期刊文献+
共找到1,852篇文章
< 1 2 93 >
每页显示 20 50 100
In-situ deposition of apatite layer to protect Mg-based composite fabricated via laser additive manufacturing 被引量:2
1
作者 Youwen Yang Changfu Lu +3 位作者 Lida Shen Zhenyu Zhao Shuping Peng Cijun Shuai 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第2期629-640,共12页
Biodegradable magnesium(Mg) and its alloy show huge potential as temporary bone substitute due to the favorable biocompatibility and mechanical compatibility. However, one issue deserves attention is the too fast degr... Biodegradable magnesium(Mg) and its alloy show huge potential as temporary bone substitute due to the favorable biocompatibility and mechanical compatibility. However, one issue deserves attention is the too fast degradation. In this work, mesoporous bioglass(MBG)with high pore volume(0.59 cc/g) and huge specific surface area(110.78 m^(2)/g) was synthesized using improved sol-gel method, and introduced into Mg-based composite via laser additive manufacturing. Immersion tests showed that the incorporated MBG served as powerful adsorption sites, which promoted the in-situ deposition of apatite by successively adsorbing Ca2+and HPO42-. Such dense apatite film acted as an efficient protection layer and enhanced the corrosion resistance of Mg matrix, which was proved by the electrochemical impedance spectroscopy measurements. Thereby, Mg based composite showed a significantly decreased degradation rate of 0.31 mm/year. Furthermore,MBG also improved the mechanical properties as well as cell behavior. This work highlighted the advantages of MBG in the fabrication of Mg-based implant with enhanced overall performance for orthopedic application. 展开更多
关键词 Laser addictive manufacture Mg-based composite Mesoporous bioglass in-situ deposition Degradation behavior
下载PDF
板栗PAT基因家族成员鉴定及不同胁迫响应分析
2
作者 李金梅 聂兴华 +4 位作者 葛婧怡 褚世慧 刘阳 秦岭 邢宇 《果树学报》 CAS CSCD 北大核心 2024年第5期847-860,共14页
【目的】鉴定和分析板栗PAT基因家族及其对不同胁迫的响应,探究板栗PAT基因家族的抗逆功能。【方法】在板栗全基因组水平上进行搜索和鉴定板栗PAT基因家族成员,利用生物信息学方法研究其系统发育进化树、基因结构和motif、蛋白理化性质... 【目的】鉴定和分析板栗PAT基因家族及其对不同胁迫的响应,探究板栗PAT基因家族的抗逆功能。【方法】在板栗全基因组水平上进行搜索和鉴定板栗PAT基因家族成员,利用生物信息学方法研究其系统发育进化树、基因结构和motif、蛋白理化性质、染色体定位、共线性和启动子顺式元件等。以燕山红栗为试验材料,分析盐胁迫、抗病胁迫和干旱胁迫处理对板栗PAT基因家族表达模式的影响。【结果】在板栗基因组中共鉴定出包含DHHC结构域的21个PAT基因家族成员,他们与24个AtPAT基因家族成员共聚集为6个亚组;大多数CmPAT家族成员为具有亲水性的碱性稳定蛋白;21个PAT基因家族成员不均匀地分布在板栗的9条染色体上;在CmPAT基因启动子区域鉴定到多种非生物胁迫及激素响应元件;表达模式分析表明,多个CmPAT基因不同程度地参与抗病、干旱、盐胁迫响应。【结论】共鉴定了21个板栗PAT基因家族成员,同时筛选到CmPAT24、CmPAT7、CmPAT14可能共同参与了盐胁迫和干旱胁迫的调控,CmPAT7可能共同参与盐胁迫、干旱胁迫、抗病胁迫的调控。 展开更多
关键词 板栗 棕榈酰基转移酶(pat) 胁迫处理
下载PDF
循证家庭教育指导服务:美国PAT项目的实践启示
3
作者 刘慧琴 陈羽 陈姣姣 《外国教育研究》 北大核心 2024年第2期64-78,共15页
家庭教育指导服务是一种重要的家庭教育培训、引导活动。伴随着循证教育理念的逐步深入,家庭教育指导也逐渐向基于证据的循证式服务转型。美国循证家庭教育指导服务的杰出代表PAT项目以发现家庭教育指导问题、获取家庭教育指导证据、评... 家庭教育指导服务是一种重要的家庭教育培训、引导活动。伴随着循证教育理念的逐步深入,家庭教育指导也逐渐向基于证据的循证式服务转型。美国循证家庭教育指导服务的杰出代表PAT项目以发现家庭教育指导问题、获取家庭教育指导证据、评估并选择证据、改进家庭教育指导服务质量为实施路径。遵循以能力建设为基础、以精准服务为目标、以标准规范为保障、以多维评估为推力的行动逻辑,实现家庭教育指导服务效能提升。客观认识循证家庭教育指导服务的实践特征与难点,可为我国家庭教育指导服务提供经验参考。 展开更多
关键词 美国 循证家庭教育指导服务 pat项目 实践
下载PDF
Assessing the conservation impact of Chinese indigenous chicken populations between ex-situ and in-situ using genome-wide SNPs
4
作者 Wenting Li Chaoqun Gao +7 位作者 Zhao Cai Sensen Yan Yanru Lei Mengya Wei Guirong Sun Yadong Tian Kejun Wang Xiangtao Kang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期975-987,共13页
