In the Ethernet lossless Data Center Networks (DCNs) deployedwith Priority-based Flow Control (PFC), the head-of-line blocking problemis still difficult to prevent due to PFC triggering under burst trafficscenarios ev...In the Ethernet lossless Data Center Networks (DCNs) deployedwith Priority-based Flow Control (PFC), the head-of-line blocking problemis still difficult to prevent due to PFC triggering under burst trafficscenarios even with the existing congestion control solutions. To addressthe head-of-line blocking problem of PFC, we propose a new congestioncontrol mechanism. The key point of Congestion Control Using In-NetworkTelemetry for Lossless Datacenters (ICC) is to use In-Network Telemetry(INT) technology to obtain comprehensive congestion information, which isthen fed back to the sender to adjust the sending rate timely and accurately.It is possible to control congestion in time, converge to the target rate quickly,and maintain a near-zero queue length at the switch when using ICC. Weconducted Network Simulator-3 (NS-3) simulation experiments to test theICC’s performance. When compared to Congestion Control for Large-ScaleRDMA Deployments (DCQCN), TIMELY: RTT-based Congestion Controlfor the Datacenter (TIMELY), and Re-architecting Congestion Managementin Lossless Ethernet (PCN), ICC effectively reduces PFC pause messages andFlow Completion Time (FCT) by 47%, 56%, 34%, and 15.3×, 14.8×, and11.2×, respectively.展开更多
网络遥测是一种新型的网络测量技术,具有实时性强、准确性高、开销低的特点。现有网络遥测技术存在无法收集多粒度网络数据、无法有效存储大量原始网络数据、无法快速提取及生成网络遥测信息、无法利用内核态及用户态特性设计网络遥测...网络遥测是一种新型的网络测量技术,具有实时性强、准确性高、开销低的特点。现有网络遥测技术存在无法收集多粒度网络数据、无法有效存储大量原始网络数据、无法快速提取及生成网络遥测信息、无法利用内核态及用户态特性设计网络遥测方案等问题。为此,提出了一种融合内核态及用户态的、基于遥测数据图和同步控制块的多粒度、可扩展、覆盖全网的网络遥测机制(a nEtwork telemetry mechAnism based on telemetry data Graph in kerneL and usEr mode,EAGLE)。EAGLE设计了一种能够收集多粒度数据且数据平面上灵活可控的网络遥测数据包结构,用于获取上层应用所需的数据。此外,为快速存储、查询、统计、聚合网络状态数据,实现网络遥测数据包所需遥测数据的快速提取与生成,EAGLE提出了一种基于遥测数据图及同步控制块的网络遥测信息生成方法。在此基础上,为了最大化网络遥测机制中网络遥测数据包的处理效率,EAGLE提出了融合内核态及用户态特性的网络遥测信息嵌入架构。在Open vSwitch上实现了EAGLE方案并进行了测试,测试结果表明,EAGLE能够收集多粒度数据并快速提取与生成遥测数据,且仅增加极少量的处理时延及资源占用率。展开更多
Underwater acoustic modem technology has attained a level of maturity to support underwater acoustic sensor networks (UASNs) which are generally formed by acoustically connected sensor nodes and a surface station pr...Underwater acoustic modem technology has attained a level of maturity to support underwater acoustic sensor networks (UASNs) which are generally formed by acoustically connected sensor nodes and a surface station providing a link to an on-shore control center. While many applications require long-term monitoring of the deployment area, the batterypowered network nodes limit the lifetime of UASNs. Therefore, designing a UASN that minimizes the power consumption while maximizing lifetime becomes a very difficult task. In this paper, a method is proposed to determine the optimum number of clnstens throngh combining an application-specific protocol architecture and underwater acoustic communication model so as to reduce the energy dissipation of UASNs. Deploying more sensor nodes which work alternately is another way to prolong the lifetime of UASNs, An algorithm is presented for selecting sensor nodes and putting them into operation in each round, ensuring the monitoring to the whole given area. The present results show that the algorithm can help prolong system lifetime remarkably when it is applied to other conventional approaches for sensor networks under the condition that the sensor node density is high.展开更多
基金supported by the National Natural Science Foundation of China (No.62102046,62072249,62072056)JinWang,YongjunRen,and Jinbin Hu receive the grant,and the URLs to the sponsors’websites are https://www.nsfc.gov.cn/.This work is also funded by the National Science Foundation of Hunan Province (No.2022JJ30618,2020JJ2029).
