The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties ...The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties of organic coatings.This study compared a bare epoxy coating with one containing zinc phosphate corrosion inhibitors,both applied on ACM sensors,to observe their corrosion protection properties over time.Coatings with artificial damage via scratches were exposed to immersion and alternating dry and wet environments,which allowed for monitoring galvanic corrosion currents in real-time.Throughout the corrosion tests,the ACM currents of the zinc phosphate/epoxy coating were considerably lower than those of the blank epoxy coating.The trend in ACM current variations closely matched the results obtained from regular electrochemical tests and surface analysis.This alignment highlights the potential of the ACM technique in evaluating the corrosion protection capabilities of organic coatings.Compared with the blank epoxy coating,the zinc phosphate/epoxy coating showed much-decreased ACM current values that confirmed the effective inhibition of zinc phosphate against steel corrosion beneath the damaged coating.展开更多
The deformation monitoring of long-span railway bridges is significant to ensure the safety of human life and property.The interferometric synthetic aperture radar(In SAR)technology has the advantage of high accuracy ...The deformation monitoring of long-span railway bridges is significant to ensure the safety of human life and property.The interferometric synthetic aperture radar(In SAR)technology has the advantage of high accuracy in bridge deformation monitoring.This study monitored the deformation of the Ganjiang Super Bridge based on the small baseline subsets(SBAS)In SAR technology and Sentinel-1A data.We analyzed the deformation results combined with bridge structure,temperature,and riverbed sediment scouring.The results are as follows:(1)The Ganjiang Super Bridge area is stable overall,with deformation rates ranging from-15.6 mm/yr to 10.7 mm/yr(2)The settlement of the Ganjiang Super Bridge deck gradually increases from the bridge tower toward the main span,which conforms to the typical deformation pattern of a cable-stayed bridge.(3)The sediment scouring from the riverbed cause the serious settlement on the bridge’s east side compared with that on the west side.(4)The bridge deformation negatively correlates with temperature,with a faster settlement at a higher temperature and a slow rebound trend at a lower temperature.The study findings can provide scientific data support for the health monitoring of long-span railway bridges.展开更多
Mangroves are indispensable to coastlines,maintaining biodiversity,and mitigating climate change.Therefore,improving the accuracy of mangrove information identification is crucial for their ecological protection.Aimin...Mangroves are indispensable to coastlines,maintaining biodiversity,and mitigating climate change.Therefore,improving the accuracy of mangrove information identification is crucial for their ecological protection.Aiming at the limited morphological information of synthetic aperture radar(SAR)images,which is greatly interfered by noise,and the susceptibility of optical images to weather and lighting conditions,this paper proposes a pixel-level weighted fusion method for SAR and optical images.Image fusion enhanced the target features and made mangrove monitoring more comprehensive and accurate.To address the problem of high similarity between mangrove forests and other forests,this paper is based on the U-Net convolutional neural network,and an attention mechanism is added in the feature extraction stage to make the model pay more attention to the mangrove vegetation area in the image.In order to accelerate the convergence and normalize the input,batch normalization(BN)layer and Dropout layer are added after each convolutional layer.Since mangroves are a minority class in the image,an improved cross-entropy loss function is introduced in this paper to improve the model’s ability to recognize mangroves.The AttU-Net model for mangrove recognition in high similarity environments is thus constructed based on the fused images.Through comparison experiments,the overall accuracy of the improved U-Net model trained from the fused images to recognize the predicted regions is significantly improved.Based on the fused images,the recognition results of the AttU-Net model proposed in this paper are compared with its benchmark model,U-Net,and the Dense-Net,Res-Net,and Seg-Net methods.The AttU-Net model captured mangroves’complex structures and textural features in images more effectively.The average OA,F1-score,and Kappa coefficient in the four tested regions were 94.406%,90.006%,and 84.045%,which were significantly higher than several other methods.This method can provide some technical support for the monitoring and protection of mangrove ecosystems.展开更多
Automatically detecting Ulva prolifera(U.prolifera)in rainy and cloudy weather using remote sensing imagery has been a long-standing problem.Here,we address this challenge by combining high-resolution Synthetic Apertu...Automatically detecting Ulva prolifera(U.prolifera)in rainy and cloudy weather using remote sensing imagery has been a long-standing problem.Here,we address this challenge by combining high-resolution Synthetic Aperture Radar(SAR)imagery with the machine learning,and detect the U.prolifera of the South Yellow Sea of China(SYS)in 2021.The findings indicate that the Random Forest model can accurately and robustly detect U.prolifera,even in the presence of complex ocean backgrounds and speckle noise.Visual inspection confirmed that the method successfully identified the majority of pixels containing U.prolifera without misidentifying noise pixels or seawater pixels as U.prolifera.Additionally,the method demonstrated consistent performance across different im-ages,with an average Area Under Curve(AUC)of 0.930(+0.028).The analysis yielded an overall accuracy of over 96%,with an average Kappa coefficient of 0.941(+0.038).Compared to the traditional thresholding method,Random Forest model has a lower estimation error of 14.81%.Practical application indicates that this method can be used in the detection of unprecedented U.prolifera in 2021 to derive continuous spatiotemporal changes.This study provides a potential new method to detect U.prolifera and enhances our under-standing of macroalgal outbreaks in the marine environment.展开更多
Objective: The COVID-19 pandemic has highlighted the need to strengthen diagnosis and genomic surveillance capacities. In 2021, Central African managed five waves of COVID-19 by integrating genomic surveillance into t...Objective: The COVID-19 pandemic has highlighted the need to strengthen diagnosis and genomic surveillance capacities. In 2021, Central African managed five waves of COVID-19 by integrating genomic surveillance into their health monitoring system. This study sought to report surveillance data from the National Laboratory of Clinical Biology and Public Health and describe the circulation of SARS-CoV-2 variants. Materials and Methods: This retrospective, descriptive observational study spans three years, from April 2020 to November 2023. It was conducted on a population of consenting volunteers from across the Central African Republic, who were tested using RT-PCR on nasopharyngeal samples. Data with sufficient information were obtained from the National Laboratory of Clinical Biology and Public Health (LNBCSP) databases. Sequencing was largely carried out at the National Institute of Biomedical Research (INRB) in Kinshasa until May 2023, and subsequently at the LNBCSP. Results and Discussion: Out of 97,864 RT-PCR tests performed, 9,764 were positive, resulting in a prevalence of 9.98%. The average age of the patients was 39.97 years ± 13.76, and the male-to-female sex ratio was 2.12. RT-PCR test positivity was significantly associated with age (p = 0.001), sex (p = 0.013) and clinical manifestations. Ten variants circulated during the five recorded waves, with Omicron (B.1.1.529), Delta (B.1.617.2) variants being predominant. Notably, the B.1.620 and B.640 variants were prominent during the second wave. Conclusion: This retrospective study provides key insights into the COVID-19 pandemic in the CAR. It identifies risk factors and details the circulation of various SARS-CoV-2 variants. Enhancing national genomic surveillance capacities would enable the country to better respond to future pandemic challenges.展开更多