Conservation programs require rigorous evaluation to ensure the preservation of genetic diversity and viability of conservation populations. In this study, we conducted a comparative analysis of two indigenous Chinese... Conservation programs require rigorous evaluation to ensure the preservation of genetic diversity and viability of conservation populations. In this study, we conducted a comparative analysis of two indigenous Chinese chicken breeds, Gushi and Xichuan black-bone, using whole-genome SNPs to understand their genetic diversity, track changes over time and population structure. The breeds were divided into five conservation populations(GS1, 2010, ex-situ;GS2, 2019, ex-situ;GS3, 2019, in-situ;XB1, 2010, in-situ;and XB2, 2019, in-situ) based on conservation methods and generations. The genetic diversity indices of three conservation populations of Gushi chicken showed consistent trends, with the GS3 population under in-situ strategy having the highest diversity and GS2 under ex-situ strategy having the lowest. The degree of inbreeding of GS2 was higher than that of GS1 and GS3. Conserved populations of Xichuan black-bone chicken showed no obvious changes in genetic diversity between XB1 and XB2. In terms of population structure, the GS3 population were stratified relative to GS1 and GS2. According to the conservation priority, GS3 had the highest contribution to the total gene and allelic diversity in GS breed, whereas the contribution of XB1 and XB2 were similar. We also observed that the genetic diversity of GS2 was lower than GS3, which were from the same generation but under different conservation programs(in-situ and ex-situ). While XB1 and XB2 had similar levels of genetic diversity. Overall, our findings suggested that the conservation programs performed in ex-situ could slow down the occurrence of inbreeding events, but could not entirely prevent the loss of genetic diversity when the conserved population size was small, while in-situ conservation populations with large population size could maintain a relative high level of genetic diversity. 展开更多
关键词 genome-wide SNPs CONSERVATION genetic diversity ex-situ in-situ
下载PDF
In-situ AFM and quasi-in-situ studies for localized corrosion in Mg-9Al-1Fe-(Gd) alloys under 3.5 wt.% NaCl environment
5
作者 Junping Shen Tao Lai +7 位作者 Zheng Yin Yang Chen Kun Wang Hong Yan Honggun Song Ruiliang Liu Chao Luo Zhi Hu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1170-1185,共16页
Revealing the localized corrosion process of Mg alloy is considered as one of the most significant ways for improving its corrosion resistance.The reliable monitor should be high distinguishability and real-time in li... Revealing the localized corrosion process of Mg alloy is considered as one of the most significant ways for improving its corrosion resistance.The reliable monitor should be high distinguishability and real-time in liquid environment.Herein,Mg-9Al-1Fe and Mg-9Al-1Fe-1Gd alloys were designed to highlight the impact of intermetallic on the corrosion behaviour.In-situ AFM with a special electrolyte circulation system and quasi-in-situ SEM observation were used to monitor the corrosion process of the designed alloys.SEM-EDS and TEM-SAED were applied to identify the intermetallic in the designed alloys,and their volta potentials were measured by SKPFM.According to the real-time and real-space in-situ AFM monitor,the corrosion process consisted of dissolution of anodicα-Mg phase,accumulation of corrosion products around cathodic phase and shedding of some fine cathodic phase.Then,the localized corrosion process of Mg alloy was revealed combined with the results of the monitor of corrosion process and Volta potential difference. 展开更多
关键词 Magnesium Localized corrosion in-situ AFM SKPFM Corrosion behaviour.
