Brain-derived neurotrophic factor is a key factor in stress adaptation and avoidance of a social stress behavioral response.Recent studies have shown that brain-derived neurotrophic factor expression in stressed mice ...Brain-derived neurotrophic factor is a key factor in stress adaptation and avoidance of a social stress behavioral response.Recent studies have shown that brain-derived neurotrophic factor expression in stressed mice is brain region–specific,particularly involving the corticolimbic system,including the ventral tegmental area,nucleus accumbens,prefrontal cortex,amygdala,and hippocampus.Determining how brain-derived neurotrophic factor participates in stress processing in different brain regions will deepen our understanding of social stress psychopathology.In this review,we discuss the expression and regulation of brain-derived neurotrophic factor in stress-sensitive brain regions closely related to the pathophysiology of depression.We focused on associated molecular pathways and neural circuits,with special attention to the brain-derived neurotrophic factor–tropomyosin receptor kinase B signaling pathway and the ventral tegmental area–nucleus accumbens dopamine circuit.We determined that stress-induced alterations in brain-derived neurotrophic factor levels are likely related to the nature,severity,and duration of stress,especially in the above-mentioned brain regions of the corticolimbic system.Therefore,BDNF might be a biological indicator regulating stress-related processes in various brain regions.展开更多
In deep hard rock excavation, stress plays a pivotal role in inducing stress-controlled failure. While the impact of excavation-induced stress disturbance on rock failure and tunnel stability has undergone comprehensi...In deep hard rock excavation, stress plays a pivotal role in inducing stress-controlled failure. While the impact of excavation-induced stress disturbance on rock failure and tunnel stability has undergone comprehensive examination through laboratory tests and numerical simulations, its validation through insitu stress tests remains unexplored. This study analyzes the three-dimensional stress changes in the surrounding rock at various depths, monitored during the excavation of B2 Lab in China Jinping Underground Laboratory Phase Ⅱ(CJPL-Ⅱ). The investigation delves into the three-dimensional stress variation characteristics in deep hard rock, encompassing stress components and principal stress. The results indicate changes in both the magnitude and direction of the principal stress during tunnel excavation. To quantitatively describe the degree of stress disturbance, a series of stress evaluation indexes are established based on the distances between stress tensors, including the stress disturbance index(SDI), the principal stress magnitude disturbance index(SDIm), and the principal stress direction disturbance index(SDId). The SDI indicates the greatest stress disturbance in the surrounding rock is 4.5 m from the tunnel wall in B2 Lab. SDIm shows that the principal stress magnitude disturbance peaks at2.5 m from the tunnel wall. SDId reveals that the largest change in principal stress direction does not necessarily occur near the tunnel wall but at a specific depth from it. The established relationship between SDI and the depth of the excavation damaged zone(EDZ) can serve as a criterion for determining the depth of the EDZ in deep hard rock engineering. Additionally, it provides a reference for future construction and support considerations.展开更多
Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunne...Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly.展开更多
A method for in-situ stress measurement via fiber optics was proposed. The method utilizes the relationship between rock mass elastic parameters and in-situ stress. The approach offers the advantage of long-term stres...A method for in-situ stress measurement via fiber optics was proposed. The method utilizes the relationship between rock mass elastic parameters and in-situ stress. The approach offers the advantage of long-term stress measurements with high spatial resolution and frequency, significantly enhancing the ability to measure in-situ stress. The sensing casing, spirally wrapped with fiber optic, is cemented into the formation to establish a formation sensing nerve. Injecting fluid into the casing generates strain disturbance, establishing the relationship between rock mass properties and treatment pressure.Moreover, an optimization algorithm is established to invert the elastic parameters of formation via fiber optic strains. In the first part of this paper series, we established the theoretical basis for the inverse differential strain analysis method for in-situ stress measurement, which was subsequently verified using an analytical model. This paper is the fundamental basis for the inverse differential strain analysis method.展开更多
A study of the interfacial behavior and internal thermal stress distribution in fiber-reinforced composites is essential to assess their performance and reliability.CNT/carbon fiber(CF)hybrid fibers were constructed u...A study of the interfacial behavior and internal thermal stress distribution in fiber-reinforced composites is essential to assess their performance and reliability.CNT/carbon fiber(CF)hybrid fibers were constructed using electrophoretic deposition.The interfacial properties of CF/epoxy and CNT/CF/epoxy composites were statistically investigated and compared using in-situ thermal Raman mapping by dispersing CNTs as a Raman sensing medium(CNT_(R))in a resin.The associated local thermal stress changes can be simulated by capturing the G'band position distribution of CNT_(R) in the epoxy at different temperatures.It was found that the G'band shifted to lower positions with increasing temperature,reaching a maximum difference of 2.43 cm^(−1) at 100℃.The interfacial bonding between CNT/CF and the matrix and the stress distribution and changes during heat treatment(20-100℃)were investig-ated in detail.This work is important for studying thermal stress in fiber-reinforced composites by in-situ thermal Raman mapping technology.展开更多
Water-coupled charge blasting is a promising technique to efficiently break rock masses.In this study,numerical models of double boreholes with water-coupled charge are established using LS-DYNA and are calibrated by ...Water-coupled charge blasting is a promising technique to efficiently break rock masses.In this study,numerical models of double boreholes with water-coupled charge are established using LS-DYNA and are calibrated by the tests of rock masses subjected to explosion loads to examine its performance.The crack levels of rock mass induced by water-coupled charge blasting and air-coupled charge blasting are first compared.It is found that water-coupled charge blasting is more appropriate to fracture deep rock mass than air-coupled charge blasting.In addition,the effects of rock properties,water-coupled charge coefficients,and borehole connection angles on the performance of water-coupled charge blasting are investigated.The results show that rock properties and water-coupled charge coefficients can greatly influence the crack and fragmentation levels of rock mass induced by water-coupled charge blasting under uniform and non-uniform in-situ stresses.However,changing borehole-connection angles can only affect crack and fragmentation levels of rock mass under non-uniform in-situ stresses but barely affect those under uniform in-situ stresses.A formula is finally proposed by considering the above-mentioned factors to provide the design suggestion of water-coupled charge blasting to fracture rock mass with different in-situ stresses.展开更多
