The damage-fracture evolution of deep rock mass has obvious particularity,which is revealed in 2400-mdeep tunnels by field tests.The evolution of the excavation damaged zone depth is consistent with that of the fractu...The damage-fracture evolution of deep rock mass has obvious particularity,which is revealed in 2400-mdeep tunnels by field tests.The evolution of the excavation damaged zone depth is consistent with that of the fractured zone depth.The ratio of the excavation damaged zone depth to the excavation fractured zone depth is greater than 2.0 in a rock mass with both high strength and good integrity,but less than1.5 in a rock mass with lower strength or poor integrity.Zonal disintegration in a rock mass with high strength and fair integrity is more likely to occur when it contains more than two groups of primary fractures in damaged zones.Fractures develop outward in zonal disintegration but are totally different from the single-zone fracture,in which the fractures develop inward,and it is the starting position of the fractured zone when the excavation surface of the middle pilot is 7–9 m close to the pre-set borehole and it stops after the excavation surface of the baseplate is 11–14 m away.The most intense evolution occurs around 2–4 m from the pre-set borehole in the sidewall expansion stage.The research results provide a reference for the monitoring scheme and support design of CJPL-Ⅲin its future construction.展开更多
The microstructure and crack behaviour of twinning induced plasticity (TWIP) steel during tensile deformation was investigated with in-situ scanning electron microscopy (SEM). The results show that there are two m...The microstructure and crack behaviour of twinning induced plasticity (TWIP) steel during tensile deformation was investigated with in-situ scanning electron microscopy (SEM). The results show that there are two modes of plastic deformation during tensile test in the Fe-Mn-C TWIP steel: dislocation gliding and deformation twins. During the process of tensile deformation, secondary deformed twins are found. Inclusions have played a role in the course of ductile fracture, and microcracks initiate from inclusions and twin-twin intersections.展开更多
In-situ observation of porosity formation during directional solidification of two Al-Si alloys (7%Si and 13%Si) was made by using of micro-focus X-ray imaging.In both alloys,small spherical pores initially form in th...In-situ observation of porosity formation during directional solidification of two Al-Si alloys (7%Si and 13%Si) was made by using of micro-focus X-ray imaging.In both alloys,small spherical pores initially form in the melt far away from the eutectic solid-liquid (S/L) interface and then grow and coagulate during solidification.Some pores can float and escape from the solidifying melt front at a relatively high velocity.At the end of solidification,the remaining pores maintain spherical morphology in the near eutectic alloy but become irregular in the hypoeutectic alloy.This is attributed to different solidification modes and aluminum dendrite interactions between the two alloys.The mechanism of the porosity formation is briefly discussed in this paper.展开更多
Objective In geo-marine science,the generalized bottom boundary layer(BBL)represents a layer between sediments and seawater.The BBL plays an important role in geological,geobiochemical,geophysical and geotechnical r...Objective In geo-marine science,the generalized bottom boundary layer(BBL)represents a layer between sediments and seawater.The BBL plays an important role in geological,geobiochemical,geophysical and geotechnical research because it is the connection region of hydrosphere,展开更多
The motion of intervariant intedeces under the action of applied stress in the internally faulted 18R martensite in a Cu-Zn-Al shape memory alloy has been studied. Transmission electron microscopy in situ observations...The motion of intervariant intedeces under the action of applied stress in the internally faulted 18R martensite in a Cu-Zn-Al shape memory alloy has been studied. Transmission electron microscopy in situ observations show that the interfaces between 24 martensite variants have different reaction to applied stress. The A/C type and A/B type interfaces have good mobil-ity, the A/D type interface has bad mobiIity, and the different-group-intervariant interfaces are basically immobile.展开更多
In-situ observation of microstructural evolution during heating and soaking process was carded out for a high nickel steel using HTCLSM. Dark phases were observed when soaking at 900℃. Results showed that the number ...In-situ observation of microstructural evolution during heating and soaking process was carded out for a high nickel steel using HTCLSM. Dark phases were observed when soaking at 900℃. Results showed that the number of the dark phases culminated in about 50 s during soaking at 900℃. With the increase of soaking time the area proportion of the dark phases increased and reached the maximum value in about 3 min, When temperature rose from 900 ℃, the dark phases remained steady initially, but started to dissolve into the matrix at about 1 060 ℃ and completely disappeared at 1 132℃. When the specimen soaked at 900 ℃ was cooled down to room temperature (RT), the dark phases kept stable. Energy spectrum analysis results showed that the dark phases contained much more Cr and Mn elements than the matrix and,were also rich in V. Tensile test results showed that the dark phase strengthened the steel with the maximum tensile strength obtained after soaking at 900 ℃ for 3 minutes.展开更多
An in situ observation of the s'phase morphology and its orientation with the matrix in an Al-Li base alloy was carried out by means of double-tilt rotating around[220]a in a transmission electron microscope(TEM)....An in situ observation of the s'phase morphology and its orientation with the matrix in an Al-Li base alloy was carried out by means of double-tilt rotating around[220]a in a transmission electron microscope(TEM).The results show that the s'phase precipitates in the form of bundles.The units of s'phase are lath-shaped,grow along the<100>,orientation,and have habit planes of{210}*.Many units of the s'phase grow in the same orientation and get together to form a plate-shaped bundle of s'phase laths which lie on the{110}a planes.展开更多