下载PDF
An in-situ study of static recrystallization in Mg using high temperature EBSD
6
作者 Xu Ye Zhe Suo +5 位作者 Zhonghao Heng Biao Chen Qiuming Wei Junko Umeda Katsuyoshi Kondoh Jianghua Shen 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1419-1430,共12页
It has been a common method to improve the mechanical properties of metals by manipulating their microstructures via static recrystallization,i.e.,through heat treatment.Therefore,the knowledge of recrystallization an... It has been a common method to improve the mechanical properties of metals by manipulating their microstructures via static recrystallization,i.e.,through heat treatment.Therefore,the knowledge of recrystallization and grain growth is critical to the success of the technique.In the present work,by using in-situ high temperature EBSD,the mechanisms that control recrystallization and grain growth of an extruded pure Mg were studied.The experimental results revealed that the grains of priority for dynamic recrystallization exhibit fading competitiveness under static recrystallization.It is also found that grain boundary movement or grain growth is likely to show an inverse energy gradient effect,i.e.,low energy grains tend to swallow or grow into high energy grains,and grain boundaries of close to 30°exhibit superior growth advantage to others.Another finding is that{10-12}tensile twin boundaries are sites of hardly observed for recrystallization,and are finally swallowed by adjacent recrystallized grains.The above findings may give comprehensive insights of static recrystallization and grain growth of Mg,and may guide the design of advanced materials processing in microstructural engineering. 展开更多
关键词 Pure Mg in-situ HT-EBSD RECRYSTALLIZATION Grain growth
下载PDF
An in-situ self-etching enabled high-power electrode for aqueous zinc-ion batteries
7
作者 Shuang Hou Dingtao Ma +5 位作者 Yanyi Wang Kefeng Ouyang Sicheng Shen Hongwei Mi Lingzhi Zhao Peixin Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期399-408,I0009,共11页
Sluggish storage kinetics is considered as the main bottleneck of cathode materials for fast-charging aqueous zinc-ion batteries(AZIBs).In this report,we propose a novel in-situ self-etching strategy to unlock the Pal... Sluggish storage kinetics is considered as the main bottleneck of cathode materials for fast-charging aqueous zinc-ion batteries(AZIBs).In this report,we propose a novel in-situ self-etching strategy to unlock the Palm tree-like vanadium oxide/carbon nanofiber membrane(P-VO/C)as a robust freestanding electrode.Comprehensive investigations including the finite element simulation,in-situ X-ray diffraction,and in-situ electrochemical impedance spectroscopy disclosed it an electrochemically induced phase transformation mechanism from VO to layered Zn_(x)V_(2)O_5·nH_(2)O,as well as superior storage kinetics with ultrahigh pseudocapacitive contribution.As demonstrated,such electrode can remain a specific capacity of 285 mA h g^(-1)after 100 cycles at 1 A g^(-1),144.4 mA h g^(-1)after 1500 cycles at 30 A g^(-1),and even 97 mA h g^(-1)after 3000 cycles at 60 A g^(-1),respectively.Unexpectedly,an impressive power density of 78.9 kW kg^(-1)at the super-high current density of 100 A g^(-1)also can be achieved.Such design concept of in-situ self-etching free-standing electrode can provide a brand-new insight into extending the pseudocapacitive storage limit,so as to promote the development of high-power energy storage devices including but not limited to AZIBs. 展开更多
关键词 in-situ self-etching Free-standing electrode Pseudocapacitive storage HIGH-POWER Zinc-ion batteries
下载PDF
Microstructural characterization and mechanical properties of(TiC+TiB)/TA15 composites prepared by an in-situ synthesis method
8