The viscosity of fracturing fluid and in-situ stress difference are the two important factors that affect the hydraulic fracturing pressure and propagation morphology. In this study, raw coal was used to prepare coal ...The viscosity of fracturing fluid and in-situ stress difference are the two important factors that affect the hydraulic fracturing pressure and propagation morphology. In this study, raw coal was used to prepare coal samples for experiments, and clean fracturing fluid samples were prepared using CTAB surfactant. A series of hydraulic fracturing tests were conducted with an in-house developed triaxial hydraulic fracturing simulator and the fracturing process was monitored with an acoustic emission instrument to analyze the influences of fracturing fluid viscosity and horizontal in-situ stress difference on coal fracture propagation. The results show that the number of branched fractures decreased, the fracture pattern became simpler, the fractures width increased obviously, and the distribution of AE event points was concentrated with the increase of the fracturing fluid viscosity or the horizontal in-situ stress difference. The acoustic emission energy decreases with the increase of fracturing fluid viscosity and increases with the increase of horizontal in situ stress difference. The low viscosity clean fracturing fluid has strong elasticity and is easy to be compressed into the tip of fractures, resulting in complex fractures. The high viscosity clean fracturing fluids are the opposite. Our experimental results provide a reference and scientific basis for the design and optimization of field hydraulic fracturing parameters.展开更多
Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stre...Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stress,the three-dimensional(3D)stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted,a newly defined characteristic parameter C_(ERP)was proposed as an indicator for evaluating the structural properties of rock masses,and a fuzzy relation matrix was established using the information distribution method.The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth.There is no remarkable correlation between the elastic modulus,Poisson's ratio and depth,and the distribution of data points is scattered and messy.Moreover,there is no obvious relationship between the rock quality designation(RQD)and depth.The maximum horizontal stress σ_(H) is a function of rock properties,showing a certain linear relationship with the C_(ERP)at the same depth.In addition,the overall change trend of σ_(H) determined by the established fuzzy identification method is to increase with the increase of C_(ERP).The fuzzy identification method also demonstrates a relatively detailed local relationship betweenσ_H and C_(ERP),and the predicted curve rises in a fluctuating way,which is in accord well with the measured stress data.展开更多
Dysregulation of neurotransmitter metabolism in the central nervous system contributes to mood disorders such as depression, anxiety, and post–traumatic stress disorder. Monoamines and amino acids are important types...Dysregulation of neurotransmitter metabolism in the central nervous system contributes to mood disorders such as depression, anxiety, and post–traumatic stress disorder. Monoamines and amino acids are important types of neurotransmitters. Our previous results have shown that disco-interacting protein 2 homolog A(Dip2a) knockout mice exhibit brain development disorders and abnormal amino acid metabolism in serum. This suggests that DIP2A is involved in the metabolism of amino acid–associated neurotransmitters. Therefore, we performed targeted neurotransmitter metabolomics analysis and found that Dip2a deficiency caused abnormal metabolism of tryptophan and thyroxine in the basolateral amygdala and medial prefrontal cortex. In addition, acute restraint stress induced a decrease in 5-hydroxytryptamine in the basolateral amygdala. Additionally, Dip2a was abundantly expressed in excitatory neurons of the basolateral amygdala, and deletion of Dip2a in these neurons resulted in hopelessness-like behavior in the tail suspension test. Altogether, these findings demonstrate that DIP2A in the basolateral amygdala may be involved in the regulation of stress susceptibility. This provides critical evidence implicating a role of DIP2A in affective disorders.展开更多
Hearing loss is the third leading cause of human disability.Age-related hearing loss,one type of acquired sensorineural hearing loss,is largely responsible for this escalating global health burden.Noise-induced,ototox...Hearing loss is the third leading cause of human disability.Age-related hearing loss,one type of acquired sensorineural hearing loss,is largely responsible for this escalating global health burden.Noise-induced,ototoxic,and idiopathic sudden sensorineural are other less common types of acquired hearing loss.The etiology of these conditions is complex and multi-fa ctorial involving an interplay of genetic and environmental factors.Oxidative stress has recently been proposed as a likely linking cause in most types of acquired sensorineural hearing loss.Short non-coding RNA sequences known as microRNAs(miRNAs)have increasingly been shown to play a role in cellular hypoxia and oxidative stress responses including promoting an apoptotic response.Sensory hair cell death is a central histopathological finding in sensorineural hearing loss.As these cells do not regenerate in humans,it underlies the irreversibility of human age-related hearing loss.Ovid EMBASE,Ovid MEDLINE,Web of Science Core Collection,and ClinicalTrials.gov databases over the period August 1,2018 to July 31,2023 were searched with"hearing loss,""hypoxamiRs,""hypoxia,""microRNAs,""ischemia,"and"oxidative stress"text words for English language primary study publications or registered clinical trials.Registe red clinical trials known to the senior author we re also assessed.A total of 222studies were thus identified.After excluding duplicates,editorials,retra ctions,secondary research studies,and non-English language articles,39 primary studies and clinical trials underwent full-text screening.This resulted in 11 animal,in vitro,and/or human subject journal articles and 8 registered clinical trial database entries which form the basis of this narrative review.MiRNAs miR-34a and miR-29b levels increase with age in mice.These miRNAs were demonstrated in human neuroblastoma and murine cochlear cell lines to target Sirtuin 1/peroxisome proliferato r-activated receptor gamma coactivator-1-alpha(SIRT1/P GC-1α),SIRT1p53,and SIRT1/hypoxia-inducible factor 1-alpha signaling pathways resulting in increased apoptosis.Furthermore,hypoxia and oxidative stress had a similar adve rse apoptotic effect,which was inhibited by resve ratrol and a myocardial inhibitorassociated transcript,a miR-29b competing endogenous mRNA.Gentamicin reduced miR-182-5p levels and increased cochlear oxidative stress and cell death in mice-an effect that was corrected by inner ear stem cell-derived exosomes.There is ongoing work seeking to determine if these findings can be effectively translated to humans.展开更多
BACKGROUND Revisiting the epidemiology of posttraumatic stress symptoms(PTSSs)among university students during the coronavirus disease 2019(COVID-19)pandemic as well as understanding the mental health help-seeking beh...BACKGROUND Revisiting the epidemiology of posttraumatic stress symptoms(PTSSs)among university students during the coronavirus disease 2019(COVID-19)pandemic as well as understanding the mental health help-seeking behavior of individuals with PTSSs has critical implications for public mental health strategies in future medical pandemics.AIM To investigate the prevalence and correlates of PTSSs among university students during the first wave of the COVID-19 pandemic in China and to examine mental health help-seeking behaviors among these students.METHODS A total of 2507 Chinese university students were recruited via snowball sampling.The students completed the Seven-item Screening Scale for Post-traumatic Stress Disorder during the first wave of the COVID-19 pandemic in China.Sociodemo-graphic characteristics,pandemic-related characteristics,and mental health help-seeking behaviors of students with PTSSs were also collected.RESULTS The prevalence of PTSSs among the participants was 28.0%.Seven significant correlates of PTSSs were identified(odds ratio=1.23-3.65,P≤0.024):Female sex,being 19 years old or older,living with others or alone,a low level of family economic status,fair or poor interpersonal relationships,severe or very severe local pandemic,and having family members diagnosed with COVID-19.However,only 3.28%of the students with PTSSs reported seeking help from mental health specialists.Among the 23 students who sought help from mental health specialists,13 opted for online or telephone-based psychological consultation.CONCLUSION Our data suggest that there was a high risk of PTSSs among university students and a high level of unmet mental health needs during the COVID-19 pandemic.The delivery of mental health services online or via telephone is a promising approach to address these unmet needs.展开更多