The growing process of thermal fatigue cracking,in steel 3Cr2WSV was observed under desk SEM fitted with sell-made minisized device for thermal faligue test.Before the growing of thermal fatigue crack,the main crack t...The growing process of thermal fatigue cracking,in steel 3Cr2WSV was observed under desk SEM fitted with sell-made minisized device for thermal faligue test.Before the growing of thermal fatigue crack,the main crack tip reveals to blunt firstly,and some holes and uncontinuous microcraeks occur in front of it.The growth is developed by bridging of main crack together with holes and microcracks.展开更多
The observation on crack initiation and propagation of surface inclusion Al2O3 in seeded PM Rene95 was conducted by SEM in-situ tension test. The results show that the cracks often initiate at the inclusion/matrix int...The observation on crack initiation and propagation of surface inclusion Al2O3 in seeded PM Rene95 was conducted by SEM in-situ tension test. The results show that the cracks often initiate at the inclusion/matrix interface vertical to the applied stress direction, and easily propagate along the interface into the matrix. The interface of inclusion/matrix is just mechanically bounded on the base of SEM observation. The weak bonding of inclusion/matrix interface and stress concentration around inclusions are the main reasons of the matrix/inclusion interface debonding and local plastic deformation under the tensile loading in the in-situ tension test. Surface inclusion does not definitely lead to the failure of in-situ tension test. But the early surface crack initiation caused by ceramic inclusion is critically harmful to the LCF property of PM Rene95 superalloy, which can't be ignored.展开更多
The CarbonTracker(CT) model has been used in previous studies for understanding and predicting the sources, sinks, and dynamics that govern the distribution of atmospheric CO_2 at varying ranges of spatial and tempora...The CarbonTracker(CT) model has been used in previous studies for understanding and predicting the sources, sinks, and dynamics that govern the distribution of atmospheric CO_2 at varying ranges of spatial and temporal scales. However, there are still challenges for reproducing accurate model-simulated CO_2 concentrations close to the surface, typically associated with high spatial heterogeneity and land cover. In the present study, we evaluated the performance of nested-grid CT model simulations of CO_2 based on the CT2016 version through comparison with in-situ observations over East Asia covering the period 2009–13. We selected sites located in coastal, remote, inland, and mountain areas. The results are presented at diurnal and seasonal time periods. At target stations, model agreement with in-situ observations was varied in capturing the diurnal cycle. Overall, biases were less than 6.3 ppm on an all-hourly mean basis, and this was further reduced to a maximum of 4.6 ppm when considering only the daytime. For instance, at Anmyeondo, a small bias was obtained in winter, on the order of 0.2 ppm. The model revealed a diurnal amplitude of CO_2 that was nearly flat in winter at Gosan and Anmyeondo stations, while slightly overestimated in the summertime. The model's performance in reproducing the diurnal cycle remains a challenge and requires improvement. The model showed better agreement with the observations in capturing the seasonal variations of CO_2 during daytime at most sites, with a correlation coefficient ranging from 0.70 to 0.99. Also, model biases were within-0.3 and 1.3 ppm, except for inland stations(7.7 ppm).展开更多
Observations of fluid mud were made in the lower North Passage of the Yangtze Estuary in February 2000, on 10~11 August 2000, on 30~31 August 2000 (after two strong typhoons), on 21~24 August 2000 (neap tide) and o...Observations of fluid mud were made in the lower North Passage of the Yangtze Estuary in February 2000, on 10~11 August 2000, on 30~31 August 2000 (after two strong typhoons), on 21~24 August 2000 (neap tide) and on 3~6 September 2000 (mean tide) respectively. In situ data show that the fluid mud in this area consists of fine cohesive sediment (median size 7.23 μm). The formation and movement of fluid mud varied during the neap-spring and flood-ebb tidal cycle. Observations suggest that fluid mud phenomena in this area may be categorised in a three-fold manner as slack water, storm and saltwedge features. The thickness of the fluid mud layer of slack water during the neap tide ranged from 0.2 to 0.96 m, whereas during the mean tide, the thickness ranged from 0.17 to 0.73 m, and the thickness of the fluid mud layer was larger during slack water than at the flood peak. Shoals cover an area of 800 km2 with a water depth smaller than 5 m. Erosion of these extensive intertidal mudflats due to storm action provides an abundant sediment source. This is particularly significant in this estuary when the tidal level is lower than 5 m. The lower North Passage is a typical zone of saltwater wedging, so the saltwedge fluid mud has the most extensive spatial range in the estuary.展开更多
An in-situ and nondestructive technique was proposed and established for the study of domain switching in PLZT ceramics via observation of Raman spectrum changes based on the Raman light scattering principle and the s...An in-situ and nondestructive technique was proposed and established for the study of domain switching in PLZT ceramics via observation of Raman spectrum changes based on the Raman light scattering principle and the soft mode theory. A Vickers indent was introduced into the polarized PLZT specimen so that the Raman spectrum change associated with the domain switching as induced either by an applied electric field or by a stress field surrounding the tip of the Vickers indent crack was in-situ measured and studied using this established technique. The relation between the domain switching and the measured Raman spectrum was discussed. It is well demonstrated that this technique can sensitively detect and measure the domain switching via the observation of Raman spectrum changes. The results confirm that Raman spectrum intensity is directly attributed to the change of the polarization direction of the incidence and scattered lights with respect to the direction of the average polarization direction of the domain in the polarized specimen. When the two directions are parallel, the induced polarizability tensor of the specimen would be enhanced and give rise to a higher intensity for Raman scattering light.展开更多
