The flow field near a spur dike such as down flow and horseshoe vortex system(HVS)are susceptible to the topographic changes in the local scouring process,resulting in variation of the sediment transport with time.In ...The flow field near a spur dike such as down flow and horseshoe vortex system(HVS)are susceptible to the topographic changes in the local scouring process,resulting in variation of the sediment transport with time.In this study,large eddy simulations with fixed-bed at different scouring stages were conducted to investigate the changes in flow field.The results imply that the bed deformation leads to an increase in flow rate per unit area,which represent the capability of sediment transportation by water,in the scour hole.Moreover,the intensity of turbulent kinetic energy and bimodal motion near the sand bed induced by the HVS were also varied.However,the peak moments between the two sediment transport mechanisms were different.Hence,understanding the complex feedback mechanism between topography and flow field is essential for the local scour problem.展开更多
Debris flows are typical two-phase flows, which commonly accompany erosion in mountainous areas, and may destroy bridge engineering by scouring. In this study, a physically-based two-phase model is applied for the sim...Debris flows are typical two-phase flows, which commonly accompany erosion in mountainous areas, and may destroy bridge engineering by scouring. In this study, a physically-based two-phase model is applied for the simulation of debris flow scouring of bridge pier. In this model, the shear stress of debris flow on an erodible bed is considered to be a function of the solid shear stress, fluid shear stress, and volume fraction; accordingly, the erosion is incorporated into the two-phase model. Using a highaccuracy computational scheme based on the finite volume method, the model is employed for simulating a dynamic debris flow over an erodible bed. The numerical results are consistent with the experimental data, and verify the feasibility of the two-phase model. Moreover, a simple numerical test is performed to exhibit the fundamental behaviour of debris flow scouring of bridge pier, which shows that the degree of erosion on each side of the pier is higher compared to other areas. The scouring depth is influenced by the variations of solid volume fraction and velocity of debris flow and pier width.展开更多
The scour of the seabed under a pipeline is studied experimentally in this paper. Tests are carried out in a U-shaped oscillatory water tunnel with a box imbedded in the bottom of the test section. By use of the stand...The scour of the seabed under a pipeline is studied experimentally in this paper. Tests are carried out in a U-shaped oscillatory water tunnel with a box imbedded in the bottom of the test section. By use of the standard sand, clay and plastic grain as the seabed material, the influence of the bed material on the scour is studied. The relationship between the critical initial gap-to-diameter ratio above which no scour occurs and the parameters of the oscillating flow is obtained. The self-burial phenomenon. which occurs for the pipeline not fixed to two sidewalls of the test section, is not observed for the Bred pipeline. The effect of the pipe on sand wave formation is discussed. The maximum equilibrium scour depths For different initial gap-to-diameter ratios, different Kc numbers and different bed sands are also given in this paper.展开更多
Debris flows are one of the common natural hazards in mountainous areas.They often cause devastating damage to the lives and property of local people.The sabo dam construction along a debris flow valley is considered ...Debris flows are one of the common natural hazards in mountainous areas.They often cause devastating damage to the lives and property of local people.The sabo dam construction along a debris flow valley is considered to be a useful method for hazard mitigation.Previous work has concentrated on the different types of sabo dams such as close-type sabo dam,open-type sabo dam.However,little attention has been paid to the spillway structure of sabo dam.In the paper,a new type of spillway structure with lateral contraction was proposed.Debris flow patterns under four different spillway structures were investigated.The projection theory was employed to predict trajectory of debris flow out from the spillway and to estimate the incident angle and terminal velocity before it plunged into the scour hole behind the sabo dam.The results indicated that the estimated data were in good agreement with the experimental ones.The discrepancy between the estimated and experimental values of main parameters remained below 21.82%(relative error).Additionally,the effects of debris flow scales under different spillway structures were considered to study the scour law.Although the debris flow pattern and scour law behind the sabo dam under different operating conditions was analyzed in this paper,further study on the scour mechanism andthe maximum scour depth estimation based on scour theory is still required in the future.展开更多