作者 Zhi-yong Zhang Jiao-jiao Cheng +3 位作者 Jia-qi Xie Shi-bing Liu Kun Shi Jun Zhao 《China Foundry》 SCIE EI CAS CSCD 2024年第2期168-174,共7页
Titanium matrix composites reinforced with ceramic particles are considered a promising engineering material due to their combination of high specific strength,low density,and high modulus.In this study,the TA15-based... Titanium matrix composites reinforced with ceramic particles are considered a promising engineering material due to their combination of high specific strength,low density,and high modulus.In this study,the TA15-based composites reinforced with a volume fraction of 10% to 25%(TiB+TiC)were prepared using powder metallurgy and casting technique.Microstructural characterization and phase constitution were examined using optical microscopy(OM),scanning electron microscopy(SEM),and X-ray diffraction(XRD).In addition,the microhardness,room temperature(RT)and high temperature(HT)tensile properties of the composites were evaluated.Results revealed that the reinforcements are distributed uniformly even in the composites with a high volume of TiB and TiC.However,as the volume fraction exceeds 15%,TiB and TiC particles become coarsening and exhibit rod-like and dendritic-like morphology.Microhardness increases gradually from 321.2 HV for the base alloy to a maximum of 473.3 HV as the reinforcement increases to 25vol.%.Tensile test results indicate that a reinforcement volume fraction above 20% is beneficial for enhancing tensile strength and yield strength at high temperatures,but it has an adverse effect on room temperature elongation.Conversely,if the reinforcement volume fraction is below 20%,it can improve high-temperature elongation when the temperature exceeds 600℃. 展开更多
关键词 titanium matrix composites microstucture MICROHARDNESS tensile properties in-situ synthesis
下载PDF
In-situ polymerized PEO-based solid electrolytes contribute better Li metal batteries:Challenges,strategies,and perspectives
9
作者 Zhihui Jia Yong Liu +4 位作者 Haoming Li Yi Xiong Yingjie Miao Zhongxiu Liu Fengzhang Ren 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期548-571,共24页
Polyethylene oxide(PEO)-based solid polymer electrolytes(SPEs)with good electrochemical stability and excellent Li salt solubility are considered as one of the most promising SPEs for solid-state lithium metal batteri... Polyethylene oxide(PEO)-based solid polymer electrolytes(SPEs)with good electrochemical stability and excellent Li salt solubility are considered as one of the most promising SPEs for solid-state lithium metal batteries(SSLMBs).However,PEO-based SPEs suffer from low ionic conductivity at room temperature and high interfacial resistance with the electrodes due to poor interfacial contact,seriously hindering their practical applications.As an emerging technology,in-situ polymerization process has been widely used in PEO-based SPEs because it can effectively increase Li-ion transport at the interface and improve the interfacial contact between the electrolyte and electrodes.Herein,we review recent advances in design and fabrication of in-situ polymerized PEO-based SPEs to realize enhanced performance in LMBs.The merits and current challenges of various SPEs,as well as their stabilizing strategies are presented.Furthermore,various in-situ polymerization methods(such as free radical polymerization,cationic polymerization,anionic polymerization)for the preparation of PEO-based SPEs are summarized.In addition,the application of in-situ polymerization technology in PEO-based SPEs for adjustment of the functional units and addition of different functional filler materials was systematically discussed to explore the design concepts,methods and working mechanisms.Finally,the challenges and future prospects of in-situ polymerized PEO-based SPEs for SSLMBs are also proposed. 展开更多