In-situ observations on α/γ phase transformation were made to study the effects of grain boundary microstructures on the formation of a new phase and the migration of α/γ interphase boundary in an iron4. 2%Cr allo...In-situ observations on α/γ phase transformation were made to study the effects of grain boundary microstructures on the formation of a new phase and the migration of α/γ interphase boundary in an iron4. 2%Cr alloy. It was found that triple junctions with more random boundaries could be the primary nucleation sites for a new phase, while triple junctions with low angle or low ∑ coincidence boundaries did not play any role as preferential sites. The migration of α/γ interphase boundary during heating over the transformation temperature range showed the two stage behaviour characterized by a stage with a migration velocity of 0. 33-0. 75 mm/s and secondly by a stage with 3. 7-7. 6 mm/s. It was also found that abnormal grain growth and a high density of ∑3 coincidence boundaries could occur in a phase with bcc structure after cycling of α/γ phase transformation. A new mechanism of nucleation and growth of a new phase in α/γ phase transformation is proposed on the basis of roles of plane-matching interphase boundaries, as previously discussed on the origin of anisotropy of grain growth due to the migration of {110} plane-matching boundaries in Fe-3z%Si alloy. The most recent theoretical work on the distribution of plane-matching boundaries in solids with different crystal structures was found to be useful for the understanding of nucleation and growth during α/γ phase transformation.展开更多
The phosphate protective film and micro-galvanic corrosion of biological Mg-3Zn-xNd (x = 0, 0.6, 1.2) alloys were investigated by scanning and transmission electron microscopy, quasi-in-situ observation, scanning Kelv...The phosphate protective film and micro-galvanic corrosion of biological Mg-3Zn-xNd (x = 0, 0.6, 1.2) alloys were investigated by scanning and transmission electron microscopy, quasi-in-situ observation, scanning Kelvin probe force microscopy (SKPFM) and electrochemical tests. The results revealed the Mg-Zn-Nd phases formed in Mg-3Zn alloy contained with Nd. Adding Nd resulted in a significant decline in the cracks of the phosphate protective film and micro-galvanic corrosion of alloys, which were recorded by quasi-in-situ observation. In addition, the Volta potential difference of Mg-Zn-Nd/α-Mg (~ 188 mV) was lower than MgZn/α-Mg (~ 419 mV) and Zn-rich/α-Mg (~ 260 mV), and the corrosion rates of alloys markedly decreased after the addition of 0.6 wt% Nd. The improvement in corrosion resistance of Nd-containing alloys was mainly attributed to the following: (i) the addition of Nd reduced the Volta potential difference (second phases/α-Mg);(ii) the phosphate protective film containing Nd_(2)O_(3) deposited on the surface of the alloys, effectively preventing the penetration of harmful anions.展开更多
The outstanding tribological performance of transition metal dichalcogenides(TMDs)is attributed to their unique sandwich microstructure and low interlayer shear stress.This advantageous structure allows TMDs to demons...The outstanding tribological performance of transition metal dichalcogenides(TMDs)is attributed to their unique sandwich microstructure and low interlayer shear stress.This advantageous structure allows TMDs to demonstrate exceptional friction reduction properties.Furthermore,the incorporation of TMDs and amorphous carbon(a-C)in multi-layer structures shows excellent potential for further enhancing tribological and anti-oxidation properties.Amorphous carbon,known for its high ductility,chemical inertness,and excellent wear resistance,significantly contributes to the overall performance of these multi-layer coatings.To gain an in-depth understanding of the tribological mechanism and evolution of TMDs’multi-layer coatings,a dual in-situ analysis was carried out using a tribometer equipped with a 3D laser microscope and a Raman spectrometer.This innovative approach allowed for a comprehensive evolution of the tribological,topographical,and tribochemical characteristics of both single-layer WS_(2)and multi-layer WS_(2)/C coatings in real time.The findings from the dual in-situ tribotest revealed distinct failure characteristics between the single-layer WS_(2)coating and the multi-layer WS_(2)/C coating.The single-layer WS_(2)coating predominantly experienced failure due to mechanical removal,whereas a combination of mechanical removal and tribochemistry primarily influenced the failure of the multi-layer WS_(2)/C coating.The tribological evolution process of these two coatings can be classified into four stages on the basis of their tribological behavior:the running-in stage,stable friction stage,re-deposition stage,and lubrication failure stage.Each stage represents a distinct phase in the tribological behavior of the coatings and contributes to our understanding of their behavior during sliding.展开更多