文摘In the Ethernet lossless Data Center Networks (DCNs) deployedwith Priority-based Flow Control (PFC), the head-of-line blocking problemis still difficult to prevent due to PFC triggering under burst trafficscenarios even with the existing congestion control solutions. To addressthe head-of-line blocking problem of PFC, we propose a new congestioncontrol mechanism. The key point of Congestion Control Using In-NetworkTelemetry for Lossless Datacenters (ICC) is to use In-Network Telemetry(INT) technology to obtain comprehensive congestion information, which isthen fed back to the sender to adjust the sending rate timely and accurately.It is possible to control congestion in time, converge to the target rate quickly,and maintain a near-zero queue length at the switch when using ICC. Weconducted Network Simulator-3 (NS-3) simulation experiments to test theICC’s performance. When compared to Congestion Control for Large-ScaleRDMA Deployments (DCQCN), TIMELY: RTT-based Congestion Controlfor the Datacenter (TIMELY), and Re-architecting Congestion Managementin Lossless Ethernet (PCN), ICC effectively reduces PFC pause messages andFlow Completion Time (FCT) by 47%, 56%, 34%, and 15.3×, 14.8×, and11.2×, respectively.
文摘网络遥测是一种新型的网络测量技术,具有实时性强、准确性高、开销低的特点。现有网络遥测技术存在无法收集多粒度网络数据、无法有效存储大量原始网络数据、无法快速提取及生成网络遥测信息、无法利用内核态及用户态特性设计网络遥测方案等问题。为此,提出了一种融合内核态及用户态的、基于遥测数据图和同步控制块的多粒度、可扩展、覆盖全网的网络遥测机制(a nEtwork telemetry mechAnism based on telemetry data Graph in kerneL and usEr mode,EAGLE)。EAGLE设计了一种能够收集多粒度数据且数据平面上灵活可控的网络遥测数据包结构,用于获取上层应用所需的数据。此外,为快速存储、查询、统计、聚合网络状态数据,实现网络遥测数据包所需遥测数据的快速提取与生成,EAGLE提出了一种基于遥测数据图及同步控制块的网络遥测信息生成方法。在此基础上,为了最大化网络遥测机制中网络遥测数据包的处理效率,EAGLE提出了融合内核态及用户态特性的网络遥测信息嵌入架构。在Open vSwitch上实现了EAGLE方案并进行了测试,测试结果表明,EAGLE能够收集多粒度数据并快速提取与生成遥测数据,且仅增加极少量的处理时延及资源占用率。
文摘Underwater acoustic modem technology has attained a level of maturity to support underwater acoustic sensor networks (UASNs) which are generally formed by acoustically connected sensor nodes and a surface station providing a link to an on-shore control center. While many applications require long-term monitoring of the deployment area, the batterypowered network nodes limit the lifetime of UASNs. Therefore, designing a UASN that minimizes the power consumption while maximizing lifetime becomes a very difficult task. In this paper, a method is proposed to determine the optimum number of clnstens throngh combining an application-specific protocol architecture and underwater acoustic communication model so as to reduce the energy dissipation of UASNs. Deploying more sensor nodes which work alternately is another way to prolong the lifetime of UASNs, An algorithm is presented for selecting sensor nodes and putting them into operation in each round, ensuring the monitoring to the whole given area. The present results show that the algorithm can help prolong system lifetime remarkably when it is applied to other conventional approaches for sensor networks under the condition that the sensor node density is high.