关键词 in-situ polymerization Polyethylene oxide Solid polymer electrolytes Lithium metal anodes
下载PDF
In-situ interfacial passivation and self-adaptability synergistically stabilizing all-solid-state lithium metal batteries
10
作者 Huanhui Chen Xing Cao +6 位作者 Moujie Huang Xiangzhong Ren Yubin Zhao Liang Yu Ya Liu Liubiao Zhong Yejun Qiu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期282-292,I0007,共12页
The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined ... The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li_(0.33)La_(0.557)TiO_(3)(LLTO)-based solid-state batteries.Specifically,a functional SEI enriched with LiF/Li_(3)PO_(4) is formed by in-situ electrochemical conversion,which is greatly beneficial to improving interface compatibility and enhancing ion transport.While the polarized dielectric BaTiO_(3)-polyamic acid(BTO-PAA,BP)film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition.As expected,the resulting electrolyte offers considerable ionic conductivity at room temperature(4.3 x 10~(-4)S cm^(-1))and appreciable electrochemical decomposition voltage(5.23 V)after electrochemical passivation.For Li-LiFePO_(4) batteries,it shows a high specific capacity of 153 mA h g^(-1)at 0.2C after 100 cycles and a long-term durability of 115 mA h g^(-1)at 1.0 C after 800 cycles.Additionally,a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm^(-2).The stabilization mechanisms are elucidated by ex-situ XRD,ex-situ XPS,and ex-situ FTIR techniques,and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance.The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries. 展开更多
关键词 Solid-state lithium batteries Composite solid electrolyte in-situ polymerization Interfacial passivation layer Self-adaptability
下载PDF
Interplay of laser power and pore characteristics in selective laser melting of ZK60 magnesium alloys:A study based on in-situ monitoring and image analysis
11
作者 Weijie Xie Hau-Chung Man Chi-Wai Chan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1346-1366,共21页
This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualis... This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualise process signals in real-time,elucidating the dynamics of melt pools and vapour plumes under varying laser power conditions specifically between 40 W and 60 W.Detailed morphological analysis was performed using Scanning-Electron Microscopy(SEM),demonstrating a critical correlation between laser power and pore formation.Lower laser power led to increased pore coverage,whereas a denser structure was observed at higher laser power.This laser power influence on porosity was further confirmed via Optical Microscopy(OM)conducted on both top and cross-sectional surfaces of the samples.An increase in laser power resulted in a decrease in pore coverage and pore size,potentially leading to a denser printed part of Mg alloy.X-ray Computed Tomography(XCT)augmented these findings by providing a 3D volumetric representation of the sample internal structure,revealing an inverse relationship between laser power and overall pore volume.Lower laser power appeared to favour the formation of interconnected pores,while a reduction in interconnected pores and an increase in isolated pores were observed at higher power.The interplay between melt pool size,vapour plume effects,and laser power was found to significantly influence the resulting porosity,indicating a need for effective management of these factors to optimise the SLM process of Mg alloys. 展开更多
关键词 Selective laser melting(SLM) Magnesium(Mg)alloys Biodegradable implants POROSITY in-situ monitoring
下载PDF
Oxidation of emerging organic contaminants by in-situ H_(2)O_(2) fenton system
12
作者 Yuqin Ni Chuxiang Zhou +1 位作者 Mingyang Xing Yi Zhou 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期417-434,共18页