Microstructural rafting of Ni-based single-crystal(SC) superalloys is inevitable at elevated temperatures during long-term service with mechanical loading, which significantly affects the mechanical behaviour of the m...Microstructural rafting of Ni-based single-crystal(SC) superalloys is inevitable at elevated temperatures during long-term service with mechanical loading, which significantly affects the mechanical behaviour of the material. In this study, the effects of rafting on the mesodeformation and fracture behaviour of a Ni-based SC superalloy under cyclic and tensile loads were investigated using in situ scanning electron microscopy(SEM), digital image correlation(DIC), and crystal plasticity finite element method(CP-FEM) simulations. The results indicated that the tensile strength decreased significantly in the rafted specimens. In the cyclic tests, both the virgin and rafted specimens showed an increase in the maximum shear strain with cycle number. The interaction of cross-slip bands was captured by in situ SEM-DIC around the micro-notch of the virgin specimens during the tensile test, while a more homogeneous local deformation field was observed in the rafting specimens. In addition,the fracture behaviour was strongly influenced by the rafting morphology. The crack exhibited instantaneous and long-range fracture features along the octahedral plane as it propagated in the rafting specimen, whereas it deflected over a short distance between the crystallographic planes at an early stage in the virgin specimen, which is consistent with the CP-FEM results.Furthermore, the CP-FEM results for the crack initiation direction on(111) dominant slip plane were consistent with the in situ SEM observations.展开更多
We derived the properties of the terrestrial magnetopause(MP)from two modeling approaches,one global–fluid,the other local–kinetic,and compared the results with data collected in situ by the Magnetospheric Multiscal...We derived the properties of the terrestrial magnetopause(MP)from two modeling approaches,one global–fluid,the other local–kinetic,and compared the results with data collected in situ by the Magnetospheric Multiscale 2(MMS2)spacecraft.We used global magnetohydrodynamic(MHD)simulations of the Earth’s magnetosphere(publicly available from the NASA-CCMC[National Aeronautics and Space Administration–Community Coordinated Modeling Center])and local Vlasov equilibrium models(based on kinetic models for tangential discontinuities)to extract spatial profiles of the plasma and field variables at the Earth’s MP.The global MHD simulations used initial solar wind conditions extracted from the OMNI database at the time epoch when the MMS2 observes the MP.The kinetic Vlasov model used asymptotic boundary conditions derived from the same in situ MMS measurements upstream or downstream of the MP.The global MHD simulations provide a three-dimensional image of the magnetosphere at the time when the MMS2 crosses the MP.The Vlasov model provides a one-dimensional local view of the MP derived from first principles of kinetic theory.The MMS2 experimental data also serve as a reference for comparing and validating the numerical simulations and modeling.We found that the MP transition layer formed in global MHD simulations was generally localized closer to the Earth(roughly by one Earth radius)from the position of the real MP observed by the MMS.We also found that the global MHD simulations overestimated the thickness of the MP transition by one order of magnitude for three analyzed variables:magnetic field,density,and tangential speed.The MP thickness derived from the local Vlasov equilibrium was consistent with observations for all three of these variables.The overestimation of density in the Vlasov equilibrium was reduced compared with the global MHD solutions.We discuss our results in the context of future SMILE(Solar wind Magnetosphere Ionosphere Link Explorer)campaigns for observing the Earth’s MP.展开更多
After more than 18 months of nearly flawless operation,the James Webb Space Telescope(JWST)continues to deliver amazement,making unexpected discoveries,adding new wrinkles to known phenomena,and calling into question ...After more than 18 months of nearly flawless operation,the James Webb Space Telescope(JWST)continues to deliver amazement,making unexpected discoveries,adding new wrinkles to known phenomena,and calling into question long-held theories of how the universe works.“The instruments are working amazingly well,in essentially all cases better than expected,”said Garth Illingworth,professor emeritus of astronomy and astrophysics at the University of California,Santa Cruz(CA,USA),and one of the three originators of the mission over three decades ago.“It has exceeded every one of its performance requirements,which is truly amazing when you think about how complex it is.”That complexity has included three decades of planning,design,and construction,followed by launch and maneuvering 1.5106 km from Earth to its second Lagrange(L2)orbit,unfolding and locking into position the 18 segments of its 6.5 m diameter main mirror,and deploying 8 motors,90 cables,and some 400 pulleys to unfurl its fragile sunshield[1,2].展开更多
The global ionosphere maps(GIM)provided by the International GNSS Service(IGS)are extensively utilized for ionospheric morphology monitoring,scientific research,and practical application.Assessing the credibility of G...The global ionosphere maps(GIM)provided by the International GNSS Service(IGS)are extensively utilized for ionospheric morphology monitoring,scientific research,and practical application.Assessing the credibility of GIM products in data-sparse regions is of paramount importance.In this study,measurements from the Crustal Movement Observation Network of China(CMONOC)are leveraged to evaluate the suitability of IGS-GIM products over China region in 2013-2014.The indices of mean error(ME),root mean square error(RMSE),and normalized RMSE(NRMSE)are then utilized to quantify the accuracy of IGS-GIM products.Results revealed distinct local time and latitudinal dependencies in IGS-GIM errors,with substantially high errors at nighttime(NRMSE:39%)and above 40°latitude(NRMSE:49%).Seasonal differences also emerged,with larger equinoctial deviations(NRMSE:33.5%)compared with summer(20%).A preliminary analysis implied that the irregular assimilation of sparse IGS observations,compounded by China’s distinct geomagnetic topology,may manifest as error variations.These results suggest that modeling based solely on IGS-GIM observations engenders inadequate representations across China and that a thorough examination would proffer the necessary foundation for advancing regional total electron content(TEC)constructions.展开更多