BACKGROUND Emotional reactions,such as anxiety,irritability,and aggressive behavior,have attracted clinical attention as behavioral and emotional problems in preschool-age children.AIM To investigate the current statu...BACKGROUND Emotional reactions,such as anxiety,irritability,and aggressive behavior,have attracted clinical attention as behavioral and emotional problems in preschool-age children.AIM To investigate the current status of family rearing,parental stress,and behavioral and emotional problems of preschool children and to analyze the mediating effect of the current status of family rearing on parental stress and behavioral/emo-tional problems.METHODS We use convenience sampling to select 258 preschool children in the physical examination center of our hospital from October 2021 to September 2023.The children and their parents were evaluated using a questionnaire survey.Pearson's correlation was used to analyze the correlation between child behavioral and emotional problems and parental stress and family rearing,and the structural equation model was constructed to test the mediating effect.RESULTS The score for behavioral/emotional problems of 258 preschool children was(27.54±3.63),the score for parental stress was(87.64±11.34),and the score for parental family rearing was(31.54±5.24).There was a positive correlation between the behavioral and emotional problems of the children and the“hostile/mandatory”parenting style;meanwhile,showed a negative correlation with the“support/participation”parenting style(all P<0.05).The intermediary effect value between the family upbringing of parents in parental stress and children's behavior problems was 29.89%.CONCLUSION Parental family upbringing has a mediating effect between parental stress and behavioral and emotional problems of children.Despite paying attention to the behavioral and emotional problems of preschool-age children,clinical medical staff should provide correct and reasonable parenting advice to their parents to promote the mental health of preschool-age children.展开更多
Several studies have shown that activation of unfolded protein response and endoplasmic reticulum(ER)stress plays a crucial role in severe cerebral ischemia/reperfusion injury.Autophagy occurs within hours after cereb...Several studies have shown that activation of unfolded protein response and endoplasmic reticulum(ER)stress plays a crucial role in severe cerebral ischemia/reperfusion injury.Autophagy occurs within hours after cerebral ischemia,but the relationship between ER stress and autophagy remains unclear.In this study,we established experimental models using oxygen-glucose deprivation/reoxygenation in PC12 cells and primary neurons to simulate cerebral ischemia/reperfusion injury.We found that prolongation of oxygen-glucose deprivation activated the ER stress pathway protein kinase-like endoplasmic reticulum kinase(PERK)/eukaryotic translation initiation factor 2 subunit alpha(e IF2α)-activating transcription factor 4(ATF4)-C/EBP homologous protein(CHOP),increased neuronal apoptosis,and induced autophagy.Furthermore,inhibition of ER stress using inhibitors or by si RNA knockdown of the PERK gene significantly attenuated excessive autophagy and neuronal apoptosis,indicating an interaction between autophagy and ER stress and suggesting PERK as an essential target for regulating autophagy.Blocking autophagy with chloroquine exacerbated ER stress-induced apoptosis,indicating that normal levels of autophagy play a protective role in neuronal injury following cerebral ischemia/reperfusion injury.Findings from this study indicate that cerebral ischemia/reperfusion injury can trigger neuronal ER stress and promote autophagy,and suggest that PERK is a possible target for inhibiting excessive autophagy in cerebral ischemia/reperfusion injury.展开更多
Post-traumatic stress disorder is a mental disorder caused by exposure to severe traumatic life events.Currently,there are no validated biomarkers or laboratory tests that can distinguish between trauma survivors with...Post-traumatic stress disorder is a mental disorder caused by exposure to severe traumatic life events.Currently,there are no validated biomarkers or laboratory tests that can distinguish between trauma survivors with and without post-traumatic stress disorder.In addition,the heterogeneity of clinical presentations of post-traumatic stress disorder and the overlap of symptoms with other conditions can lead to misdiagnosis and inappropriate treatment.Evidence suggests that this condition is a multisystem disorder that affects many biological systems,raising the possibility that peripheral markers of disease may be used to diagnose post-traumatic stress disorder.We performed a PubMed search for microRNAs(miRNAs)in post-traumatic stress disorder(PTSD)that could serve as diagnostic biomarkers and found 18 original research articles on studies performed with human patients and published January 2012 to December 2023.These included four studies with whole blood,seven with peripheral blood mononuclear cells,four with plasma extracellular vesicles/exosomes,and one with serum exosomes.One of these studies had also used whole plasma.Two studies were excluded as they did not involve microRNA biomarkers.Most of the studies had collected samples from adult male Veterans who had returned from deployment and been exposed to combat,and only two were from recently traumatized adult subjects.In measuring miRNA expression levels,many of the studies had used microarray miRNA analysis,miRNA Seq analysis,or NanoString panels.Only six studies had used real time polymerase chain reaction assay to determine/validate miRNA expression in PTSD subjects compared to controls.The miRNAs that were found/validated in these studies may be considered as potential candidate biomarkers for PTSD and include miR-3130-5p in whole blood;miR-193a-5p,-7113-5p,-125a,-181c,and-671-5p in peripheral blood mononuclear cells;miR-10b-5p,-203a-3p,-4488,-502-3p,-874-3p,-5100,and-7641 in plasma extracellular vesicles/exosomes;and miR-18a-3p and-7-1-5p in blood plasma.Several important limitations identified in the studies need to be taken into account in future studies.Further studies are warranted with war veterans and recently traumatized children,adolescents,and adults having PTSD and use of animal models subjected to various stressors and the effects of suppressing or overexpressing specific microRNAs.展开更多
Diabetes mellitus(DM)is a debilitating disorder that impacts all systems of the body and has been increasing in prevalence throughout the globe.DM represents a significant clinical challenge to care for individuals an...Diabetes mellitus(DM)is a debilitating disorder that impacts all systems of the body and has been increasing in prevalence throughout the globe.DM represents a significant clinical challenge to care for individuals and prevent the onset of chronic disability and ultimately death.Underlying cellular mechanisms for the onset and development of DM are multi-factorial in origin and involve pathways associated with the production of reactive oxygen species and the generation of oxidative stress as well as the dysfunction of mitochondrial cellular organelles,programmed cell death,and circadian rhythm impairments.These pathways can ultimately involve failure in the glymphatic pathway of the brain that is linked to circadian rhythms disorders during the loss of metabolic homeostasis.New studies incorporate a number of promising techniques to examine patients with metabolic disorders that can include machine learning and artificial intelligence pathways to potentially predict the onset of metabolic dysfunction.展开更多