The existence and risk of emerging organic contaminants(EOCs)have been under consideration and paid much effort to degrade these pollutants.Fenton system is one of the most widely used technologies to solve this probl... The existence and risk of emerging organic contaminants(EOCs)have been under consideration and paid much effort to degrade these pollutants.Fenton system is one of the most widely used technologies to solve this problem.The original Fenton system relies on the hydroxyl radicals produced by Fe(Ⅱ)/H_(2)O_(2) to oxidize the organic contaminants.However,the application of the Fenton system is limited by its low iron cycling efficiency and the high risks of hydrogen peroxide transportation and storage.The introduction of external energy(including light and electricity etc.)can effectively promote the Fe(Ⅲ)/Fe(Ⅱ)cycle and the reduction of oxygen to produce hydrogen peroxide in situ.This review introduces three in-situ Fenton systems,which are electro-Fenton,Photo-Fenton,and chemical reaction.The mechanism,influencing factors,and catalysts of these three in-situ Fenton systems in degrading EOCs are discussed systematically.This review strengthens the understanding of Fenton and in-situ Fenton systems in degradation,offering further insight into the real application of the in-situ Fenton system in the removal of EOCs. 展开更多
关键词 in-situ H_(2)O_(2)production FENTON Emerging organic contaminants Photocatalysis ELECTROCATALYSIS
下载PDF
In-situ coating and surface partial protonation co-promoting performance of single-crystal nickel-rich cathode in all-solid-state batteries
13
作者 Maoyi Yi Jie Li +5 位作者 Mengran Wang Xinming Fan Bo Hong Zhian Zhang Aonan Wang Yanqing Lai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期137-143,I0005,共8页
The poor electrochemical performance of all-solid-state batteries(ASSBs),which is assemblied by Ni-rich cathode and poly(ethylene oxide)(PEO)-based electrolytes,can be attributed to unstable cathodic interface and poo... The poor electrochemical performance of all-solid-state batteries(ASSBs),which is assemblied by Ni-rich cathode and poly(ethylene oxide)(PEO)-based electrolytes,can be attributed to unstable cathodic interface and poor crystal structure stability of Ni-rich cathode.Several coating strategies are previously employed to enhance the stability of the cathodic interface and crystal structure for Ni-rich cathode.However,these methods can hardly achieve simplicity and high efficiency simultaneously.In this work,polyacrylic acid(PAA)replaced traditional PVDF as a binder for cathode,which can achieve a uniform PAA-Li(LixPAA(0<x≤1))coating layer on the surface of single-crystal LiNi_(0.83)Co_(0.12)Mn_(0.05)O_(2)(SC-NCM83)due to H^(+)/Li^(+)exchange reaction during the initial charging-discharging process.The formation of PAA-Li coating layer on cathode can promote interfacial Li^(+)transport and enhance the stability of the cathodic interface.Furthermore,the partially-protonated surface of SC-NCM83 casued by H^(+)/Li^(+)exchange reaction can restrict Ni ions transport to enhance the crystal structure stability.The proposed SC-NCM83-PAA exhibits superior cycling performance with a retention of 92%compared with that(57.3%)of SC-NCM83-polyvinylidene difluoride(PVDF)after 200 cycles.This work provides a practical strategy to construct high-performance cathodes for ASSBs. 展开更多
关键词 Single-crystal LiNi_(0.83)Co_(0.12)Mn_(0.05)O_(2) in-situ coating PAA-Li Partial protonation
下载PDF
美国:循证家庭教育指导服务成效显著——以PAT项目为例
14
《中小学德育》 2024年第4期80-80,共1页
近年来,美国家庭教育指导服务取得了社会认可并成为全球家庭教育指导工作的风向标,尤其是循证家庭教育指导服务成效显著。其中,“父母即教师”(Parent As Teachers,简称PAT)项目是美国循证家庭教育指导服务的杰出代表,其以改进家庭教育... 近年来,美国家庭教育指导服务取得了社会认可并成为全球家庭教育指导工作的风向标,尤其是循证家庭教育指导服务成效显著。其中,“父母即教师”(Parent As Teachers,简称PAT)项目是美国循证家庭教育指导服务的杰出代表,其以改进家庭教育质量为主旨、以科学的循证模型为基础、收集丰富的实证数据来开展有针对性的家庭教育指导服务。 展开更多