Dear Editor,We read with great interest the recently published article titled“Observation of peripheral refraction in myopic anisometropia in young adults”by Du et al[1].The study conducted at the InEye Hospital of ...Dear Editor,We read with great interest the recently published article titled“Observation of peripheral refraction in myopic anisometropia in young adults”by Du et al[1].The study conducted at the InEye Hospital of Chengdu University of TCM provides valuable insights into the relationship between anisometropia and peripheral refraction in myopic young adults.We commend the authors for their thorough investigation and adherence to ethical guidelines.While the study contributes significantly to our understanding of myopic anisometropia,we would like to draw attention to some limitations that merit consideration for a comprehensive interpretation of the findings.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51909136 and 42177168)Project of Youth Inno vation Promotion Association of Chinese Academy of Sciences(No.2021326)the Open Research Fund of Key Laboratory of Geological Hazards on Three Gorges Reservoir Area(China Three Gorges University),Ministry of Education(No.2020KDZ03)。
文摘The damage-fracture evolution of deep rock mass has obvious particularity,which is revealed in 2400-mdeep tunnels by field tests.The evolution of the excavation damaged zone depth is consistent with that of the fractured zone depth.The ratio of the excavation damaged zone depth to the excavation fractured zone depth is greater than 2.0 in a rock mass with both high strength and good integrity,but less than1.5 in a rock mass with lower strength or poor integrity.Zonal disintegration in a rock mass with high strength and fair integrity is more likely to occur when it contains more than two groups of primary fractures in damaged zones.Fractures develop outward in zonal disintegration but are totally different from the single-zone fracture,in which the fractures develop inward,and it is the starting position of the fractured zone when the excavation surface of the middle pilot is 7–9 m close to the pre-set borehole and it stops after the excavation surface of the baseplate is 11–14 m away.The most intense evolution occurs around 2–4 m from the pre-set borehole in the sidewall expansion stage.The research results provide a reference for the monitoring scheme and support design of CJPL-Ⅲin its future construction.
基金supported by the National High-Tech Research and Development Program of China (No.2008AA03E502)the Science and Technology Support Program of China (No.2006BAE03A06)
文摘The microstructure and crack behaviour of twinning induced plasticity (TWIP) steel during tensile deformation was investigated with in-situ scanning electron microscopy (SEM). The results show that there are two modes of plastic deformation during tensile test in the Fe-Mn-C TWIP steel: dislocation gliding and deformation twins. During the process of tensile deformation, secondary deformed twins are found. Inclusions have played a role in the course of ductile fracture, and microcracks initiate from inclusions and twin-twin intersections.
基金funded by the Natural Science Foundation of China under grant No:50771031GM Research Funding under contract No:GM-RP-07-211
文摘In-situ observation of porosity formation during directional solidification of two Al-Si alloys (7%Si and 13%Si) was made by using of micro-focus X-ray imaging.In both alloys,small spherical pores initially form in the melt far away from the eutectic solid-liquid (S/L) interface and then grow and coagulate during solidification.Some pores can float and escape from the solidifying melt front at a relatively high velocity.At the end of solidification,the remaining pores maintain spherical morphology in the near eutectic alloy but become irregular in the hypoeutectic alloy.This is attributed to different solidification modes and aluminum dendrite interactions between the two alloys.The mechanism of the porosity formation is briefly discussed in this paper.
基金supported by the National Natural Science Foundation of China (grants No.41427803 amd 41272316)
文摘Objective In geo-marine science,the generalized bottom boundary layer(BBL)represents a layer between sediments and seawater.The BBL plays an important role in geological,geobiochemical,geophysical and geotechnical research because it is the connection region of hydrosphere,
文摘The motion of intervariant intedeces under the action of applied stress in the internally faulted 18R martensite in a Cu-Zn-Al shape memory alloy has been studied. Transmission electron microscopy in situ observations show that the interfaces between 24 martensite variants have different reaction to applied stress. The A/C type and A/B type interfaces have good mobil-ity, the A/D type interface has bad mobiIity, and the different-group-intervariant interfaces are basically immobile.
基金Shougang Research Institute of Technology for the financial support to this project
文摘In-situ observation of microstructural evolution during heating and soaking process was carded out for a high nickel steel using HTCLSM. Dark phases were observed when soaking at 900℃. Results showed that the number of the dark phases culminated in about 50 s during soaking at 900℃. With the increase of soaking time the area proportion of the dark phases increased and reached the maximum value in about 3 min, When temperature rose from 900 ℃, the dark phases remained steady initially, but started to dissolve into the matrix at about 1 060 ℃ and completely disappeared at 1 132℃. When the specimen soaked at 900 ℃ was cooled down to room temperature (RT), the dark phases kept stable. Energy spectrum analysis results showed that the dark phases contained much more Cr and Mn elements than the matrix and,were also rich in V. Tensile test results showed that the dark phase strengthened the steel with the maximum tensile strength obtained after soaking at 900 ℃ for 3 minutes.
文摘An in situ observation of the s'phase morphology and its orientation with the matrix in an Al-Li base alloy was carried out by means of double-tilt rotating around[220]a in a transmission electron microscope(TEM).The results show that the s'phase precipitates in the form of bundles.The units of s'phase are lath-shaped,grow along the<100>,orientation,and have habit planes of{210}*.Many units of the s'phase grow in the same orientation and get together to form a plate-shaped bundle of s'phase laths which lie on the{110}a planes.
