Health Science Foundation(2016KYA148)the National Health and Medical Research Council of Australia and Cancer Council of Western Australia
文摘BACKGROUND: Differentiation of liver progenitor cells(LPCs) to functional hepatocytes holds great potential to develop new strategies for hepatocyte transplantation and the screening of drug-induced cytotoxicity. However, reports on the efficient and convenient hepatic differentiation of LPCs to hepatocytes are few. The present study aims to investigate the possibility of generating functional hepatocytes from LPCs in an indirect co-culture system.METHODS: Mouse LPCs were co-cultured in Transwell plates with an immortalized human hepatic stellate cell line(HSCLi) we previously established. The morphology, expression of hepatic markers, and functions of mouse LPC-derived cells were monitored and compared with those of conventionally cultured LPCs. RESULTS: Co-culturing with HSC-Li cells induced differentiation of mouse LPCs into functional hepatocyte-like cells. The differentiated cells were morphologically transformed into hepatocyte-like cells 3 days after co-culture initiation. In addition, the differentiated cells expressed liver-specific genes and possessed hepatic functions, including glycogen storage, lowdensity lipoprotein uptake, albumin secretion, urea synthesis, and cytochrome P450 1A2 enzymatic activity.CONCLUSIONS: Our method, which employs indirect co-culture with HSC-Li cells, can efficiently induce the differentiation of LPCs into functional hepatocytes. This finding suggests that this co-culture system can be a useful method for the efficient generation of functional hepatocytes from LPCs.
基金supported by a research grant from the Ministry of Education,Culture,Research and Technology(KEMENDIKBUD RISTEK)number NKB-022/UN2.RST/HKP.05.00/2021 awarded to AB.
文摘Objective:To characterize the infection patterns and growth characteristics of the Zika virus(ZIKV)strain JMB-185 from Indonesia in various mammalian cell lines.Methods:ZIKV was grown in human(A549,HEK293,HepG2,Huh7,Jurkat,and THP-1)and non-human mammalian(RAW264.7,Vero,and Vero76)cell lines.Viral replication kinetics were measured using plaque assay,while intra-and extracellular viral RNA concentrations were assessed using RT-PCR.Flow cytometry was used to quantify the infected cells and cell viability was measured using an MTT assay.The ability of ZIKV to infect cell lines was visualized using a fluorescence immunostaining assay.Results:This ZIKV strain preferentially infected the lung,kidney,and liver cell lines A549,HEK293,Huh7,Vero,and Vero76,but not the immune cells Jurkat,RAW264.7,and THP-1.By contrast,the ZIKV showed no sign of infection in HepG2 cells,while maintaining viral titer over 3 days post-infection,with no infection recorded in immunostaining,no increase in viral RNA,and no indication of cell deterioration.Conclusions:The Indonesian ZIKV strain has a similar infection profile as other strains,except for its poor infectivity on HepG2 cells.Information on the growth characteristics of Indonesia ZIKV will help expand our understanding of the biology of ZIKV which will be useful for various applications including antiviral discovery.