The high resolution Terra SAR-X dataset was employed with DIn SAR and persistent scatterer interferometry(PSI) technique for subsidence monitoring in a mountainous area. For DInS AR technique, the generally used SRT...The high resolution Terra SAR-X dataset was employed with DIn SAR and persistent scatterer interferometry(PSI) technique for subsidence monitoring in a mountainous area. For DInS AR technique, the generally used SRTM and relief-DEM, which was derived from aerial topographic map, were used to evaluate the influence of external DEM. The results show that SRTM could not fully compensate the complex topography of the research area. The corner reflectors installed during the acquisition of SAR dataset were used to estimate the accuracy of geocoding. The terrain corrected geocoding results based on relief-DEM were much better than using SRTM, with the root mean square error(RMSE) being 6.35 m in X direction and 11.65 m in Y direction(both in UTM projection), around one pixel of the multilooked intensity image to be geocoded. For PSI technique, the results from time-series analysis of multi-baseline differential interferograms were integrated to restrict only persistent scatterer candidates near the boundary of subsiding area for regression analysis. The results demonstrate that PSI can refine the boundary of subsidence, which could then be used to derive some angular parameters to help people to learn the law of subsidence caused by repeated excavation in this area.展开更多
Synthetic Aperture Radar(SAR) is a more effective remote sensing data source for rice recognition and monitoring than optical remote sensing in the regions with more wet and cloudy sky due to its all-weather, all-ti...Synthetic Aperture Radar(SAR) is a more effective remote sensing data source for rice recognition and monitoring than optical remote sensing in the regions with more wet and cloudy sky due to its all-weather, all-time, high resolution and wide covering characteristics. This paper summarizes SAR types and their feature used for rice study, introduces the backscattering model for rice monitoring, and analyses the main factors influencing backscattering coefficient. The studies of rice recognition and monitoring based on SAR in domestic and abroad are reviewed and the futures in the related areas are prospected.展开更多
Differential interferometric synthetic aperture radar (DInSAR) technology is a new method to monitor the dynamic surface subsidence. It can monitor the large scope of dynamic deformation process of surface subsidenc...Differential interferometric synthetic aperture radar (DInSAR) technology is a new method to monitor the dynamic surface subsidence. It can monitor the large scope of dynamic deformation process of surface subsidence basin and better reflect the surface subsidence form in different stages. But under the influence of factors such as noise and other factors, the tilt and horizontal deformation curves regularity calculated by DInSAR data are poorer and the actual deviation is larger. The tilt and horizontal deformations are the important indices for the safety of surface objects protection. Numerical simulation method was used to study the dynamic deformation of LW32 of West Cliff colliery in Australia based on the DInSAR monitoring data. The result indicates that the subsidence curves of two methods fit well and the correlation coefficient is more than 95%. The other deformations calculated by numerical simulation results are close to the theory form. Therefore, considering the influence, the surface and its subsidiary structures and buildings due to mining, the numerical simulation method based on the DInSAR data can reveal the distribution rules of the surface dynamic deformation values and supply the shortcomings of DInSAR technology. The research shows that the method has good applicability and can provide reference for similar situation.展开更多
Diabetic kidney disease(DKD)is a common complication of diabetes mellitus that contributes to the risk of end-stage kidney disease(ESKD).Wide glycemic var-iations,such as hypoglycemia and hyperglycemia,are broadly fou...Diabetic kidney disease(DKD)is a common complication of diabetes mellitus that contributes to the risk of end-stage kidney disease(ESKD).Wide glycemic var-iations,such as hypoglycemia and hyperglycemia,are broadly found in diabetic patients with DKD and especially ESKD,as a result of impaired renal metabolism.It is essential to monitor glycemia for effective management of DKD.Hemoglobin A1c(HbA1c)has long been considered as the gold standard for monitoring glycemia for>3 months.However,assessment of HbA1c has some bias as it is susceptible to factors such as anemia and liver or kidney dysfunction.Continuous glucose monitoring(CGM)has provided new insights on glycemic assessment and management.CGM directly measures glucose level in interstitial fluid,reports real-time or retrospective glucose concentration,and provides multiple glycemic metrics.It avoids the pitfalls of HbA1c in some contexts,and may serve as a precise alternative to estimation of mean glucose and glycemic variability.Emerging studies have demonstrated the merits of CGM for precise monitoring,which allows fine-tuning of glycemic management in diabetic patients.Therefore,CGM technology has the potential for better glycemic monitoring in DKD patients.More research is needed to explore its application and management in different stages of DKD,including hemodialysis,peritoneal dialysis and kidney transplantation.展开更多
The spread of tuberculosis(TB),especially multidrug-resistant TB and extensively drug-resistant TB,has strongly motivated the research and development of new anti-TB drugs.New strategies to facilitate drug combination...The spread of tuberculosis(TB),especially multidrug-resistant TB and extensively drug-resistant TB,has strongly motivated the research and development of new anti-TB drugs.New strategies to facilitate drug combinations,including pharmacokinetics-guided dose optimization and toxicology studies of first-and second-line anti-TB drugs have also been introduced and recommended.Liquid chromatography-mass spectrometry(LC-MS)has arguably become the gold standard in the analysis of both endo-and exo-genous compounds.This technique has been applied successfully not only for therapeutic drug monitoring(TDM)but also for pharmacometabolomics analysis.TDM improves the effectiveness of treatment,reduces adverse drug reactions,and the likelihood of drug resistance development in TB patients by determining dosage regimens that produce concentrations within the therapeutic target window.Based on TDM,the dose would be optimized individually to achieve favorable outcomes.Pharmacometabolomics is essential in generating and validating hypotheses regarding the metabolism of anti-TB drugs,aiding in the discovery of potential biomarkers for TB diagnostics,treatment monitoring,and outcome evaluation.This article highlighted the current progresses in TDM of anti-TB drugs based on LC-MS bioassay in the last two decades.Besides,we discussed the advantages and disadvantages of this technique in practical use.The pressing need for non-invasive sampling approaches and stability studies of anti-TB drugs was highlighted.Lastly,we provided perspectives on the prospects of combining LC-MS-based TDM and pharmacometabolomics with other advanced strategies(pharmacometrics,drug and vaccine developments,machine learning/artificial intelligence,among others)to encapsulate in an all-inclusive approach to improve treatment outcomes of TB patients.展开更多