The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular an...The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular and cellular mechanisms by which quinolinic acid contributes to Huntington's disease pathology remain unknown. In this study, we established in vitro and in vivo models of Huntington's disease by administering quinolinic acid to the PC12 neuronal cell line and the striatum of mice, respectively. We observed a decrease in the levels of hydrogen sulfide in both PC12 cells and mouse serum, which was accompanied by down-regulation of cystathionine β-synthase, an enzyme responsible for hydrogen sulfide production. However, treatment with NaHS(a hydrogen sulfide donor) increased hydrogen sulfide levels in the neurons and in mouse serum, as well as cystathionine β-synthase expression in the neurons and the mouse striatum, while also improving oxidative imbalance and mitochondrial dysfunction in PC12 cells and the mouse striatum. These beneficial effects correlated with upregulation of nuclear factor erythroid 2-related factor 2 expression. Finally, treatment with the nuclear factor erythroid 2-related factor 2inhibitor ML385 reversed the beneficial impact of exogenous hydrogen sulfide on quinolinic acid-induced oxidative stress. Taken together, our findings show that hydrogen sulfide reduces oxidative stress in Huntington's disease by activating nuclear factor erythroid 2-related factor 2,suggesting that hydrogen sulfide is a novel neuroprotective drug candidate for treating patients with Huntington's disease.展开更多
Roadways excavated through a coal seam can exert an adverse effect on roadway stability. To investigate the effects of in-situ stress on roadway stability, numerical models were built and high horizontal stresses at v...Roadways excavated through a coal seam can exert an adverse effect on roadway stability. To investigate the effects of in-situ stress on roadway stability, numerical models were built and high horizontal stresses at varying orientations were applied. The results indicate that stress concentrations, roadway deformation and failure increase in magnitude and extent as the excavation angle with respect to the maximum horizontal stress increases. In addition, the stress adjacent to the coal-rock interface sharply varies in space and evolves with time; coal is much more vulnerable to deformation and failure than rock.The results provide insights into the layout of roadways excavated through a coal seam. Roadways should be designed parallel or at a narrow angle to the maximum horizontal stress. The concentrated stress at the top corner of the face-end should be reduced in advance, and the coal seam should be reinforced immediately after excavation.展开更多
Measuring in-situ stress by using the Kaiser effect in rocks has such advantages as timeefficiency, low cost and little limitation, but the precision of the method is dependent on rock properties and delay time of the...Measuring in-situ stress by using the Kaiser effect in rocks has such advantages as timeefficiency, low cost and little limitation, but the precision of the method is dependent on rock properties and delay time of the measurement. In this paper, experiments on the Kaiser effect in limestones were performed, and it was found that the limestones had good ability to retain a memory of their recent stress history and high time-sensitivity. The longer the experiment was delayed from the extraction of the stone, the larger the Felicity ratio was. As the Felicity ratio approached l, significant Kaiser effect was observed. In-situ stress should be determined by the limestone measurements when the delay time was 40-120 days. Finally, the in-situ stress in a limestone formation could be successfully measured in practice.展开更多
The relative change of in-situ stress is an inevitable outcome of differential movement among the crust plates. Conversely, changes of in-situ stress can also lead to deformation and instability of crustal rock mass, ...The relative change of in-situ stress is an inevitable outcome of differential movement among the crust plates. Conversely, changes of in-situ stress can also lead to deformation and instability of crustal rock mass, trigger activity of faults, and induce earthquakes. Hence, monitoring real-time change of in-situ stress is of great significance. Piezomagnetic in-situ stress monitoring has good and longtime applications in large engineering constructions and geoscience study fields in China. In this paper, the new piezomagnetic in-situ stress monitoring system is introduced and it not only has overall improvements in measuring cell's structure and property, stressing and orienting way, but also enhances integration and intelligence of control and data transmission system, in general, which greatly promotes installing efficiency of measuring probe and quality of monitoring data. This paper also discusses the responses of new piezomagnetic system in large earthquake events of in-situ stress monitoring station at Qiaoqi of Baoxing and Wenxian of Gansu. The monitoring data reflect adjustments and changes of tectonic stress field at the southwestern segment of and the northern area near the Longmenshan fault zone, which shows that the new system has a good performance and application prospect in the geoscience field. Data of the Qiaoqi stress-monitoring station manifest that the Lushan Earthquake did not release stress of the southwestern segment of the Longmenshan fault zone adequately and there still probably exists seismic risk in this region in the future. Combined with absolute in-situ stress measurement, carrying out long-term in-situ stress monitoring in typical tectonic position of important regions is of great importance for researchers to assess and study regional crust stability.展开更多
Four months after the Wenchuan Ms 8 earthquake in western Sichuan, China, in situ stress measurements were carried out along the Longmenshan fault zone with the purpose of obtaining stress parameters for earthquake ha...Four months after the Wenchuan Ms 8 earthquake in western Sichuan, China, in situ stress measurements were carried out along the Longmenshan fault zone with the purpose of obtaining stress parameters for earthquake hazard assessment. In-situ stresses were measured in three new boreholes by using overcoring with the piezomagnetic stress gauges for shallow depths and hydraulic fracturing for lower depths. The maximum horizontal stress in shallow depths (-20 m) is about 4.3 MPa, oriented N19°E, in the epicenter area at Yingxiu Town, about 9.7 MPa, oriented N51°W, at Baoxing County in the southwestern Longmenshan range, and about 2.6 MPa, oriented N39°E, near Kangding in the southernmost zone of the Longmenshan range. Hydraulic fracturing at borehole depths from 100 to 400 m shows a tendency towards increasing stress with depth. A comparison with the results measured before the Wenchuan earthquake along the Longmenshan zone and in the Tibetan Plateau demonstrates that the stress level remains relatively high in the southwestern segment of the Longmenshan range, and is still moderate in the epicenter zone. These results provide a key appraisal for future assessment of earthquake hazards of the Longmenshan fault zone and the aftershock occurrences of the Wenchuan earthquake.展开更多
基金supported financially by the National Natural Science Foundation of China,No.82071272(to YZ).
