The objectives of this research were to understand the process of converting toluene into phenol in a one-step process directly from a water–toluene mixture using the plasma in-liquid method.Experiments were conducte...The objectives of this research were to understand the process of converting toluene into phenol in a one-step process directly from a water–toluene mixture using the plasma in-liquid method.Experiments were conducted using 27.12 MHz radio frequency(RF) in-liquid plasma to decompose a solution of 30% toluene. Based on the experimental results as evaluated using gas chromatography–mass spectrometry(GC–MS), along with additional analysis by the Gaussian calculation, density functional theory(DFT) hybrid exchange–correlational functional(B3LYP)and 6-311 G basis, the phenol generated from toluene was quantified including any by-products.In the experiment, it was found that OH radicals from water molecules produced using RF inliquid plasma play a significant role in the chemical reaction with toluene. The experimental results suggest that phenol can be directly produced from a water–toluene mixture. The maximum phenol yields were 0.0013% and 0.0038% for irradiation times of 30s and 60s,respectively, at 120 W.展开更多
Cellulose is a kind of saccharide that is the main component in cell walls of plants and therefore is the organic compound that exists in the largest amount in nature. The purpose of this experiment is to convert cell...Cellulose is a kind of saccharide that is the main component in cell walls of plants and therefore is the organic compound that exists in the largest amount in nature. The purpose of this experiment is to convert cellulose to a fuel. Radio frequency (RF) in-liquid plasma is generated in a cellulose distributed solution and a glucose solution, and the generation gas rate is measured. While hydrogen is the main gas generated by the plasma breakdown, carbon monoxide, carbon dioxide, and low-grade flammable gases are also produced. In the glucose water solution or the glucose distributed solution, the solution itself evaporates and decomposes inside the plasma but since the saccharides are non-volatile, they cannot penetrate into the plasma and are not decomposition. However, when the cellulose is at concentrations of 30 wt% or more, it becomes granular and can directly enter the plasma as a solid, where the plasma decomposes the cellulose itself, significantly increasing the amount of gas generated. In addition, the spectrometry of the plasma emission shows the solution after the creation of plasma has the ability to absorb ultraviolet light.展开更多
The in-liquid plasma method is a technology in which plasma of several thousand degrees Kelvin is generated within bubbles in a liquid. The purpose of this study is to enhance the hydrogen production rate from waste o...The in-liquid plasma method is a technology in which plasma of several thousand degrees Kelvin is generated within bubbles in a liquid. The purpose of this study is to enhance the hydrogen production rate from waste oils by using in-liquid plasma. Two types of microwave in-liquid plasma apparatus are adopted for hydrogen production. One is a conventional MW (microwave) oven, the other is a microwave generator with a waveguide to apply the in-liquid plasma steam reforming method in n-dodecane. The produced gas is 58%-90% hydrogen in these methods. The hydrogen production rate is improved by stabilization of the bubble growth. The gas production rate by plasma feeding steam in n-dodecane is 1.4 times higher than that without feeding steam.展开更多
基金partially supported by JSPS KAKENHI Grant Number 15K05833
文摘The objectives of this research were to understand the process of converting toluene into phenol in a one-step process directly from a water–toluene mixture using the plasma in-liquid method.Experiments were conducted using 27.12 MHz radio frequency(RF) in-liquid plasma to decompose a solution of 30% toluene. Based on the experimental results as evaluated using gas chromatography–mass spectrometry(GC–MS), along with additional analysis by the Gaussian calculation, density functional theory(DFT) hybrid exchange–correlational functional(B3LYP)and 6-311 G basis, the phenol generated from toluene was quantified including any by-products.In the experiment, it was found that OH radicals from water molecules produced using RF inliquid plasma play a significant role in the chemical reaction with toluene. The experimental results suggest that phenol can be directly produced from a water–toluene mixture. The maximum phenol yields were 0.0013% and 0.0038% for irradiation times of 30s and 60s,respectively, at 120 W.
文摘Cellulose is a kind of saccharide that is the main component in cell walls of plants and therefore is the organic compound that exists in the largest amount in nature. The purpose of this experiment is to convert cellulose to a fuel. Radio frequency (RF) in-liquid plasma is generated in a cellulose distributed solution and a glucose solution, and the generation gas rate is measured. While hydrogen is the main gas generated by the plasma breakdown, carbon monoxide, carbon dioxide, and low-grade flammable gases are also produced. In the glucose water solution or the glucose distributed solution, the solution itself evaporates and decomposes inside the plasma but since the saccharides are non-volatile, they cannot penetrate into the plasma and are not decomposition. However, when the cellulose is at concentrations of 30 wt% or more, it becomes granular and can directly enter the plasma as a solid, where the plasma decomposes the cellulose itself, significantly increasing the amount of gas generated. In addition, the spectrometry of the plasma emission shows the solution after the creation of plasma has the ability to absorb ultraviolet light.
文摘The in-liquid plasma method is a technology in which plasma of several thousand degrees Kelvin is generated within bubbles in a liquid. The purpose of this study is to enhance the hydrogen production rate from waste oils by using in-liquid plasma. Two types of microwave in-liquid plasma apparatus are adopted for hydrogen production. One is a conventional MW (microwave) oven, the other is a microwave generator with a waveguide to apply the in-liquid plasma steam reforming method in n-dodecane. The produced gas is 58%-90% hydrogen in these methods. The hydrogen production rate is improved by stabilization of the bubble growth. The gas production rate by plasma feeding steam in n-dodecane is 1.4 times higher than that without feeding steam.