Anti-slide piles are one of the most important reinforcement structures against landslides,and evalu-ating the working conditions is of great significance for landslide mitigation.The widely adopted analytical methods...Anti-slide piles are one of the most important reinforcement structures against landslides,and evalu-ating the working conditions is of great significance for landslide mitigation.The widely adopted analytical methods of pile internal forces include cantilever beam method and elastic foundation beam method.However,due to many assumptions involved in calculation,the analytical models cannot be fully applicable to complex site situations,e.g.landslides with multi-sliding surfaces and pile-soil interface separation as discussed herein.In view of this,the combination of distributed fiber optic sensing(DFOS)and strain-internal force conversion methods was proposed to evaluate the working conditions of an anti-sliding pile in a typical retrogressive landslide in the Three Gorges reservoir area,China.Brillouin optical time domain reflectometry(BOTDR)was utilized to monitor the strain distri-bution along the pile.Next,by analyzing the relative deformation between the pile and its adjacent inclinometer,the pile-soil interface separation was profiled.Finally,the internal forces of the anti-slide pile were derived based on the strain-internal force conversion method.According to the ratio of calculated internal forces to the design values,the working conditions of the anti-slide pile could be evaluated.The results demonstrated that the proposed method could reveal the deformation pattern of the anti-slide pile system,and can quantitatively evaluate its working conditions.展开更多
The real-time dynamic deformation monitoring of offshore platforms under environmental excitation is crucial to their safe operation.Although Global Navigation Satellite System-Precise Point Positioning(GNSS-PPP)has b...The real-time dynamic deformation monitoring of offshore platforms under environmental excitation is crucial to their safe operation.Although Global Navigation Satellite System-Precise Point Positioning(GNSS-PPP)has been considered for this purpose,its monitoring accuracy is relatively low.Moreover,the influence of background noise on the dynamic monitoring accuracy of GNSS-PPP remains unclear.Hence,it is imperative to further validate the feasibility of GNSS-PPP for deformation monitoring of offshore platforms.To address these concerns,vibration table tests with different amplitudes and frequencies are conducted.The results demonstrate that GNSS-PPP can effectively monitor horizontal vibration displacement as low as±30 mm,which is consistent with GNSS-RTK.Furthermore,the spectral characteristic of background noise in GNSS-PPP is similar to that of GNSS-RTK(Real Time Kinematic).Building on this observation,an improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)has been proposed to de-noise the data and enhance the dynamic monitoring accuracy of GNSS-PPP.Field monitoring application research is also undertaken,successfully extracting and analyzing the dynamic deformation of an offshore platform structure under environmental excitation using GNSS-PPP monitoring in conjunction with improved CEEMDAN de-noising.By comparing the de-noised dynamic deformation trajectories of the offshore platform during different periods,it is observed that the platform exhibits reversible alternating vibration responses under environmental excitation,with more pronounced displacement deformation in the direction of load action.The research results confirm the feasibility and potential of GNSS-PPP for dynamic deformation monitoring of offshore platforms.展开更多
Considering the joint effects of various factors such as temporal baseline, spatial baseline, thermal noise, the difference of Doppler centroid frequency and the error of data processing on the interference correlatio...Considering the joint effects of various factors such as temporal baseline, spatial baseline, thermal noise, the difference of Doppler centroid frequency and the error of data processing on the interference correlation, an optimum selection method of common master images for ground deformation monitoring based on the permanent scatterer and differential SAR interferometry (PS-DInSAR) technique is proposed, in which the joint correlation coeficient is used as the evaluation function. The principle and realization method of PS-DInSAR technology is introduced, the factors affecting the DInSAR correlation are analysed, and the joint correlation function model and its solution are presented. Finally an experiment for the optimum selection of common master images is performed by using 25 SAR images over Shanghai taken by the ERS-1/2 as test data. The results indicate that the optimum selection method for PS-DInSAR common master images is effective and reliable.展开更多
Skin-attachable electronics have garnered considerable research attention in health monitoring and artificial intelligence domains,whereas susceptibility to elec-tromagnetic interference(EMI),heat accumulation issues,...Skin-attachable electronics have garnered considerable research attention in health monitoring and artificial intelligence domains,whereas susceptibility to elec-tromagnetic interference(EMI),heat accumulation issues,and ultraviolet(UV)-induced aging problems pose significant constraints on their potential applications.Here,an ultra-elas-tic,highly breathable,and thermal-comfortable epidermal sensor with exceptional UV-EMI shielding performance and remarkable thermal conductivity is developed for high-fidelity monitoring of multiple human electrophysiological signals.Via filling the elastomeric microfibers with thermally conductive boron nitride nanoparticles and bridging the insulating fiber interfaces by plating Ag nanoparticles(NPs),an interwoven thermal con-ducting fiber network(0.72 W m^(-1) K^(-1))is constructed benefiting from the seamless thermal interfaces,facilitating unimpeded heat dissipation for comfort skin wearing.More excitingly,the elastomeric fiber substrates simultaneously achieve outstanding UV protection(UPF=143.1)and EMI shielding(SET>65,X-band)capabilities owing to the high electrical conductivity and surface plasmon resonance of Ag NPs.Furthermore,an electronic textile prepared by printing liquid metal on the UV-EMI shielding and thermally conductive nonwoven textile is finally utilized as an advanced epidermal sensor,which succeeds in monitoring different electrophysiological signals under vigorous electromagnetic interference.This research paves the way for developing protective and environmentally adaptive epidermal electronics for next-generation health regulation.展开更多
Monitoring seismicity in real time provides significant benefits for timely earthquake warning and analyses.In this study,we propose an automatic workflow based on machine learning(ML)to monitor seismicity in the sout...Monitoring seismicity in real time provides significant benefits for timely earthquake warning and analyses.In this study,we propose an automatic workflow based on machine learning(ML)to monitor seismicity in the southern Sichuan Basin of China.This workflow includes coherent event detection,phase picking,and earthquake location using three-component data from a seismic network.By combining Phase Net,we develop an ML-based earthquake location model called Phase Loc,to conduct real-time monitoring of the local seismicity.The approach allows us to use synthetic samples covering the entire study area to train Phase Loc,addressing the problems of insufficient data samples,imbalanced data distribution,and unreliable labels when training with observed data.We apply the trained model to observed data recorded in the southern Sichuan Basin,China,between September 2018 and March 2019.The results show that the average differences in latitude,longitude,and depth are 5.7 km,6.1 km,and 2 km,respectively,compared to the reference catalog.Phase Loc combines all available phase information to make fast and reliable predictions,even if only a few phases are detected and picked.The proposed workflow may help real-time seismic monitoring in other regions as well.展开更多