文摘The growing process of thermal fatigue cracking,in steel 3Cr2WSV was observed under desk SEM fitted with sell-made minisized device for thermal faligue test.Before the growing of thermal fatigue crack,the main crack tip reveals to blunt firstly,and some holes and uncontinuous microcraeks occur in front of it.The growth is developed by bridging of main crack together with holes and microcracks.
基金This work was financially supported by the National Nature Science Foundation of China (No.59871007)PM Rene95 materialofferi
文摘The observation on crack initiation and propagation of surface inclusion Al2O3 in seeded PM Rene95 was conducted by SEM in-situ tension test. The results show that the cracks often initiate at the inclusion/matrix interface vertical to the applied stress direction, and easily propagate along the interface into the matrix. The interface of inclusion/matrix is just mechanically bounded on the base of SEM observation. The weak bonding of inclusion/matrix interface and stress concentration around inclusions are the main reasons of the matrix/inclusion interface debonding and local plastic deformation under the tensile loading in the in-situ tension test. Surface inclusion does not definitely lead to the failure of in-situ tension test. But the early surface crack initiation caused by ceramic inclusion is critically harmful to the LCF property of PM Rene95 superalloy, which can't be ignored.
基金supported by the Korea Meteorological Administration Research and Development Program "Research and Development for KMA Weather, and Earth system Services-Development and Assessment of AR6 Climate Change Scenarios" under Grant (KMA2018-00321)
文摘The CarbonTracker(CT) model has been used in previous studies for understanding and predicting the sources, sinks, and dynamics that govern the distribution of atmospheric CO_2 at varying ranges of spatial and temporal scales. However, there are still challenges for reproducing accurate model-simulated CO_2 concentrations close to the surface, typically associated with high spatial heterogeneity and land cover. In the present study, we evaluated the performance of nested-grid CT model simulations of CO_2 based on the CT2016 version through comparison with in-situ observations over East Asia covering the period 2009–13. We selected sites located in coastal, remote, inland, and mountain areas. The results are presented at diurnal and seasonal time periods. At target stations, model agreement with in-situ observations was varied in capturing the diurnal cycle. Overall, biases were less than 6.3 ppm on an all-hourly mean basis, and this was further reduced to a maximum of 4.6 ppm when considering only the daytime. For instance, at Anmyeondo, a small bias was obtained in winter, on the order of 0.2 ppm. The model revealed a diurnal amplitude of CO_2 that was nearly flat in winter at Gosan and Anmyeondo stations, while slightly overestimated in the summertime. The model's performance in reproducing the diurnal cycle remains a challenge and requires improvement. The model showed better agreement with the observations in capturing the seasonal variations of CO_2 during daytime at most sites, with a correlation coefficient ranging from 0.70 to 0.99. Also, model biases were within-0.3 and 1.3 ppm, except for inland stations(7.7 ppm).
文摘Observations of fluid mud were made in the lower North Passage of the Yangtze Estuary in February 2000, on 10~11 August 2000, on 30~31 August 2000 (after two strong typhoons), on 21~24 August 2000 (neap tide) and on 3~6 September 2000 (mean tide) respectively. In situ data show that the fluid mud in this area consists of fine cohesive sediment (median size 7.23 μm). The formation and movement of fluid mud varied during the neap-spring and flood-ebb tidal cycle. Observations suggest that fluid mud phenomena in this area may be categorised in a three-fold manner as slack water, storm and saltwedge features. The thickness of the fluid mud layer of slack water during the neap tide ranged from 0.2 to 0.96 m, whereas during the mean tide, the thickness ranged from 0.17 to 0.73 m, and the thickness of the fluid mud layer was larger during slack water than at the flood peak. Shoals cover an area of 800 km2 with a water depth smaller than 5 m. Erosion of these extensive intertidal mudflats due to storm action provides an abundant sediment source. This is particularly significant in this estuary when the tidal level is lower than 5 m. The lower North Passage is a typical zone of saltwater wedging, so the saltwedge fluid mud has the most extensive spatial range in the estuary.
基金Project(10472098) supported by the National Natural Science Foundation of China
文摘An in-situ and nondestructive technique was proposed and established for the study of domain switching in PLZT ceramics via observation of Raman spectrum changes based on the Raman light scattering principle and the soft mode theory. A Vickers indent was introduced into the polarized PLZT specimen so that the Raman spectrum change associated with the domain switching as induced either by an applied electric field or by a stress field surrounding the tip of the Vickers indent crack was in-situ measured and studied using this established technique. The relation between the domain switching and the measured Raman spectrum was discussed. It is well demonstrated that this technique can sensitively detect and measure the domain switching via the observation of Raman spectrum changes. The results confirm that Raman spectrum intensity is directly attributed to the change of the polarization direction of the incidence and scattered lights with respect to the direction of the average polarization direction of the domain in the polarized specimen. When the two directions are parallel, the induced polarizability tensor of the specimen would be enhanced and give rise to a higher intensity for Raman scattering light.