文摘Brain-derived neurotrophic factor is a key factor in stress adaptation and avoidance of a social stress behavioral response.Recent studies have shown that brain-derived neurotrophic factor expression in stressed mice is brain region–specific,particularly involving the corticolimbic system,including the ventral tegmental area,nucleus accumbens,prefrontal cortex,amygdala,and hippocampus.Determining how brain-derived neurotrophic factor participates in stress processing in different brain regions will deepen our understanding of social stress psychopathology.In this review,we discuss the expression and regulation of brain-derived neurotrophic factor in stress-sensitive brain regions closely related to the pathophysiology of depression.We focused on associated molecular pathways and neural circuits,with special attention to the brain-derived neurotrophic factor–tropomyosin receptor kinase B signaling pathway and the ventral tegmental area–nucleus accumbens dopamine circuit.We determined that stress-induced alterations in brain-derived neurotrophic factor levels are likely related to the nature,severity,and duration of stress,especially in the above-mentioned brain regions of the corticolimbic system.Therefore,BDNF might be a biological indicator regulating stress-related processes in various brain regions.
基金financial support for this work from the National Natural Science Foundation of China(Nos.42202320 and 42102266)the Open Project of Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education(No.LKF201901).
文摘In deep hard rock excavation, stress plays a pivotal role in inducing stress-controlled failure. While the impact of excavation-induced stress disturbance on rock failure and tunnel stability has undergone comprehensive examination through laboratory tests and numerical simulations, its validation through insitu stress tests remains unexplored. This study analyzes the three-dimensional stress changes in the surrounding rock at various depths, monitored during the excavation of B2 Lab in China Jinping Underground Laboratory Phase Ⅱ(CJPL-Ⅱ). The investigation delves into the three-dimensional stress variation characteristics in deep hard rock, encompassing stress components and principal stress. The results indicate changes in both the magnitude and direction of the principal stress during tunnel excavation. To quantitatively describe the degree of stress disturbance, a series of stress evaluation indexes are established based on the distances between stress tensors, including the stress disturbance index(SDI), the principal stress magnitude disturbance index(SDIm), and the principal stress direction disturbance index(SDId). The SDI indicates the greatest stress disturbance in the surrounding rock is 4.5 m from the tunnel wall in B2 Lab. SDIm shows that the principal stress magnitude disturbance peaks at2.5 m from the tunnel wall. SDId reveals that the largest change in principal stress direction does not necessarily occur near the tunnel wall but at a specific depth from it. The established relationship between SDI and the depth of the excavation damaged zone(EDZ) can serve as a criterion for determining the depth of the EDZ in deep hard rock engineering. Additionally, it provides a reference for future construction and support considerations.
基金Project(52178402)supported by the National Natural Science Foundation of ChinaProject(2021-Key-09)supported by the Science and Technology Research and Development Program Project of China Railway Group LimitedProject(2021zzts0216)supported by the Innovation-Driven Project of Central South University,China。
文摘Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly.
基金the Project Support of NSFC(No.U19B6003-05 and No.52074314)。
文摘A method for in-situ stress measurement via fiber optics was proposed. The method utilizes the relationship between rock mass elastic parameters and in-situ stress. The approach offers the advantage of long-term stress measurements with high spatial resolution and frequency, significantly enhancing the ability to measure in-situ stress. The sensing casing, spirally wrapped with fiber optic, is cemented into the formation to establish a formation sensing nerve. Injecting fluid into the casing generates strain disturbance, establishing the relationship between rock mass properties and treatment pressure.Moreover, an optimization algorithm is established to invert the elastic parameters of formation via fiber optic strains. In the first part of this paper series, we established the theoretical basis for the inverse differential strain analysis method for in-situ stress measurement, which was subsequently verified using an analytical model. This paper is the fundamental basis for the inverse differential strain analysis method.
文摘A study of the interfacial behavior and internal thermal stress distribution in fiber-reinforced composites is essential to assess their performance and reliability.CNT/carbon fiber(CF)hybrid fibers were constructed using electrophoretic deposition.The interfacial properties of CF/epoxy and CNT/CF/epoxy composites were statistically investigated and compared using in-situ thermal Raman mapping by dispersing CNTs as a Raman sensing medium(CNT_(R))in a resin.The associated local thermal stress changes can be simulated by capturing the G'band position distribution of CNT_(R) in the epoxy at different temperatures.It was found that the G'band shifted to lower positions with increasing temperature,reaching a maximum difference of 2.43 cm^(−1) at 100℃.The interfacial bonding between CNT/CF and the matrix and the stress distribution and changes during heat treatment(20-100℃)were investig-ated in detail.This work is important for studying thermal stress in fiber-reinforced composites by in-situ thermal Raman mapping technology.
基金Projects(52334003,52104111,52274249)supported by the National Natural Science Foundation of ChinaProject(2022YFC2903901)supported by the National Key R&D Project of ChinaProject(2024JJ4064)supported by the Natural Science Foundation of Hunan Province,China。
文摘Water-coupled charge blasting is a promising technique to efficiently break rock masses.In this study,numerical models of double boreholes with water-coupled charge are established using LS-DYNA and are calibrated by the tests of rock masses subjected to explosion loads to examine its performance.The crack levels of rock mass induced by water-coupled charge blasting and air-coupled charge blasting are first compared.It is found that water-coupled charge blasting is more appropriate to fracture deep rock mass than air-coupled charge blasting.In addition,the effects of rock properties,water-coupled charge coefficients,and borehole connection angles on the performance of water-coupled charge blasting are investigated.The results show that rock properties and water-coupled charge coefficients can greatly influence the crack and fragmentation levels of rock mass induced by water-coupled charge blasting under uniform and non-uniform in-situ stresses.However,changing borehole-connection angles can only affect crack and fragmentation levels of rock mass under non-uniform in-situ stresses but barely affect those under uniform in-situ stresses.A formula is finally proposed by considering the above-mentioned factors to provide the design suggestion of water-coupled charge blasting to fracture rock mass with different in-situ stresses.
基金National Natural Science Foundation of China (51974176, 52174194, 51934004)Shandong Provincial Colleges and Universities Youth Innovation and Technology Support Program (2019KJH006)+1 种基金Taishan Scholars Project (TS20190935)Shandong outstanding youth fund (ZR2020JQ22).