Natural disaster risk monitoring is an important task for disaster prevention and reduction.In the case of immovable cultural relics,however,the feedback mechanism,risk factors,monitoring logic,and monitoring indicato...Natural disaster risk monitoring is an important task for disaster prevention and reduction.In the case of immovable cultural relics,however,the feedback mechanism,risk factors,monitoring logic,and monitoring indicators of natural disaster risk monitoring are complex.How to achieve intelligent perception and monitoring of natural disaster risk for immovable cultural relics has always been a focus and a challenge for researchers.Based on the analysis of the concepts and issues related to the natural disaster risk of immovable cultural relics,this paper proposes a framework for natural disaster risk monitoring for immovable cultural relics based on the digital twin.This framework focuses on risk monitoring,including the physical entities of natural disaster risk for immovable cultural relics,monitoring indicators,and virtual entity construction.A platform for monitoring the natural disaster risk of immovable cultural relics is proposed.Using the Puzhou Ancient City Site as a test bed,the proposed concept can be used for monitoring the natural disaster risk of immovable cultural relics at different scales.展开更多
This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualis...This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualise process signals in real-time,elucidating the dynamics of melt pools and vapour plumes under varying laser power conditions specifically between 40 W and 60 W.Detailed morphological analysis was performed using Scanning-Electron Microscopy(SEM),demonstrating a critical correlation between laser power and pore formation.Lower laser power led to increased pore coverage,whereas a denser structure was observed at higher laser power.This laser power influence on porosity was further confirmed via Optical Microscopy(OM)conducted on both top and cross-sectional surfaces of the samples.An increase in laser power resulted in a decrease in pore coverage and pore size,potentially leading to a denser printed part of Mg alloy.X-ray Computed Tomography(XCT)augmented these findings by providing a 3D volumetric representation of the sample internal structure,revealing an inverse relationship between laser power and overall pore volume.Lower laser power appeared to favour the formation of interconnected pores,while a reduction in interconnected pores and an increase in isolated pores were observed at higher power.The interplay between melt pool size,vapour plume effects,and laser power was found to significantly influence the resulting porosity,indicating a need for effective management of these factors to optimise the SLM process of Mg alloys.展开更多
For harmful ground collapse and its special deformation characteristics,which causes SAR images to lose coherence,InSAR technology cannot be applied in monitoring surface collapse in mining areas.We took the Shenmu mi...For harmful ground collapse and its special deformation characteristics,which causes SAR images to lose coherence,InSAR technology cannot be applied in monitoring surface collapse in mining areas.We took the Shenmu mining area in northern Shaanxi province as an example to study subsidence in mining areas and proposed an interpolated multi-view processing method.The results show that this method can improve the detectable deformation gradient to a certain extent and can become a good reference value for monitoring large scale gradient deformation.We also analyzed the rules for temporal decorrelation in mining.展开更多
Non-contact remote sensing techniques,such as terrestrial laser scanning(TLS)and unmanned aerial vehicle(UAV)photogrammetry,have been globally applied for landslide monitoring in high and steep mountainous areas.These...Non-contact remote sensing techniques,such as terrestrial laser scanning(TLS)and unmanned aerial vehicle(UAV)photogrammetry,have been globally applied for landslide monitoring in high and steep mountainous areas.These techniques acquire terrain data and enable ground deformation monitoring.However,practical application of these technologies still faces many difficulties due to complex terrain,limited access and dense vegetation.For instance,monitoring high and steep slopes can obstruct the TLS sightline,and the accuracy of the UAV model may be compromised by absence of ground control points(GCPs).This paper proposes a TLS-and UAV-based method for monitoring landslide deformation in high mountain valleys using traditional real-time kinematics(RTK)-based control points(RCPs),low-precision TLS-based control points(TCPs)and assumed control points(ACPs)to achieve high-precision surface deformation analysis under obstructed vision and impassable conditions.The effects of GCP accuracy,GCP quantity and automatic tie point(ATP)quantity on the accuracy of UAV modeling and surface deformation analysis were comprehensively analyzed.The results show that,the proposed method allows for the monitoring accuracy of landslides to exceed the accuracy of the GCPs themselves by adding additional low-accuracy GCPs.The proposed method was implemented for monitoring the Xinhua landslide in Baoxing County,China,and was validated against data from multiple sources.展开更多
Diabetes is a condition that can come to the surface at any point throughout a person’s life. Although Type 1 and Type 2 Diabetes have different triggers that cause them to arise, a person can experience similar comp...Diabetes is a condition that can come to the surface at any point throughout a person’s life. Although Type 1 and Type 2 Diabetes have different triggers that cause them to arise, a person can experience similar complications from either if not monitored and treated accordingly. Through the Diabetes Control and Complications Trial, it was found that a significant way to monitor diabetes is through glucose levels in a person’s body. The research surrounding glucose monitoring dates to the mid-1800s, with the first successful reagent for glucose testing being developed in 1908. Since then, glucose sensing has become one of the most rapidly growing areas of research and development in biosensor technology, creating a competitive market for more advanced, accurate, and convenient glucose monitoring. This article reviews the history of biosensors used for glucose monitoring, and major advancements in biosensor technology to enhance performance and improve quality of life for patients with diabetes.展开更多
基金financially supported by the National Natural Science Foundation of China(No.52371049)the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology(YESS,No.2020QNRC001)the National Science and Technology Resources Investigation Program of China(Nos.2021FY100603 and 2019FY101404)。
文摘The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties of organic coatings.This study compared a bare epoxy coating with one containing zinc phosphate corrosion inhibitors,both applied on ACM sensors,to observe their corrosion protection properties over time.Coatings with artificial damage via scratches were exposed to immersion and alternating dry and wet environments,which allowed for monitoring galvanic corrosion currents in real-time.Throughout the corrosion tests,the ACM currents of the zinc phosphate/epoxy coating were considerably lower than those of the blank epoxy coating.The trend in ACM current variations closely matched the results obtained from regular electrochemical tests and surface analysis.This alignment highlights the potential of the ACM technique in evaluating the corrosion protection capabilities of organic coatings.Compared with the blank epoxy coating,the zinc phosphate/epoxy coating showed much-decreased ACM current values that confirmed the effective inhibition of zinc phosphate against steel corrosion beneath the damaged coating.