文摘In-situ observations on α/γ phase transformation were made to study the effects of grain boundary microstructures on the formation of a new phase and the migration of α/γ interphase boundary in an iron4. 2%Cr alloy. It was found that triple junctions with more random boundaries could be the primary nucleation sites for a new phase, while triple junctions with low angle or low ∑ coincidence boundaries did not play any role as preferential sites. The migration of α/γ interphase boundary during heating over the transformation temperature range showed the two stage behaviour characterized by a stage with a migration velocity of 0. 33-0. 75 mm/s and secondly by a stage with 3. 7-7. 6 mm/s. It was also found that abnormal grain growth and a high density of ∑3 coincidence boundaries could occur in a phase with bcc structure after cycling of α/γ phase transformation. A new mechanism of nucleation and growth of a new phase in α/γ phase transformation is proposed on the basis of roles of plane-matching interphase boundaries, as previously discussed on the origin of anisotropy of grain growth due to the migration of {110} plane-matching boundaries in Fe-3z%Si alloy. The most recent theoretical work on the distribution of plane-matching boundaries in solids with different crystal structures was found to be useful for the understanding of nucleation and growth during α/γ phase transformation.
基金support by the National Natural Science Foundation of China(No.51961026).
文摘The phosphate protective film and micro-galvanic corrosion of biological Mg-3Zn-xNd (x = 0, 0.6, 1.2) alloys were investigated by scanning and transmission electron microscopy, quasi-in-situ observation, scanning Kelvin probe force microscopy (SKPFM) and electrochemical tests. The results revealed the Mg-Zn-Nd phases formed in Mg-3Zn alloy contained with Nd. Adding Nd resulted in a significant decline in the cracks of the phosphate protective film and micro-galvanic corrosion of alloys, which were recorded by quasi-in-situ observation. In addition, the Volta potential difference of Mg-Zn-Nd/α-Mg (~ 188 mV) was lower than MgZn/α-Mg (~ 419 mV) and Zn-rich/α-Mg (~ 260 mV), and the corrosion rates of alloys markedly decreased after the addition of 0.6 wt% Nd. The improvement in corrosion resistance of Nd-containing alloys was mainly attributed to the following: (i) the addition of Nd reduced the Volta potential difference (second phases/α-Mg);(ii) the phosphate protective film containing Nd_(2)O_(3) deposited on the surface of the alloys, effectively preventing the penetration of harmful anions.
基金the fund of LICP Cooperation Foundation for Young Scholars(GrantNo.HZJJ22-03)the financial support provided by China National Natural Science Foundation(Grant No.52075521)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB0470102)Natural Science Foundation of Shandong Province(Grant No.022HWYQ-096)LICP International Cooperative Scholarship,and the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(Grant No.2020R1A2C2004714).
文摘The outstanding tribological performance of transition metal dichalcogenides(TMDs)is attributed to their unique sandwich microstructure and low interlayer shear stress.This advantageous structure allows TMDs to demonstrate exceptional friction reduction properties.Furthermore,the incorporation of TMDs and amorphous carbon(a-C)in multi-layer structures shows excellent potential for further enhancing tribological and anti-oxidation properties.Amorphous carbon,known for its high ductility,chemical inertness,and excellent wear resistance,significantly contributes to the overall performance of these multi-layer coatings.To gain an in-depth understanding of the tribological mechanism and evolution of TMDs’multi-layer coatings,a dual in-situ analysis was carried out using a tribometer equipped with a 3D laser microscope and a Raman spectrometer.This innovative approach allowed for a comprehensive evolution of the tribological,topographical,and tribochemical characteristics of both single-layer WS_(2)and multi-layer WS_(2)/C coatings in real time.The findings from the dual in-situ tribotest revealed distinct failure characteristics between the single-layer WS_(2)coating and the multi-layer WS_(2)/C coating.The single-layer WS_(2)coating predominantly experienced failure due to mechanical removal,whereas a combination of mechanical removal and tribochemistry primarily influenced the failure of the multi-layer WS_(2)/C coating.The tribological evolution process of these two coatings can be classified into four stages on the basis of their tribological behavior:the running-in stage,stable friction stage,re-deposition stage,and lubrication failure stage.Each stage represents a distinct phase in the tribological behavior of the coatings and contributes to our understanding of their behavior during sliding.
基金supported by the National Natural Science Foundation of China (Grant Nos. 52205139, 12172021, and 52105156)the National Science and Technology Major Project of China (Grant No. 2019-IV-00170085)+1 种基金the Science Center for Gas Turbine Project (Grant No. P2022-III003-002)the Academic Excellence Foundation of BUAA for PhD Students。
文摘Microstructural rafting of Ni-based single-crystal(SC) superalloys is inevitable at elevated temperatures during long-term service with mechanical loading, which significantly affects the mechanical behaviour of the material. In this study, the effects of rafting on the mesodeformation and fracture behaviour of a Ni-based SC superalloy under cyclic and tensile loads were investigated using in situ scanning electron microscopy(SEM), digital image correlation(DIC), and crystal plasticity finite element method(CP-FEM) simulations. The results indicated that the tensile strength decreased significantly in the rafted specimens. In the cyclic tests, both the virgin and rafted specimens showed an increase in the maximum shear strain with cycle number. The interaction of cross-slip bands was captured by in situ SEM-DIC around the micro-notch of the virgin specimens during the tensile test, while a more homogeneous local deformation field was observed in the rafting specimens. In addition,the fracture behaviour was strongly influenced by the rafting morphology. The crack exhibited instantaneous and long-range fracture features along the octahedral plane as it propagated in the rafting specimen, whereas it deflected over a short distance between the crystallographic planes at an early stage in the virgin specimen, which is consistent with the CP-FEM results.Furthermore, the CP-FEM results for the crack initiation direction on(111) dominant slip plane were consistent with the in situ SEM observations.