基金the National Natural Science Foundation of China, No. 30070775 a grant from the Scientific Research Foundation of Liaoning Department of Education, No. 2005L5371
文摘BACKGROUND: Animal experiments and clinical studies about tissue engineering method applied to repair nerve injury mainly focus on seeking ideal artificial nerve grafts, nerve conduit and seed cells. Autologous nerve, allogeneic nerve and xenogeneic nerve are used to bridge nerve defects, it is one of the methods to promote the repair of nerve injury by culturing and growing Schwann cells, which can secrete various neurotrophic factor activities, in the grafts. OBJECTIVE : To observe the effect of acellular nerve grafts co-cultured with Schwann cells in repairing defects of sciatic nerve. DESIGN: An observational comparative study.SETTING: Tissue Engineering Laboratory of China Medical University.MATERIALS: The experiment was carried out in the Tissue Engineering Laboratory of China Medical University between April 2004 and April 2005. Forty neonatal Sprague-Dawley rats of 5-8 days (either males or females) and 24 male Wistar rats of 180-220 g were provided by the experimental animal center of China Medical University. METHODS: ① Culture of Schwann cells: The bilateral sciatic nerves and branchial plexus were isolated from the 40 neonatal SD rats. The sciatic nerves were enzymatically digested with collagenase and dispase, isolatd, purified and cultured with the method of speed-difference adhersion, and identified with the SABC immunohistochemical method. ② Model establishment: In vitro Schwann cells were microinjected into 10-mm long acellular nerve grafts repairing a surgically created gap in the rat sciatic nerve. According to the different grafted methods, the animals were randomly divided into three groups: autografts (n=8), acellular nerve grafts (n=8), or acellular nerve grafts with Schwann cells (n=8). ③ The regenerated nerve fiber number and average diameter of myeline sheath after culture were statistically anlayzed. MAIN OUTCOME MEASURES: ① The regenerated nerve ultrastructure, total number and density of myelinated nerve fibers, and the thickness of myeline sheath were observed under electron microscope. ② The images were processed with the Mias-1000 imaging analytical system to calculate the number of myelinated nerve fibers, and the thickness of myeline sheath. RESULTS: All the 24 Wistar rats were involved in the analysis of results. ① Results observed under transmission electron microscope: The regenerated myelinated nerve fibers in the group of acellular nerve grafts with Schwann cells were more even than those in the group of acellular nerve grafts, the number of myelinated nerve fibers and thickness of myelin sheath were close to those in the allografts group (P 〉 0.05), but significantly different from those in the group of acellular nerve grafts (P 〈 0.05). ② Results observed under scanning electron microscope: A great amount of Schwann cells with two polars were observed in the group of grafts with Schwann cells, the feature of cultured Schwann cells showed shoulder by shoulder, head to head. ③ The number of myelinated nerve fibers and thickness of myelin sheath analyzed by Mias-1000 imaging system in the group of acellular nerve grafts with Schwann cells were close to those in the autografts group (P 〉 0.05), but significantly different from those in the group of acellular nerve grafts (P 〈 0.05).CONCLUSION: Host axonal regeneration is significantly increased after implant of acellular nerve grafts. Acellular nerve grafts with Schwann cells offers a novel approach for repairing the gap of nerve defect.
基金supported by the Key University Natural Science Research Project of Anhui Province of China,No.KJ2016A870
文摘Schwann cells play an important role in the peripheral nervous system, especially in nerve repair following injury, so artificial nerve regen- eration requires an effective technique for obtaining purified Schwann cells. In vivo and in vitro pre-degeneration of peripheral nerves have been shown to obtain high-purity Schwann cells. We believed that in vitro pre-degeneration was simple and controllable, and available for the clinic. Thus, we co-cultured the crushed sciatic nerves with bone marrow-derived cells in vitro. Results demonstrated that, 3 hours after injury, a large number of mononuclear cells moved to the crushed nerves and a large number of bone marrow-derived cells infiltrated the nerve segments. These changes promoted the degradation of the nerve segments, and the dedifferentiation and proliferation of Schwann cells. Neural cell adhesion molecule and glial fibrillary acidic protein expression were detected in the crushed nerves. Schwann cell yield was 9.08 ± 2.01 ×104/mg. The purity of primary cultured Schwann cells was 88.4 ± 5.79%. These indicate a successful new method for ob- taining Schwann cells of high purity and yield from adult crushed sciatic nerve using bone marrow-derived cells.
基金Supported by Higher Education Commission,Islamabad,Pakistan grant,No.20-17590/NRPU/R&D/HEC/20212021.