基金supported by the National Natural Science Foundation of China(Grant Nos.42264004,42274033,and 41904012)the Open Fund of Hubei Luojia Laboratory(Grant Nos.2201000049 and 230100018)+2 种基金the Guangxi Universities’1,000 Young and Middle-aged Backbone Teachers Training Program,the Fundamental Research Funds for Central Universities(Grant No.2042022kf1197)the Natural Science Foundation of Hubei(Grant No.2020CFB282)the China Postdoctoral Science Foundation(Grant Nos.2020T130482,2018M630879)。
文摘The deformation monitoring of long-span railway bridges is significant to ensure the safety of human life and property.The interferometric synthetic aperture radar(In SAR)technology has the advantage of high accuracy in bridge deformation monitoring.This study monitored the deformation of the Ganjiang Super Bridge based on the small baseline subsets(SBAS)In SAR technology and Sentinel-1A data.We analyzed the deformation results combined with bridge structure,temperature,and riverbed sediment scouring.The results are as follows:(1)The Ganjiang Super Bridge area is stable overall,with deformation rates ranging from-15.6 mm/yr to 10.7 mm/yr(2)The settlement of the Ganjiang Super Bridge deck gradually increases from the bridge tower toward the main span,which conforms to the typical deformation pattern of a cable-stayed bridge.(3)The sediment scouring from the riverbed cause the serious settlement on the bridge’s east side compared with that on the west side.(4)The bridge deformation negatively correlates with temperature,with a faster settlement at a higher temperature and a slow rebound trend at a lower temperature.The study findings can provide scientific data support for the health monitoring of long-span railway bridges.
基金The Key R&D Project of Hainan Province under contract No.ZDYF2023SHFZ097the National Natural Science Foundation of China under contract No.42376180。
文摘Mangroves are indispensable to coastlines,maintaining biodiversity,and mitigating climate change.Therefore,improving the accuracy of mangrove information identification is crucial for their ecological protection.Aiming at the limited morphological information of synthetic aperture radar(SAR)images,which is greatly interfered by noise,and the susceptibility of optical images to weather and lighting conditions,this paper proposes a pixel-level weighted fusion method for SAR and optical images.Image fusion enhanced the target features and made mangrove monitoring more comprehensive and accurate.To address the problem of high similarity between mangrove forests and other forests,this paper is based on the U-Net convolutional neural network,and an attention mechanism is added in the feature extraction stage to make the model pay more attention to the mangrove vegetation area in the image.In order to accelerate the convergence and normalize the input,batch normalization(BN)layer and Dropout layer are added after each convolutional layer.Since mangroves are a minority class in the image,an improved cross-entropy loss function is introduced in this paper to improve the model’s ability to recognize mangroves.The AttU-Net model for mangrove recognition in high similarity environments is thus constructed based on the fused images.Through comparison experiments,the overall accuracy of the improved U-Net model trained from the fused images to recognize the predicted regions is significantly improved.Based on the fused images,the recognition results of the AttU-Net model proposed in this paper are compared with its benchmark model,U-Net,and the Dense-Net,Res-Net,and Seg-Net methods.The AttU-Net model captured mangroves’complex structures and textural features in images more effectively.The average OA,F1-score,and Kappa coefficient in the four tested regions were 94.406%,90.006%,and 84.045%,which were significantly higher than several other methods.This method can provide some technical support for the monitoring and protection of mangrove ecosystems.
基金Under the auspices of National Natural Science Foundation of China(No.42071385)National Science and Technology Major Project of High Resolution Earth Observation System(No.79-Y50-G18-9001-22/23)。
文摘Automatically detecting Ulva prolifera(U.prolifera)in rainy and cloudy weather using remote sensing imagery has been a long-standing problem.Here,we address this challenge by combining high-resolution Synthetic Aperture Radar(SAR)imagery with the machine learning,and detect the U.prolifera of the South Yellow Sea of China(SYS)in 2021.The findings indicate that the Random Forest model can accurately and robustly detect U.prolifera,even in the presence of complex ocean backgrounds and speckle noise.Visual inspection confirmed that the method successfully identified the majority of pixels containing U.prolifera without misidentifying noise pixels or seawater pixels as U.prolifera.Additionally,the method demonstrated consistent performance across different im-ages,with an average Area Under Curve(AUC)of 0.930(+0.028).The analysis yielded an overall accuracy of over 96%,with an average Kappa coefficient of 0.941(+0.038).Compared to the traditional thresholding method,Random Forest model has a lower estimation error of 14.81%.Practical application indicates that this method can be used in the detection of unprecedented U.prolifera in 2021 to derive continuous spatiotemporal changes.This study provides a potential new method to detect U.prolifera and enhances our under-standing of macroalgal outbreaks in the marine environment.