关键词 家庭教育指导 社会认可 pat 家庭教育质量 循证 实证数据 成效显著 风向标
下载PDF
基于心流PAT模型的界面设计策略研究 被引量:1
15
作者 孙宁娜 孟忠涛 《包装工程》 CAS 北大核心 2023年第20期217-228,共12页
目的以PAT模型为视角,探究心流体验在事前阶段下的相关界面设计策略。方法基于PAT模型,从用户、工具、任务三个层面对现有心流体验在事前阶段下互联网产品领域研究成果进行分类分析,并归纳总结出具体的前因要素,通过文献研究法、归纳法... 目的以PAT模型为视角,探究心流体验在事前阶段下的相关界面设计策略。方法基于PAT模型,从用户、工具、任务三个层面对现有心流体验在事前阶段下互联网产品领域研究成果进行分类分析,并归纳总结出具体的前因要素,通过文献研究法、归纳法、案例分析法,针对不同的前因要素提出相应的界面设计策略。结论针对用户层面的界面设计策略包括包容的多层次用户定位、有效且专注的时间区间设置、具备引导性的交互功能设定、趣味的感知信息提示;针对工具层面的界面设计策略包括清晰明确的界面布局、可感知的操作线索、个性化定制内容、简洁的操作服务流程、沉浸式社交互动元素;针对任务层面的界面策略包括可调节的难度动态平衡、分段式任务目标设定、多样化奖励激励机制、及时且有效的反馈机制。本次研究成果进一步深化了心流理论在界面设计领域的策略研究。 展开更多
关键词 心流 心流体验 pat模型 界面设计 设计策略
下载PDF
PATS结合山梨酸钾对枯草杆菌芽孢的灭活机理
16
作者 李佳佳 杨杰 +2 位作者 章中 王旭娟 武思睿 《农业工程学报》 EI CAS CSCD 北大核心 2023年第22期287-295,共9页
枯草杆菌芽孢是极难被杀灭的细菌之一,为探究山梨酸钾与压力辅助热杀菌(pressure assisted thermal sterilization,PATS)对枯草杆菌芽孢的联合作用效果,该研究以OD600值(optical density at 600 nm)、OD_(260)值(optical density at 260... 枯草杆菌芽孢是极难被杀灭的细菌之一,为探究山梨酸钾与压力辅助热杀菌(pressure assisted thermal sterilization,PATS)对枯草杆菌芽孢的联合作用效果,该研究以OD600值(optical density at 600 nm)、OD_(260)值(optical density at 260 nm)、OD_(280)值(optical density at 280 nm)、2,6-吡啶二羧酸释放率表征芽孢内容物的释放情况,扫描电镜、流式细胞术、傅里叶红外光谱仪、激光粒度仪检测芽孢结构变化情况。结果表明,山梨酸钾强化了PATS的杀菌效果,200 MPa-75℃处理杀灭了2.63 lg CFU/mL芽孢,添加2 g/L山梨酸钾后,杀灭了3.24 lg CFU/mL芽孢。较单独PATS处理,添加山梨酸钾后,促进了芽孢内容物的释放,内膜通透性增加,芽孢粒径显著减小,内膜、细胞壁等结构受损程度加剧。同时,Na^(+)/K^(+)-ATPase活力显著降低,膜电位平衡被破坏,基本生理代谢功能紊乱。总之,PATS结合山梨酸钾对枯草芽孢杆菌芽孢有协同杀菌作用,且随着山梨酸钾添加量或温度的升高而增强,有利于促进该技术在食品杀菌中的应用。 展开更多
关键词 山梨酸钾 温度 扫描电镜 枯草芽孢杆菌 芽孢 内膜 patS
下载PDF
PAT家族蛋白与肿瘤关系的研究进展
17
作者 徐俐 刘睿 秦洁 《实用药物与临床》 CAS 2023年第1期67-71,共5页
PAT家族蛋白是介导脂质代谢的一类小分子蛋白,包括PLIN1、ADRP、TIP47、S3-12和PLIN5。PAT家族蛋白位于细胞质脂滴表面,通过与其他分子相互作用调控脂质代谢,参与肿瘤的发生发展。本文将对PAT家族蛋白成员与肿瘤关系的研究进展进行综述。
关键词 pat家族蛋白 脂质代谢 脂滴 肿瘤
下载PDF
In-situ observations of damage-fracture evolution in surrounding rock upon unloading in 2400-m-deep tunnels 被引量:5
18
作者 Haosen Guo Qiancheng Sun +2 位作者 Guangliang Feng Shaojun Li Yaxun Xiao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第4期437-446,共10页
The damage-fracture evolution of deep rock mass has obvious particularity,which is revealed in 2400-mdeep tunnels by field tests.The evolution of the excavation damaged zone depth is consistent with that of the fractu... The damage-fracture evolution of deep rock mass has obvious particularity,which is revealed in 2400-mdeep tunnels by field tests.The evolution of the excavation damaged zone depth is consistent with that of the fractured zone depth.The ratio of the excavation damaged zone depth to the excavation fractured zone depth is greater than 2.0 in a rock mass with both high strength and good integrity,but less than1.5 in a rock mass with lower strength or poor integrity.Zonal disintegration in a rock mass with high strength and fair integrity is more likely to occur when it contains more than two groups of primary fractures in damaged zones.Fractures develop outward in zonal disintegration but are totally different from the single-zone fracture,in which the fractures develop inward,and it is the starting position of the fractured zone when the excavation surface of the middle pilot is 7–9 m close to the pre-set borehole and it stops after the excavation surface of the baseplate is 11–14 m away.The most intense evolution occurs around 2–4 m from the pre-set borehole in the sidewall expansion stage.The research results provide a reference for the monitoring scheme and support design of CJPL-Ⅲin its future construction. 展开更多
关键词 Deep tunnel Fractured zone Damaged zone in-situ observation Unloading of rock mass
下载PDF
Fabrication of ZIF-8 membranes on dual-layer ZnO-PES/PES organic hollow fibers by in-situ crystallization 被引量:2
19
作者 Zhengchi Yin Xiaoke Wu +5 位作者 Yanwei Yang Huayu Zhang Wangtao Li Ruimin Zhu Qiancheng Zheng Zhengbao Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第3期101-110,共10页