The erosion shape and the law of development of debris flow sabo dam downstream is a weak part in the study on debris flow erosion. The shape and development of scour pit have an important effect on the stability and ...The erosion shape and the law of development of debris flow sabo dam downstream is a weak part in the study on debris flow erosion. The shape and development of scour pit have an important effect on the stability and safety of debris flow sabo dam, which determines the foundational depth of the dam and the design of protective measures downstream. Study on the scouring law of sabo dam downstream can evaluate the erosion range and reasonably arrange auxiliary protective engineering. Therefore, a series of flume experiments are carried out including different debris flow characteristics (density is varying from 1.5 t/m3 to 2.1 t/m~) and different gully longitudinal slopes. The result shows that the scour pit appears as an oval shape in a plane and deep in the middle while superficial at the ends in the longitudinal section, the position of the maximum depth point moves towards downstream with an increase of flume slope angle. The maximum depth of scour pit is mainly affected by the longitudinal slope of gully, density of debris flow, and the characteristics of gully composition (particle size and the viscosity of soil). The result also indicates that the viscosity of soil will weaken the erosion extent. The interior slopes of scour pit are different between the upstream and the downstream, and the downstream slope is smaller than the upper one. For the viscous and non-viscous sands with the same distribution of gradation, the interior slope of non- viscous sand is smaller than the viscous sand.According to tbe regression analysis on the experimental data, the quantitative relationship between the interior slope of scour pit, slope of repose under water and the longitudinal slope of gully is established and it can be used to calculate the interior slope of scour pit. The results can provide the basis for the parameter design of the debris flow control engineering foundation.展开更多
Drainage canals are engineering structures widely used for debris flow mitigation.When passing through a drainage canal,debris flow usually scours the gully bed at the back of the rib sill of the drainage canal,which ...Drainage canals are engineering structures widely used for debris flow mitigation.When passing through a drainage canal,debris flow usually scours the gully bed at the back of the rib sill of the drainage canal,which leads to failure of the rib sill.Therefore,the scour depth at the back of the rib sill is an important design problem and it is related to the economic benefits of engineering and service years.To explore the law of the depth of the scour pit after debris flow through drainage canal ribs,we first proposed a formula for the calculation of the maximum scour depth at the back of a rib sill based on energy conservation.We then conducted a series of simulation experiments to test the proposed formula.The experimental results show that the scour depth,trench slope and the distance between ribs all increase with a decrease in debris flow density.We then compared the results of experiments and formula calculations.Through the testing analysis,we found that the calculation results of the conductedformula correspond with the experimental results better.Finally,taking Qipan Gully as an example,we designed the ultimate depth of a drainage canal for debris flow using the calculation formula.展开更多
Many studies have been undertaken to predict local scour around offshore high-rise structure foundations(HRSFs),which have been used in constructing the Donghai Wind Farm in China.However,there have been few works on ...Many studies have been undertaken to predict local scour around offshore high-rise structure foundations(HRSFs),which have been used in constructing the Donghai Wind Farm in China.However,there have been few works on the turbulent flow that drives the scour process.In this study,the characteristics of the turbulent flow fields around an HRSF were investigated using the particle image velocimetry technique.The mean flow,vorticity,and turbulence intensity were analyzed in detail.The relationship between the flow feature and scour development around an HRSF was elaborated.The results showed that the flow velocity increased to its maximum value near the third row of the pile group.The shear layer and wake vortices could not be fully developed downstream of the last row of the piles at small Reynolds numbers.The strong flow and turbulent fluctuation near the third piles explained the existence of a longtail scour pattern starting from the HRSF shoulders and a trapezoidal deposition region directly downstream of HRSF.This laboratory experiment gains insight into the mechanism of the turbulent flow around HRSFs and provides a rare dataset for numerical model verifications.展开更多