文摘Objective: The COVID-19 pandemic has highlighted the need to strengthen diagnosis and genomic surveillance capacities. In 2021, Central African managed five waves of COVID-19 by integrating genomic surveillance into their health monitoring system. This study sought to report surveillance data from the National Laboratory of Clinical Biology and Public Health and describe the circulation of SARS-CoV-2 variants. Materials and Methods: This retrospective, descriptive observational study spans three years, from April 2020 to November 2023. It was conducted on a population of consenting volunteers from across the Central African Republic, who were tested using RT-PCR on nasopharyngeal samples. Data with sufficient information were obtained from the National Laboratory of Clinical Biology and Public Health (LNBCSP) databases. Sequencing was largely carried out at the National Institute of Biomedical Research (INRB) in Kinshasa until May 2023, and subsequently at the LNBCSP. Results and Discussion: Out of 97,864 RT-PCR tests performed, 9,764 were positive, resulting in a prevalence of 9.98%. The average age of the patients was 39.97 years ± 13.76, and the male-to-female sex ratio was 2.12. RT-PCR test positivity was significantly associated with age (p = 0.001), sex (p = 0.013) and clinical manifestations. Ten variants circulated during the five recorded waves, with Omicron (B.1.1.529), Delta (B.1.617.2) variants being predominant. Notably, the B.1.620 and B.640 variants were prominent during the second wave. Conclusion: This retrospective study provides key insights into the COVID-19 pandemic in the CAR. It identifies risk factors and details the circulation of various SARS-CoV-2 variants. Enhancing national genomic surveillance capacities would enable the country to better respond to future pandemic challenges.
基金Project(51174191)supported by the National Natural Science Foundation of ChinaProject(2013CB227904)supported by the National Basic Research Program of ChinaProject(2012QNB09)supported by Fundamental Research Funds for the Central Universities,China
文摘The high resolution Terra SAR-X dataset was employed with DIn SAR and persistent scatterer interferometry(PSI) technique for subsidence monitoring in a mountainous area. For DInS AR technique, the generally used SRTM and relief-DEM, which was derived from aerial topographic map, were used to evaluate the influence of external DEM. The results show that SRTM could not fully compensate the complex topography of the research area. The corner reflectors installed during the acquisition of SAR dataset were used to estimate the accuracy of geocoding. The terrain corrected geocoding results based on relief-DEM were much better than using SRTM, with the root mean square error(RMSE) being 6.35 m in X direction and 11.65 m in Y direction(both in UTM projection), around one pixel of the multilooked intensity image to be geocoded. For PSI technique, the results from time-series analysis of multi-baseline differential interferograms were integrated to restrict only persistent scatterer candidates near the boundary of subsiding area for regression analysis. The results demonstrate that PSI can refine the boundary of subsidence, which could then be used to derive some angular parameters to help people to learn the law of subsidence caused by repeated excavation in this area.
基金Supported by a Grant from the Spatial Sample Selection and ManagementSystem for the Sample Survey in Rural Areas(2006AA120103)~~
文摘Synthetic Aperture Radar(SAR) is a more effective remote sensing data source for rice recognition and monitoring than optical remote sensing in the regions with more wet and cloudy sky due to its all-weather, all-time, high resolution and wide covering characteristics. This paper summarizes SAR types and their feature used for rice study, introduces the backscattering model for rice monitoring, and analyses the main factors influencing backscattering coefficient. The studies of rice recognition and monitoring based on SAR in domestic and abroad are reviewed and the futures in the related areas are prospected.
基金Project (20110023110014) supported by Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject (2010QD01) supported by Fundamental Research Funds for the Central Universities,China
文摘Differential interferometric synthetic aperture radar (DInSAR) technology is a new method to monitor the dynamic surface subsidence. It can monitor the large scope of dynamic deformation process of surface subsidence basin and better reflect the surface subsidence form in different stages. But under the influence of factors such as noise and other factors, the tilt and horizontal deformation curves regularity calculated by DInSAR data are poorer and the actual deviation is larger. The tilt and horizontal deformations are the important indices for the safety of surface objects protection. Numerical simulation method was used to study the dynamic deformation of LW32 of West Cliff colliery in Australia based on the DInSAR monitoring data. The result indicates that the subsidence curves of two methods fit well and the correlation coefficient is more than 95%. The other deformations calculated by numerical simulation results are close to the theory form. Therefore, considering the influence, the surface and its subsidiary structures and buildings due to mining, the numerical simulation method based on the DInSAR data can reveal the distribution rules of the surface dynamic deformation values and supply the shortcomings of DInSAR technology. The research shows that the method has good applicability and can provide reference for similar situation.
基金Supported by Natural Science Foundation of Zhejiang Province,No.LY23H050005and Zhejiang Medical Technology Project,No.2022RC009.
文摘Diabetic kidney disease(DKD)is a common complication of diabetes mellitus that contributes to the risk of end-stage kidney disease(ESKD).Wide glycemic var-iations,such as hypoglycemia and hyperglycemia,are broadly found in diabetic patients with DKD and especially ESKD,as a result of impaired renal metabolism.It is essential to monitor glycemia for effective management of DKD.Hemoglobin A1c(HbA1c)has long been considered as the gold standard for monitoring glycemia for>3 months.However,assessment of HbA1c has some bias as it is susceptible to factors such as anemia and liver or kidney dysfunction.Continuous glucose monitoring(CGM)has provided new insights on glycemic assessment and management.CGM directly measures glucose level in interstitial fluid,reports real-time or retrospective glucose concentration,and provides multiple glycemic metrics.It avoids the pitfalls of HbA1c in some contexts,and may serve as a precise alternative to estimation of mean glucose and glycemic variability.Emerging studies have demonstrated the merits of CGM for precise monitoring,which allows fine-tuning of glycemic management in diabetic patients.Therefore,CGM technology has the potential for better glycemic monitoring in DKD patients.More research is needed to explore its application and management in different stages of DKD,including hemodialysis,peritoneal dialysis and kidney transplantation.
基金sponsored by the National Research Foundation of Korea(NRF)Grant funded by the Korean government(MSIT)(Grant No.:2018R1A5A2021242).