Compared to inorganic supports, polymeric supports can offer additional benefits, e.g., easier processing and cheaper. However, the organic surface has weak adhesion to the zeolitic imidazolate frameworks(ZIFs) membra... Compared to inorganic supports, polymeric supports can offer additional benefits, e.g., easier processing and cheaper. However, the organic surface has weak adhesion to the zeolitic imidazolate frameworks(ZIFs) membrane layer, which usually requires complex surface modification or seeding. Herein, we demonstrate that a dual-layer asymmetric polymer support prepared by a simple spinning process is a good candidate for the preparation of ZIF-8 membrane. The inner layer of the support is an organic hollow fiber(PES) with finger-like pores, and the outer layer is a ZnO-PES composite layer with finger-like pores also. The ZnO-PES composite layer is expected to contain uniform ZnO crystals in the polymer matrix, i.e., the ZnO particles in the skin layer of the support are not easy to fall off. Under the induction of ZnO particles in the outer layers, continuous ZIF-8 membranes can be prepared by single in-situ crystallization, showing good adhesion to the supports. The obtained ZIF-8 membranes show a H_(2) permeance of 8.7 × 10^(-8)mol·m^(-2)·s^(-1)·Pa^(-1) with a H_(2)/N_(2) ideal separation selectivity of 18.0. The design and preparation of this dual-layer polymer support is expected to promote the large-scale application of MOF membranes on polymer supports. 展开更多
关键词 Dual-layer PES hollow fiber in-situ crystallization ZIF-8 membrane Gas separation ZNO
下载PDF
Investigation into machining performance of microstructurally engineered in-situ particle reinforced magnesium matrix composite 被引量:1
20
作者 S.K.Sahoo B.N.Sahoo S.K.Panigrahi 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第3期916-935,共20页
Magnesium and magnesium in-situ composites have significant potential in the application of design and manufacturing for automotive and aerospace industries because of their high specific strength and reduced fuel con... Magnesium and magnesium in-situ composites have significant potential in the application of design and manufacturing for automotive and aerospace industries because of their high specific strength and reduced fuel consumption.But there are many challenges for machining of Mg based alloys and composites because of the high tendency of fire and oxidation.These challenges can be minimized through microstructural engineering.In this present study,the machining performances of AZ91 Mg alloy and in-situ hybrid TiC+TiB_(2)reinforced AZ91 metal matrix composite was investigated.The effectβ-Mg_(17)Al_(12)phases and grain refinement with and without in-situ particles on machinability were studied through microstructural engineering via aging and friction stir processing.The end milling operation was carried out at different cutting speeds ranging from 25 mm/min to 90 mm/min under dry environment by using an AlTiN-coated tungsten carbide tool.The optimum cutting speed for machining was found to be 75 mm/min based on the surface roughness values of all conditioned materials.The base material with dendritic microstructure was found to have poor machinability in terms of inadequate surface finish and edge-burrs formation.The combined effect of in-situ TiC+TiB_(2)particles addition and grain refinement enhanced the machining performance of the material with superior surface finish,negligible edge-burr formation and better tool wear resistance.The influence of in-situ TiC+TiB_(2)particles,β-Mg_(17)Al_(12)phases and grain refinement on machining characteristics are explained based on the tool wear mechanisms,chip behavior and machining induced affected zone. 展开更多
关键词 MAGNESIUM in-situ composite END-MILLING Tool wear Chip morphology
下载PDF
上一页 1 2 93 下一页 到第
使用帮助 返回顶部