In the present study, the flow field around a circular pier is investigated with experimental measurements and numerical simulations. The transient flow patterns during erosion are studied in detail. The results show ...In the present study, the flow field around a circular pier is investigated with experimental measurements and numerical simulations. The transient flow patterns during erosion are studied in detail. The results show that the traditional equations of particle motion are not perfect for the calculation of the sand motion under this complex flow situation. The scouring agents, such as turbulent intensity, the fluctuating pressure and the vertical pressure gradient, having many effects on the sand motion with the increasing scouring depth, need to be considered in modifying the traditional model.展开更多
Bridge pressure flow scour at clear water threshold condition is studied theoretically and experimentally.The flume experiments reveal that the measured scour profiles under a bridge are more or less 2-dimensional;all...Bridge pressure flow scour at clear water threshold condition is studied theoretically and experimentally.The flume experiments reveal that the measured scour profiles under a bridge are more or less 2-dimensional;all the measured scour profiles can be described by two similarity equations,where the horizontal distance is scaled by the deck width while the local scour by the maximum scour depth;the maximum scour position is located just under the bridge about 15% deck width from the downstream deck edge;the scour begins at about one deck width upstream the bridge while the deposition occurs at about 2.5 deck widths downstream the bridge;and the maximum scour depth decreases with increas-ing sediment size,but increases with deck inundation.The theoretical analysis shows that:bridge scour can be divided into three cases,i.e.downstream unsubmerged,partially submerged,and totally submerged.For downstream unsubmerged flows,the maximum bridge scour depth is an open-channel problem where the conventional methods in terms of critical velocity or bed shear stress can be applied;for partially and totally submerged flows,the equilibrium maximum scour depth can be described by a scour and an inundation similarity number,which has been confirmed by experiments with two decks and two sediment sizes.For application,a design and field evaluation procedure with examples is presented,including the maximum scour depth and scour profile.展开更多
A new scour countermeasure using solidified slurry for offshore foundation has been proposed recently.Fluidized solidified slurry is pumped to seabed area around foundation for scour protection or pumped into the deve...A new scour countermeasure using solidified slurry for offshore foundation has been proposed recently.Fluidized solidified slurry is pumped to seabed area around foundation for scour protection or pumped into the developed scour holes for scour repair as the fluidized material solidifies gradually.In the pumping operation and solidification,the engineering behaviors of solidified slurry require to be considered synthetically for the reliable application in scour repair and protection of ocean engineering such as the pumpability related flow value,flow diffusion behavior related rheological property,anti-scour performance related retention rate in solidification and bearing capacity related strength property after solidification.In this study,a series of laboratory tests are conducted to investigate the effects of mix proportion(initial water content and binder content)on the flow value,rheological properties,density,retention rate of solidified slurry and unconfined compressive strength(UCS).The results reveal that the flow value increases with the water content and decreases with the binder amount.All the solidified slurry exhibits Bingham plastic behavior when the shear rate is larger than 5 s^(-1).The Bingham model has been employed to fit the rheology test results,and empirical formulas for obtaining the density,yield stress and viscosity are established,providing scientific support for the numerical assessment of flow and diffusion of solidified slurry.Retention rate of solidified slurry decreases with the water flow velocity and flow value,which means the pumpability of solidified slurry is contrary to anti-scour performance.The unconfined compressive strength after solidification reduces as the water content increases and binder content decreases.A design and application procedure of solidified soil for scour repair and protection is also proposed for engineering reference.展开更多