文摘BACKGROUND Stem cells are undifferentiated cells that possess the potential for self-renewal with the capacity to differentiate into multiple lineages.In humans,their limited numbers pose a challenge in fulfilling the necessary demands for the regeneration and repair of damaged tissues or organs.Studies suggested that mesenchymal stem cells(MSCs),necessary for repair and regeneration via transplantation,require doses ranging from 10 to 400 million cells.Furthermore,the limited expansion of MSCs restricts their therapeutic application.AIM To optimize a novel protocol to achieve qualitative and quantitative expansion of MSCs to reach the targeted number of cells for cellular transplantation and minimize the limitations in stem cell therapy protocols.METHODS Human umbilical cord(hUC)tissue derived MSCs were obtained and re-cultured.These cultured cells were subjected to the following evaluation pro-cedures:Immunophenotyping,immunocytochemical staining,trilineage differentiation,population doubling time and number,gene expression markers for proliferation,cell cycle progression,senescence-associatedβ-galactosidase assay,human telomerase reverse transcriptase(hTERT)expression,mycoplasma,cytomegalovirus and endotoxin detection.RESULTS Analysis of pluripotent gene markers Oct4,Sox2,and Nanog in recultured hUC-MSC revealed no significant differences.The immunophenotypic markers CD90,CD73,CD105,CD44,vimentin,CD29,Stro-1,and Lin28 were positively expressed by these recultured expanded MSCs,and were found negative for CD34,CD11b,CD19,CD45,and HLA-DR.The recultured hUC-MSC population continued to expand through passage 15.Proliferative gene expression of Pax6,BMP2,and TGFb1 showed no significant variation between recultured hUC-MSC groups.Nevertheless,a significant increase(P<0.001)in the mitotic phase of the cell cycle was observed in recultured hUC-MSCs.Cellular senescence markers(hTERT expression andβ-galactosidase activity)did not show any negative effect on recultured hUC-MSCs.Additionally,quality control assessments consistently confirmed the absence of mycoplasma,cytomegalovirus,and endotoxin contamination.CONCLUSION This study proposes the development of a novel protocol for efficiently expanding stem cell population.This would address the growing demand for larger stem cell doses needed for cellular transplantation and will significantly improve the feasibility of stem cell based therapies.
文摘Studying the skin care efficacy of recombinant humanized collagen based on in vitro level.The stability of the recombinant humanized collagen was first analyzed by treating at different temperatures,then its skincare efficacy based on in vitro level was evaluated by detecting the inhibition rate of elastase,the inhibition rate of collagenase,the protein content of type I collagen in human fibroblasts,the inhibition of reactive oxygen species(ROS)with human keratinocytes,and the effects of the recombinant humanized collagen on the expression of hyaluronic acid(HA),filaggrin(FLG)and transglutaminase 1(TGM1)in keratinocytes.The results showed that recombinant humanized collagen was able to maintain stability at temperatures below 70℃.With regard to its skincare efficacy,recombinant humanized collagen could inhibit elastase and collagenase activities and promote the increase of type I collagen content in human fibroblasts.It also showed good inhibition of ROS in keratinocytes in vitro and could increase the expression of HA,FLG,and TGM1 in keratinocytes.In short,the recombinant humanized collagen exhibited a favourable skin care effect in vitro level.This study proved that it has potential firming,anti-wrinkle,moisturizing,and repairing efficacy,and is a valuable cosmetic raw material.
基金Baoding Science and Technology Program Project(Grant No.2241ZF120)Hebei Health Care Commission Scientific Research Funding Project(Grant No.20170827)+1 种基金Funding Project of Affiliated Hospital of Hebei University(Grant No.2016Q016)Funding Project of Affiliated Hospital of Hebei University(No.2022QC66).
文摘Objective:To investigate the effect of abnormal ovarian granulosa cell metabolism on in vitro fertilization and embryo transfer(IVF-ET)outcomes in obese polycystic ovary syndrome(PCOS)patients.Methods:Patients with PCOS who met the study criteria were screened according to the inclusion criteria.A total of 32 patients with obese PCOS were recruited into the study group,and 39 patients with non-obese PCOS were recruited into the control group.The general data(age,body mass index,and years of infertility),insulin resistance index(HOMA-IR),follicle-stimulating hormone(FSH),luteinizing hormone(LH),granulosa cell mitochondrial function,and IVF-ET outcome of patients in the study group and control group were retrospectively analyzed.Results:The differences in age and years of infertility between the study group and the control group were insignificant(P>0.05),and the body mass index(BMI)of the study group and control group was 30.5±1.24 kg/m2 and 22.3±1.12 kg/m2,respectively,in which the difference was statistically significant(P<0.05);the HOMA-IR of the study group was significantly higher than that of the control group(P<0.05);the reactive oxygen species(ROS)in the study group was significantly higher than that in the control group(P<0.05),and the ATP content in the study group was significantly lower than that in the control group(P<0.05);comparing the FSH and LH levels between the two groups,the difference was not statistically significant(P>0.05);the rate of IVF-ET failure was significantly higher in the study group than in the control group.Conclusion:PCOS is a complex endocrine disorder,and obesity is one of the independent risk factors for the development of PCOS.