基金support from the European Space Agency(ESA)PRODEX(PROgramme de Développement d’Expériences scientifiques)Project mission(No.PEA4000134960)Partial funding was provided by the Romanian Ministry of Research,Innovation and Digitalization under Romanian National Core Program LAPLAS VII(Contract No.30N/2023)+2 种基金the Belgian Solar-Terrestrial Centre of Excellencesupported by the project Belgian Research Action through Interdisciplinary Networks(BRAIN-BE)2.0(Grant No.B2/223/P1/PLATINUM)funded by the Belgian Office for Research(BELSPO)partially supported by a grant from the Romanian Ministry of Education and Research(CNCS-UEFISCDI,Project No.PN-III-P1-1.1TE-2021-0102)。
文摘We derived the properties of the terrestrial magnetopause(MP)from two modeling approaches,one global–fluid,the other local–kinetic,and compared the results with data collected in situ by the Magnetospheric Multiscale 2(MMS2)spacecraft.We used global magnetohydrodynamic(MHD)simulations of the Earth’s magnetosphere(publicly available from the NASA-CCMC[National Aeronautics and Space Administration–Community Coordinated Modeling Center])and local Vlasov equilibrium models(based on kinetic models for tangential discontinuities)to extract spatial profiles of the plasma and field variables at the Earth’s MP.The global MHD simulations used initial solar wind conditions extracted from the OMNI database at the time epoch when the MMS2 observes the MP.The kinetic Vlasov model used asymptotic boundary conditions derived from the same in situ MMS measurements upstream or downstream of the MP.The global MHD simulations provide a three-dimensional image of the magnetosphere at the time when the MMS2 crosses the MP.The Vlasov model provides a one-dimensional local view of the MP derived from first principles of kinetic theory.The MMS2 experimental data also serve as a reference for comparing and validating the numerical simulations and modeling.We found that the MP transition layer formed in global MHD simulations was generally localized closer to the Earth(roughly by one Earth radius)from the position of the real MP observed by the MMS.We also found that the global MHD simulations overestimated the thickness of the MP transition by one order of magnitude for three analyzed variables:magnetic field,density,and tangential speed.The MP thickness derived from the local Vlasov equilibrium was consistent with observations for all three of these variables.The overestimation of density in the Vlasov equilibrium was reduced compared with the global MHD solutions.We discuss our results in the context of future SMILE(Solar wind Magnetosphere Ionosphere Link Explorer)campaigns for observing the Earth’s MP.
文摘After more than 18 months of nearly flawless operation,the James Webb Space Telescope(JWST)continues to deliver amazement,making unexpected discoveries,adding new wrinkles to known phenomena,and calling into question long-held theories of how the universe works.“The instruments are working amazingly well,in essentially all cases better than expected,”said Garth Illingworth,professor emeritus of astronomy and astrophysics at the University of California,Santa Cruz(CA,USA),and one of the three originators of the mission over three decades ago.“It has exceeded every one of its performance requirements,which is truly amazing when you think about how complex it is.”That complexity has included three decades of planning,design,and construction,followed by launch and maneuvering 1.5106 km from Earth to its second Lagrange(L2)orbit,unfolding and locking into position the 18 segments of its 6.5 m diameter main mirror,and deploying 8 motors,90 cables,and some 400 pulleys to unfurl its fragile sunshield[1,2].
基金the National Key R&D Program of China(Grant No.2022YFF0503702)the National Natural Science Foundation of China(Grant Nos.42074186,41831071,42004136,and 42274195)+1 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20211036)the Specialized Research Fund for State Key Laboratories,and the University of Science and Technology of China Research Funds of the Double First-Class Initiative(Grant No.YD2080002013).
文摘The global ionosphere maps(GIM)provided by the International GNSS Service(IGS)are extensively utilized for ionospheric morphology monitoring,scientific research,and practical application.Assessing the credibility of GIM products in data-sparse regions is of paramount importance.In this study,measurements from the Crustal Movement Observation Network of China(CMONOC)are leveraged to evaluate the suitability of IGS-GIM products over China region in 2013-2014.The indices of mean error(ME),root mean square error(RMSE),and normalized RMSE(NRMSE)are then utilized to quantify the accuracy of IGS-GIM products.Results revealed distinct local time and latitudinal dependencies in IGS-GIM errors,with substantially high errors at nighttime(NRMSE:39%)and above 40°latitude(NRMSE:49%).Seasonal differences also emerged,with larger equinoctial deviations(NRMSE:33.5%)compared with summer(20%).A preliminary analysis implied that the irregular assimilation of sparse IGS observations,compounded by China’s distinct geomagnetic topology,may manifest as error variations.These results suggest that modeling based solely on IGS-GIM observations engenders inadequate representations across China and that a thorough examination would proffer the necessary foundation for advancing regional total electron content(TEC)constructions.
文摘Dear Editor,We read with great interest the recently published article titled“Observation of peripheral refraction in myopic anisometropia in young adults”by Du et al[1].The study conducted at the InEye Hospital of Chengdu University of TCM provides valuable insights into the relationship between anisometropia and peripheral refraction in myopic young adults.We commend the authors for their thorough investigation and adherence to ethical guidelines.While the study contributes significantly to our understanding of myopic anisometropia,we would like to draw attention to some limitations that merit consideration for a comprehensive interpretation of the findings.