文摘The viscosity of fracturing fluid and in-situ stress difference are the two important factors that affect the hydraulic fracturing pressure and propagation morphology. In this study, raw coal was used to prepare coal samples for experiments, and clean fracturing fluid samples were prepared using CTAB surfactant. A series of hydraulic fracturing tests were conducted with an in-house developed triaxial hydraulic fracturing simulator and the fracturing process was monitored with an acoustic emission instrument to analyze the influences of fracturing fluid viscosity and horizontal in-situ stress difference on coal fracture propagation. The results show that the number of branched fractures decreased, the fracture pattern became simpler, the fractures width increased obviously, and the distribution of AE event points was concentrated with the increase of the fracturing fluid viscosity or the horizontal in-situ stress difference. The acoustic emission energy decreases with the increase of fracturing fluid viscosity and increases with the increase of horizontal in situ stress difference. The low viscosity clean fracturing fluid has strong elasticity and is easy to be compressed into the tip of fractures, resulting in complex fractures. The high viscosity clean fracturing fluids are the opposite. Our experimental results provide a reference and scientific basis for the design and optimization of field hydraulic fracturing parameters.
基金financially supported by the National Natural Science Foundation of China(No.52204084)the Open Research Fund of the State Key Laboratory of Coal Resources and safe Mining,CUMT,China(No.SKLCRSM 23KF004)+3 种基金the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities),China(No.FRF-IDRY-GD22-002)the Fundamental Research Funds for the Central Universities and the Youth Teacher International Exchange and Growth Program,China(No.QNXM20220009)the National Key R&D Program of China(Nos.2022YFC2905600 and 2022 YFC3004601)the Science,Technology&Innovation Project of Xiongan New Area,China(No.2023XAGG0061)。
文摘Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stress,the three-dimensional(3D)stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted,a newly defined characteristic parameter C_(ERP)was proposed as an indicator for evaluating the structural properties of rock masses,and a fuzzy relation matrix was established using the information distribution method.The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth.There is no remarkable correlation between the elastic modulus,Poisson's ratio and depth,and the distribution of data points is scattered and messy.Moreover,there is no obvious relationship between the rock quality designation(RQD)and depth.The maximum horizontal stress σ_(H) is a function of rock properties,showing a certain linear relationship with the C_(ERP)at the same depth.In addition,the overall change trend of σ_(H) determined by the established fuzzy identification method is to increase with the increase of C_(ERP).The fuzzy identification method also demonstrates a relatively detailed local relationship betweenσ_H and C_(ERP),and the predicted curve rises in a fluctuating way,which is in accord well with the measured stress data.
基金supported by the STI 2030—Major Projects 2021ZD0204000,No.2021ZD0204003 (to XZ)the National Natural Science Foundation of China,Nos.32170973 (to XZ),32071018 (to ZH)。
文摘Dysregulation of neurotransmitter metabolism in the central nervous system contributes to mood disorders such as depression, anxiety, and post–traumatic stress disorder. Monoamines and amino acids are important types of neurotransmitters. Our previous results have shown that disco-interacting protein 2 homolog A(Dip2a) knockout mice exhibit brain development disorders and abnormal amino acid metabolism in serum. This suggests that DIP2A is involved in the metabolism of amino acid–associated neurotransmitters. Therefore, we performed targeted neurotransmitter metabolomics analysis and found that Dip2a deficiency caused abnormal metabolism of tryptophan and thyroxine in the basolateral amygdala and medial prefrontal cortex. In addition, acute restraint stress induced a decrease in 5-hydroxytryptamine in the basolateral amygdala. Additionally, Dip2a was abundantly expressed in excitatory neurons of the basolateral amygdala, and deletion of Dip2a in these neurons resulted in hopelessness-like behavior in the tail suspension test. Altogether, these findings demonstrate that DIP2A in the basolateral amygdala may be involved in the regulation of stress susceptibility. This provides critical evidence implicating a role of DIP2A in affective disorders.
文摘Hearing loss is the third leading cause of human disability.Age-related hearing loss,one type of acquired sensorineural hearing loss,is largely responsible for this escalating global health burden.Noise-induced,ototoxic,and idiopathic sudden sensorineural are other less common types of acquired hearing loss.The etiology of these conditions is complex and multi-fa ctorial involving an interplay of genetic and environmental factors.Oxidative stress has recently been proposed as a likely linking cause in most types of acquired sensorineural hearing loss.Short non-coding RNA sequences known as microRNAs(miRNAs)have increasingly been shown to play a role in cellular hypoxia and oxidative stress responses including promoting an apoptotic response.Sensory hair cell death is a central histopathological finding in sensorineural hearing loss.As these cells do not regenerate in humans,it underlies the irreversibility of human age-related hearing loss.Ovid EMBASE,Ovid MEDLINE,Web of Science Core Collection,and ClinicalTrials.gov databases over the period August 1,2018 to July 31,2023 were searched with"hearing loss,""hypoxamiRs,""hypoxia,""microRNAs,""ischemia,"and"oxidative stress"text words for English language primary study publications or registered clinical trials.Registe red clinical trials known to the senior author we re also assessed.A total of 222studies were thus identified.After excluding duplicates,editorials,retra ctions,secondary research studies,and non-English language articles,39 primary studies and clinical trials underwent full-text screening.This resulted in 11 animal,in vitro,and/or human subject journal articles and 8 registered clinical trial database entries which form the basis of this narrative review.MiRNAs miR-34a and miR-29b levels increase with age in mice.These miRNAs were demonstrated in human neuroblastoma and murine cochlear cell lines to target Sirtuin 1/peroxisome proliferato r-activated receptor gamma coactivator-1-alpha(SIRT1/P GC-1α),SIRT1p53,and SIRT1/hypoxia-inducible factor 1-alpha signaling pathways resulting in increased apoptosis.Furthermore,hypoxia and oxidative stress had a similar adve rse apoptotic effect,which was inhibited by resve ratrol and a myocardial inhibitorassociated transcript,a miR-29b competing endogenous mRNA.Gentamicin reduced miR-182-5p levels and increased cochlear oxidative stress and cell death in mice-an effect that was corrected by inner ear stem cell-derived exosomes.There is ongoing work seeking to determine if these findings can be effectively translated to humans.
文摘BACKGROUND Revisiting the epidemiology of posttraumatic stress symptoms(PTSSs)among university students during the coronavirus disease 2019(COVID-19)pandemic as well as understanding the mental health help-seeking behavior of individuals with PTSSs has critical implications for public mental health strategies in future medical pandemics.AIM To investigate the prevalence and correlates of PTSSs among university students during the first wave of the COVID-19 pandemic in China and to examine mental health help-seeking behaviors among these students.METHODS A total of 2507 Chinese university students were recruited via snowball sampling.The students completed the Seven-item Screening Scale for Post-traumatic Stress Disorder during the first wave of the COVID-19 pandemic in China.Sociodemo-graphic characteristics,pandemic-related characteristics,and mental health help-seeking behaviors of students with PTSSs were also collected.RESULTS The prevalence of PTSSs among the participants was 28.0%.Seven significant correlates of PTSSs were identified(odds ratio=1.23-3.65,P≤0.024):Female sex,being 19 years old or older,living with others or alone,a low level of family economic status,fair or poor interpersonal relationships,severe or very severe local pandemic,and having family members diagnosed with COVID-19.However,only 3.28%of the students with PTSSs reported seeking help from mental health specialists.Among the 23 students who sought help from mental health specialists,13 opted for online or telephone-based psychological consultation.CONCLUSION Our data suggest that there was a high risk of PTSSs among university students and a high level of unmet mental health needs during the COVID-19 pandemic.The delivery of mental health services online or via telephone is a promising approach to address these unmet needs.