文摘The spread of tuberculosis(TB),especially multidrug-resistant TB and extensively drug-resistant TB,has strongly motivated the research and development of new anti-TB drugs.New strategies to facilitate drug combinations,including pharmacokinetics-guided dose optimization and toxicology studies of first-and second-line anti-TB drugs have also been introduced and recommended.Liquid chromatography-mass spectrometry(LC-MS)has arguably become the gold standard in the analysis of both endo-and exo-genous compounds.This technique has been applied successfully not only for therapeutic drug monitoring(TDM)but also for pharmacometabolomics analysis.TDM improves the effectiveness of treatment,reduces adverse drug reactions,and the likelihood of drug resistance development in TB patients by determining dosage regimens that produce concentrations within the therapeutic target window.Based on TDM,the dose would be optimized individually to achieve favorable outcomes.Pharmacometabolomics is essential in generating and validating hypotheses regarding the metabolism of anti-TB drugs,aiding in the discovery of potential biomarkers for TB diagnostics,treatment monitoring,and outcome evaluation.This article highlighted the current progresses in TDM of anti-TB drugs based on LC-MS bioassay in the last two decades.Besides,we discussed the advantages and disadvantages of this technique in practical use.The pressing need for non-invasive sampling approaches and stability studies of anti-TB drugs was highlighted.Lastly,we provided perspectives on the prospects of combining LC-MS-based TDM and pharmacometabolomics with other advanced strategies(pharmacometrics,drug and vaccine developments,machine learning/artificial intelligence,among others)to encapsulate in an all-inclusive approach to improve treatment outcomes of TB patients.
基金The authors gratefully acknowledge the financial support pro-vided by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.41907232)the National Science Fund for Distinguished Young Scholars of China(Grant No.42225702)the State Key Program of National Natural Science Foundation of China(Grant No.41230636).
文摘Anti-slide piles are one of the most important reinforcement structures against landslides,and evalu-ating the working conditions is of great significance for landslide mitigation.The widely adopted analytical methods of pile internal forces include cantilever beam method and elastic foundation beam method.However,due to many assumptions involved in calculation,the analytical models cannot be fully applicable to complex site situations,e.g.landslides with multi-sliding surfaces and pile-soil interface separation as discussed herein.In view of this,the combination of distributed fiber optic sensing(DFOS)and strain-internal force conversion methods was proposed to evaluate the working conditions of an anti-sliding pile in a typical retrogressive landslide in the Three Gorges reservoir area,China.Brillouin optical time domain reflectometry(BOTDR)was utilized to monitor the strain distri-bution along the pile.Next,by analyzing the relative deformation between the pile and its adjacent inclinometer,the pile-soil interface separation was profiled.Finally,the internal forces of the anti-slide pile were derived based on the strain-internal force conversion method.According to the ratio of calculated internal forces to the design values,the working conditions of the anti-slide pile could be evaluated.The results demonstrated that the proposed method could reveal the deformation pattern of the anti-slide pile system,and can quantitatively evaluate its working conditions.
基金financially supported by the National Key R&D Program of China(Grant No.2022YFB4200705)the National Natural Science Foundation of China(Grant No.52109146)。
文摘The real-time dynamic deformation monitoring of offshore platforms under environmental excitation is crucial to their safe operation.Although Global Navigation Satellite System-Precise Point Positioning(GNSS-PPP)has been considered for this purpose,its monitoring accuracy is relatively low.Moreover,the influence of background noise on the dynamic monitoring accuracy of GNSS-PPP remains unclear.Hence,it is imperative to further validate the feasibility of GNSS-PPP for deformation monitoring of offshore platforms.To address these concerns,vibration table tests with different amplitudes and frequencies are conducted.The results demonstrate that GNSS-PPP can effectively monitor horizontal vibration displacement as low as±30 mm,which is consistent with GNSS-RTK.Furthermore,the spectral characteristic of background noise in GNSS-PPP is similar to that of GNSS-RTK(Real Time Kinematic).Building on this observation,an improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)has been proposed to de-noise the data and enhance the dynamic monitoring accuracy of GNSS-PPP.Field monitoring application research is also undertaken,successfully extracting and analyzing the dynamic deformation of an offshore platform structure under environmental excitation using GNSS-PPP monitoring in conjunction with improved CEEMDAN de-noising.By comparing the de-noised dynamic deformation trajectories of the offshore platform during different periods,it is observed that the platform exhibits reversible alternating vibration responses under environmental excitation,with more pronounced displacement deformation in the direction of load action.The research results confirm the feasibility and potential of GNSS-PPP for dynamic deformation monitoring of offshore platforms.
文摘Considering the joint effects of various factors such as temporal baseline, spatial baseline, thermal noise, the difference of Doppler centroid frequency and the error of data processing on the interference correlation, an optimum selection method of common master images for ground deformation monitoring based on the permanent scatterer and differential SAR interferometry (PS-DInSAR) technique is proposed, in which the joint correlation coeficient is used as the evaluation function. The principle and realization method of PS-DInSAR technology is introduced, the factors affecting the DInSAR correlation are analysed, and the joint correlation function model and its solution are presented. Finally an experiment for the optimum selection of common master images is performed by using 25 SAR images over Shanghai taken by the ERS-1/2 as test data. The results indicate that the optimum selection method for PS-DInSAR common master images is effective and reliable.
基金financially supported by the National Natural Science Foundation of China(52373079,52161135302,52233006)the China Postdoctoral Science Foundation(2022M711355)the Natural Science Foundation of Jiangsu Province(BK20221540).
文摘Skin-attachable electronics have garnered considerable research attention in health monitoring and artificial intelligence domains,whereas susceptibility to elec-tromagnetic interference(EMI),heat accumulation issues,and ultraviolet(UV)-induced aging problems pose significant constraints on their potential applications.Here,an ultra-elas-tic,highly breathable,and thermal-comfortable epidermal sensor with exceptional UV-EMI shielding performance and remarkable thermal conductivity is developed for high-fidelity monitoring of multiple human electrophysiological signals.Via filling the elastomeric microfibers with thermally conductive boron nitride nanoparticles and bridging the insulating fiber interfaces by plating Ag nanoparticles(NPs),an interwoven thermal con-ducting fiber network(0.72 W m^(-1) K^(-1))is constructed benefiting from the seamless thermal interfaces,facilitating unimpeded heat dissipation for comfort skin wearing.More excitingly,the elastomeric fiber substrates simultaneously achieve outstanding UV protection(UPF=143.1)and EMI shielding(SET>65,X-band)capabilities owing to the high electrical conductivity and surface plasmon resonance of Ag NPs.Furthermore,an electronic textile prepared by printing liquid metal on the UV-EMI shielding and thermally conductive nonwoven textile is finally utilized as an advanced epidermal sensor,which succeeds in monitoring different electrophysiological signals under vigorous electromagnetic interference.This research paves the way for developing protective and environmentally adaptive epidermal electronics for next-generation health regulation.