基金Supported by the Shijiazhuang Science and Technology Research and Development Program,No.221460383.
文摘BACKGROUND Emotional reactions,such as anxiety,irritability,and aggressive behavior,have attracted clinical attention as behavioral and emotional problems in preschool-age children.AIM To investigate the current status of family rearing,parental stress,and behavioral and emotional problems of preschool children and to analyze the mediating effect of the current status of family rearing on parental stress and behavioral/emo-tional problems.METHODS We use convenience sampling to select 258 preschool children in the physical examination center of our hospital from October 2021 to September 2023.The children and their parents were evaluated using a questionnaire survey.Pearson's correlation was used to analyze the correlation between child behavioral and emotional problems and parental stress and family rearing,and the structural equation model was constructed to test the mediating effect.RESULTS The score for behavioral/emotional problems of 258 preschool children was(27.54±3.63),the score for parental stress was(87.64±11.34),and the score for parental family rearing was(31.54±5.24).There was a positive correlation between the behavioral and emotional problems of the children and the“hostile/mandatory”parenting style;meanwhile,showed a negative correlation with the“support/participation”parenting style(all P<0.05).The intermediary effect value between the family upbringing of parents in parental stress and children's behavior problems was 29.89%.CONCLUSION Parental family upbringing has a mediating effect between parental stress and behavioral and emotional problems of children.Despite paying attention to the behavioral and emotional problems of preschool-age children,clinical medical staff should provide correct and reasonable parenting advice to their parents to promote the mental health of preschool-age children.
基金supported by the National Natural Science Foundation of China,Nos.82260245(to YX),81660207(to YX),81960253(to YL),82160268(to YL),U1812403(to ZG)Science and Technology Projects of Guizhou Province,Nos.[2019]1440(to YX),[2020]1Z067(to WH)+1 种基金Cultivation Foundation of Guizhou Medical University,No.[20NSP069](to YX)Excellent Young Talents Plan of Guizhou Medical University,No.(2022)101(to WH)。
文摘Several studies have shown that activation of unfolded protein response and endoplasmic reticulum(ER)stress plays a crucial role in severe cerebral ischemia/reperfusion injury.Autophagy occurs within hours after cerebral ischemia,but the relationship between ER stress and autophagy remains unclear.In this study,we established experimental models using oxygen-glucose deprivation/reoxygenation in PC12 cells and primary neurons to simulate cerebral ischemia/reperfusion injury.We found that prolongation of oxygen-glucose deprivation activated the ER stress pathway protein kinase-like endoplasmic reticulum kinase(PERK)/eukaryotic translation initiation factor 2 subunit alpha(e IF2α)-activating transcription factor 4(ATF4)-C/EBP homologous protein(CHOP),increased neuronal apoptosis,and induced autophagy.Furthermore,inhibition of ER stress using inhibitors or by si RNA knockdown of the PERK gene significantly attenuated excessive autophagy and neuronal apoptosis,indicating an interaction between autophagy and ER stress and suggesting PERK as an essential target for regulating autophagy.Blocking autophagy with chloroquine exacerbated ER stress-induced apoptosis,indicating that normal levels of autophagy play a protective role in neuronal injury following cerebral ischemia/reperfusion injury.Findings from this study indicate that cerebral ischemia/reperfusion injury can trigger neuronal ER stress and promote autophagy,and suggest that PERK is a possible target for inhibiting excessive autophagy in cerebral ischemia/reperfusion injury.
文摘Post-traumatic stress disorder is a mental disorder caused by exposure to severe traumatic life events.Currently,there are no validated biomarkers or laboratory tests that can distinguish between trauma survivors with and without post-traumatic stress disorder.In addition,the heterogeneity of clinical presentations of post-traumatic stress disorder and the overlap of symptoms with other conditions can lead to misdiagnosis and inappropriate treatment.Evidence suggests that this condition is a multisystem disorder that affects many biological systems,raising the possibility that peripheral markers of disease may be used to diagnose post-traumatic stress disorder.We performed a PubMed search for microRNAs(miRNAs)in post-traumatic stress disorder(PTSD)that could serve as diagnostic biomarkers and found 18 original research articles on studies performed with human patients and published January 2012 to December 2023.These included four studies with whole blood,seven with peripheral blood mononuclear cells,four with plasma extracellular vesicles/exosomes,and one with serum exosomes.One of these studies had also used whole plasma.Two studies were excluded as they did not involve microRNA biomarkers.Most of the studies had collected samples from adult male Veterans who had returned from deployment and been exposed to combat,and only two were from recently traumatized adult subjects.In measuring miRNA expression levels,many of the studies had used microarray miRNA analysis,miRNA Seq analysis,or NanoString panels.Only six studies had used real time polymerase chain reaction assay to determine/validate miRNA expression in PTSD subjects compared to controls.The miRNAs that were found/validated in these studies may be considered as potential candidate biomarkers for PTSD and include miR-3130-5p in whole blood;miR-193a-5p,-7113-5p,-125a,-181c,and-671-5p in peripheral blood mononuclear cells;miR-10b-5p,-203a-3p,-4488,-502-3p,-874-3p,-5100,and-7641 in plasma extracellular vesicles/exosomes;and miR-18a-3p and-7-1-5p in blood plasma.Several important limitations identified in the studies need to be taken into account in future studies.Further studies are warranted with war veterans and recently traumatized children,adolescents,and adults having PTSD and use of animal models subjected to various stressors and the effects of suppressing or overexpressing specific microRNAs.
基金Supported by American Diabetes AssociationAmerican Heart Association+3 种基金NIH NIEHSNIH NIANIH NINDSand NIH ARRA.
文摘Diabetes mellitus(DM)is a debilitating disorder that impacts all systems of the body and has been increasing in prevalence throughout the globe.DM represents a significant clinical challenge to care for individuals and prevent the onset of chronic disability and ultimately death.Underlying cellular mechanisms for the onset and development of DM are multi-factorial in origin and involve pathways associated with the production of reactive oxygen species and the generation of oxidative stress as well as the dysfunction of mitochondrial cellular organelles,programmed cell death,and circadian rhythm impairments.These pathways can ultimately involve failure in the glymphatic pathway of the brain that is linked to circadian rhythms disorders during the loss of metabolic homeostasis.New studies incorporate a number of promising techniques to examine patients with metabolic disorders that can include machine learning and artificial intelligence pathways to potentially predict the onset of metabolic dysfunction.
基金supported by the National Natural Science Foundation of China,Nos.82271327 (to ZW),82072535 (to ZW),81873768 (to ZW),and 82001253 (to TL)。
文摘The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular and cellular mechanisms by which quinolinic acid contributes to Huntington's disease pathology remain unknown. In this study, we established in vitro and in vivo models of Huntington's disease by administering quinolinic acid to the PC12 neuronal cell line and the striatum of mice, respectively. We observed a decrease in the levels of hydrogen sulfide in both PC12 cells and mouse serum, which was accompanied by down-regulation of cystathionine β-synthase, an enzyme responsible for hydrogen sulfide production. However, treatment with NaHS(a hydrogen sulfide donor) increased hydrogen sulfide levels in the neurons and in mouse serum, as well as cystathionine β-synthase expression in the neurons and the mouse striatum, while also improving oxidative imbalance and mitochondrial dysfunction in PC12 cells and the mouse striatum. These beneficial effects correlated with upregulation of nuclear factor erythroid 2-related factor 2 expression. Finally, treatment with the nuclear factor erythroid 2-related factor 2inhibitor ML385 reversed the beneficial impact of exogenous hydrogen sulfide on quinolinic acid-induced oxidative stress. Taken together, our findings show that hydrogen sulfide reduces oxidative stress in Huntington's disease by activating nuclear factor erythroid 2-related factor 2,suggesting that hydrogen sulfide is a novel neuroprotective drug candidate for treating patients with Huntington's disease.
基金provided by the Fundamental Research Funds for the Central Universities(No.2014QNA02)the Program for Changjiang Scholars and Innovative Research Team in University(No.IRT13098)+3 种基金the National Basic Research Program of China(No.2011CB201205)the National Natural Science Foundation of China(No.51404261)the Natural Science Foundation of Jiangsu Province(No.BK20140196)China PostdoctoralScience Foundation funded project(No.2014M551057)
文摘Roadways excavated through a coal seam can exert an adverse effect on roadway stability. To investigate the effects of in-situ stress on roadway stability, numerical models were built and high horizontal stresses at varying orientations were applied. The results indicate that stress concentrations, roadway deformation and failure increase in magnitude and extent as the excavation angle with respect to the maximum horizontal stress increases. In addition, the stress adjacent to the coal-rock interface sharply varies in space and evolves with time; coal is much more vulnerable to deformation and failure than rock.The results provide insights into the layout of roadways excavated through a coal seam. Roadways should be designed parallel or at a narrow angle to the maximum horizontal stress. The concentrated stress at the top corner of the face-end should be reduced in advance, and the coal seam should be reinforced immediately after excavation.
文摘Measuring in-situ stress by using the Kaiser effect in rocks has such advantages as timeefficiency, low cost and little limitation, but the precision of the method is dependent on rock properties and delay time of the measurement. In this paper, experiments on the Kaiser effect in limestones were performed, and it was found that the limestones had good ability to retain a memory of their recent stress history and high time-sensitivity. The longer the experiment was delayed from the extraction of the stone, the larger the Felicity ratio was. As the Felicity ratio approached l, significant Kaiser effect was observed. In-situ stress should be determined by the limestone measurements when the delay time was 40-120 days. Finally, the in-situ stress in a limestone formation could be successfully measured in practice.
基金finically supported by the Sino Probe-06-01,Special Fund Research in the Public Interest (Grant No. 201211076)National Key Basic Project (973) (Grant No. 2008CB425702)
文摘The relative change of in-situ stress is an inevitable outcome of differential movement among the crust plates. Conversely, changes of in-situ stress can also lead to deformation and instability of crustal rock mass, trigger activity of faults, and induce earthquakes. Hence, monitoring real-time change of in-situ stress is of great significance. Piezomagnetic in-situ stress monitoring has good and longtime applications in large engineering constructions and geoscience study fields in China. In this paper, the new piezomagnetic in-situ stress monitoring system is introduced and it not only has overall improvements in measuring cell's structure and property, stressing and orienting way, but also enhances integration and intelligence of control and data transmission system, in general, which greatly promotes installing efficiency of measuring probe and quality of monitoring data. This paper also discusses the responses of new piezomagnetic system in large earthquake events of in-situ stress monitoring station at Qiaoqi of Baoxing and Wenxian of Gansu. The monitoring data reflect adjustments and changes of tectonic stress field at the southwestern segment of and the northern area near the Longmenshan fault zone, which shows that the new system has a good performance and application prospect in the geoscience field. Data of the Qiaoqi stress-monitoring station manifest that the Lushan Earthquake did not release stress of the southwestern segment of the Longmenshan fault zone adequately and there still probably exists seismic risk in this region in the future. Combined with absolute in-situ stress measurement, carrying out long-term in-situ stress monitoring in typical tectonic position of important regions is of great importance for researchers to assess and study regional crust stability.
基金the auspice of National Key Basic Project(973)(granted No.2008CB425702)National Science and Technology Project(granted No.SinoProbe-06)
文摘Four months after the Wenchuan Ms 8 earthquake in western Sichuan, China, in situ stress measurements were carried out along the Longmenshan fault zone with the purpose of obtaining stress parameters for earthquake hazard assessment. In-situ stresses were measured in three new boreholes by using overcoring with the piezomagnetic stress gauges for shallow depths and hydraulic fracturing for lower depths. The maximum horizontal stress in shallow depths (-20 m) is about 4.3 MPa, oriented N19°E, in the epicenter area at Yingxiu Town, about 9.7 MPa, oriented N51°W, at Baoxing County in the southwestern Longmenshan range, and about 2.6 MPa, oriented N39°E, near Kangding in the southernmost zone of the Longmenshan range. Hydraulic fracturing at borehole depths from 100 to 400 m shows a tendency towards increasing stress with depth. A comparison with the results measured before the Wenchuan earthquake along the Longmenshan zone and in the Tibetan Plateau demonstrates that the stress level remains relatively high in the southwestern segment of the Longmenshan range, and is still moderate in the epicenter zone. These results provide a key appraisal for future assessment of earthquake hazards of the Longmenshan fault zone and the aftershock occurrences of the Wenchuan earthquake.