基金the financial support of the National Key R&D Program of China(2021YFC3000701)the China Seismic Experimental Site in Sichuan-Yunnan(CSES-SY)。
文摘Monitoring seismicity in real time provides significant benefits for timely earthquake warning and analyses.In this study,we propose an automatic workflow based on machine learning(ML)to monitor seismicity in the southern Sichuan Basin of China.This workflow includes coherent event detection,phase picking,and earthquake location using three-component data from a seismic network.By combining Phase Net,we develop an ML-based earthquake location model called Phase Loc,to conduct real-time monitoring of the local seismicity.The approach allows us to use synthetic samples covering the entire study area to train Phase Loc,addressing the problems of insufficient data samples,imbalanced data distribution,and unreliable labels when training with observed data.We apply the trained model to observed data recorded in the southern Sichuan Basin,China,between September 2018 and March 2019.The results show that the average differences in latitude,longitude,and depth are 5.7 km,6.1 km,and 2 km,respectively,compared to the reference catalog.Phase Loc combines all available phase information to make fast and reliable predictions,even if only a few phases are detected and picked.The proposed workflow may help real-time seismic monitoring in other regions as well.
基金National Natural Science Foundation of China(Nos.42171444,42301516)Beijing Natural Science Foundation Project-Municipal Education Commission Joint Fund Project(No.KZ202110016021)Beijing Municipal Education Commission Scientific Research Project-Science and Technology Plan General Project(No.KM202110016005).
文摘Natural disaster risk monitoring is an important task for disaster prevention and reduction.In the case of immovable cultural relics,however,the feedback mechanism,risk factors,monitoring logic,and monitoring indicators of natural disaster risk monitoring are complex.How to achieve intelligent perception and monitoring of natural disaster risk for immovable cultural relics has always been a focus and a challenge for researchers.Based on the analysis of the concepts and issues related to the natural disaster risk of immovable cultural relics,this paper proposes a framework for natural disaster risk monitoring for immovable cultural relics based on the digital twin.This framework focuses on risk monitoring,including the physical entities of natural disaster risk for immovable cultural relics,monitoring indicators,and virtual entity construction.A platform for monitoring the natural disaster risk of immovable cultural relics is proposed.Using the Puzhou Ancient City Site as a test bed,the proposed concept can be used for monitoring the natural disaster risk of immovable cultural relics at different scales.
基金supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region(152131/18E).
文摘This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualise process signals in real-time,elucidating the dynamics of melt pools and vapour plumes under varying laser power conditions specifically between 40 W and 60 W.Detailed morphological analysis was performed using Scanning-Electron Microscopy(SEM),demonstrating a critical correlation between laser power and pore formation.Lower laser power led to increased pore coverage,whereas a denser structure was observed at higher laser power.This laser power influence on porosity was further confirmed via Optical Microscopy(OM)conducted on both top and cross-sectional surfaces of the samples.An increase in laser power resulted in a decrease in pore coverage and pore size,potentially leading to a denser printed part of Mg alloy.X-ray Computed Tomography(XCT)augmented these findings by providing a 3D volumetric representation of the sample internal structure,revealing an inverse relationship between laser power and overall pore volume.Lower laser power appeared to favour the formation of interconnected pores,while a reduction in interconnected pores and an increase in isolated pores were observed at higher power.The interplay between melt pool size,vapour plume effects,and laser power was found to significantly influence the resulting porosity,indicating a need for effective management of these factors to optimise the SLM process of Mg alloys.
基金funded by the National Natural Science Foundation of China (Nos.40902081,and 40802075)the Key Project of the Ministry of Land & Resources,China (No.1212010914015)
文摘For harmful ground collapse and its special deformation characteristics,which causes SAR images to lose coherence,InSAR technology cannot be applied in monitoring surface collapse in mining areas.We took the Shenmu mining area in northern Shaanxi province as an example to study subsidence in mining areas and proposed an interpolated multi-view processing method.The results show that this method can improve the detectable deformation gradient to a certain extent and can become a good reference value for monitoring large scale gradient deformation.We also analyzed the rules for temporal decorrelation in mining.
基金support of the National Natural Science Foundation of China(Grant Nos.U2240221 and 41977229)the Sichuan Youth Science and Technology Innovation Research Team Project(Grant No.2020JDTD0006).
文摘Non-contact remote sensing techniques,such as terrestrial laser scanning(TLS)and unmanned aerial vehicle(UAV)photogrammetry,have been globally applied for landslide monitoring in high and steep mountainous areas.These techniques acquire terrain data and enable ground deformation monitoring.However,practical application of these technologies still faces many difficulties due to complex terrain,limited access and dense vegetation.For instance,monitoring high and steep slopes can obstruct the TLS sightline,and the accuracy of the UAV model may be compromised by absence of ground control points(GCPs).This paper proposes a TLS-and UAV-based method for monitoring landslide deformation in high mountain valleys using traditional real-time kinematics(RTK)-based control points(RCPs),low-precision TLS-based control points(TCPs)and assumed control points(ACPs)to achieve high-precision surface deformation analysis under obstructed vision and impassable conditions.The effects of GCP accuracy,GCP quantity and automatic tie point(ATP)quantity on the accuracy of UAV modeling and surface deformation analysis were comprehensively analyzed.The results show that,the proposed method allows for the monitoring accuracy of landslides to exceed the accuracy of the GCPs themselves by adding additional low-accuracy GCPs.The proposed method was implemented for monitoring the Xinhua landslide in Baoxing County,China,and was validated against data from multiple sources.
文摘Diabetes is a condition that can come to the surface at any point throughout a person’s life. Although Type 1 and Type 2 Diabetes have different triggers that cause them to arise, a person can experience similar complications from either if not monitored and treated accordingly. Through the Diabetes Control and Complications Trial, it was found that a significant way to monitor diabetes is through glucose levels in a person’s body. The research surrounding glucose monitoring dates to the mid-1800s, with the first successful reagent for glucose testing being developed in 1908. Since then, glucose sensing has become one of the most rapidly growing areas of research and development in biosensor technology, creating a competitive market for more advanced, accurate, and convenient glucose monitoring. This article reviews the history of biosensors used for glucose monitoring, and major advancements in biosensor technology to enhance performance and improve quality of life for patients with diabetes.