The main purpose of this paper is to analyze the influence of different turbulence flow models on scouring pit of bridge-pier. Flow-3D software is applied in line with the purpose. The key motivation for this study is...The main purpose of this paper is to analyze the influence of different turbulence flow models on scouring pit of bridge-pier. Flow-3D software is applied in line with the purpose. The key motivation for this study is to contribute to the Flow-3D software by means of some modification and adjustment in the sediment scour model and shallow water model. An assessment of turbulence model adopted with the parameters of the Melville experiment to estimate the maximum scour-depth was performed. In the simulation results, the alternate eddy formation and shedding were repeated while the Karman vortex street formed behind the pier for the large eddy simulation LES turbulence model is more realistic in the flow phenomenon. The results of the scour development of large eddy simulation (LES) turbulence model were found to be more satisfied than the Renormalized group (RNG) turbulence model and close to the prior experiment results. The simulated scour results were significantly different with the observed data collected from previous literature in the reason of some unsuitability of meshing method in Flow-3D software.展开更多
The interactions of cnoidal waves with a submerged quartercircular breakwater are investigated by a ReynoldsAveraged Navier–Stokes(RANS) flow solver with a Volume of Fluid(VOF) surface capturing scheme(RANSVOF) model...The interactions of cnoidal waves with a submerged quartercircular breakwater are investigated by a ReynoldsAveraged Navier–Stokes(RANS) flow solver with a Volume of Fluid(VOF) surface capturing scheme(RANSVOF) model. The vertical variation of the instantaneous velocity indicates that flow separation occurs at the boundary layer near the breakwater. The temporal evolution of the velocity and vorticity fields demonstrates vortex generation and shedding around the submerged quartercircular breakwater due to the flow separation. An empirical relationship between the vortex intensity and a few hydrodynamic parameters is proposed based on parametric analysis. In addition, the instantaneous and time-averaged vorticity fields reveal a pair of vortices of opposite signs at the breakwater which are expected to have significant effect on sediment entrainment, suspension, and transportation,therefore, scour on the leeside of the breakwater.展开更多
基金supported by Shenzhen Science and Technology Program(Grant No.JCYJ20220818102012024)Hong Kong Research Grants Council(Grant Nos.T21–602/16-R and RGC R5037–18)。
文摘The flow field near a spur dike such as down flow and horseshoe vortex system(HVS)are susceptible to the topographic changes in the local scouring process,resulting in variation of the sediment transport with time.In this study,large eddy simulations with fixed-bed at different scouring stages were conducted to investigate the changes in flow field.The results imply that the bed deformation leads to an increase in flow rate per unit area,which represent the capability of sediment transportation by water,in the scour hole.Moreover,the intensity of turbulent kinetic energy and bimodal motion near the sand bed induced by the HVS were also varied.However,the peak moments between the two sediment transport mechanisms were different.Hence,understanding the complex feedback mechanism between topography and flow field is essential for the local scour problem.
基金Financial support from the NSFC-ICIMOD (41661144041)Key Research and Development Program (2017SZ0041)Sichuan Province Science and Technology Support Project (2016SZ0067)
文摘Debris flows are typical two-phase flows, which commonly accompany erosion in mountainous areas, and may destroy bridge engineering by scouring. In this study, a physically-based two-phase model is applied for the simulation of debris flow scouring of bridge pier. In this model, the shear stress of debris flow on an erodible bed is considered to be a function of the solid shear stress, fluid shear stress, and volume fraction; accordingly, the erosion is incorporated into the two-phase model. Using a highaccuracy computational scheme based on the finite volume method, the model is employed for simulating a dynamic debris flow over an erodible bed. The numerical results are consistent with the experimental data, and verify the feasibility of the two-phase model. Moreover, a simple numerical test is performed to exhibit the fundamental behaviour of debris flow scouring of bridge pier, which shows that the degree of erosion on each side of the pier is higher compared to other areas. The scouring depth is influenced by the variations of solid volume fraction and velocity of debris flow and pier width.
基金The project was supported by the National Natural Science Foundation of China (19772065) the Key Project (KZ951 -A 1 -405) of "Ninth Five-year Plan" of Chinese Academy of Sciences
文摘The scour of the seabed under a pipeline is studied experimentally in this paper. Tests are carried out in a U-shaped oscillatory water tunnel with a box imbedded in the bottom of the test section. By use of the standard sand, clay and plastic grain as the seabed material, the influence of the bed material on the scour is studied. The relationship between the critical initial gap-to-diameter ratio above which no scour occurs and the parameters of the oscillating flow is obtained. The self-burial phenomenon. which occurs for the pipeline not fixed to two sidewalls of the test section, is not observed for the Bred pipeline. The effect of the pipe on sand wave formation is discussed. The maximum equilibrium scour depths For different initial gap-to-diameter ratios, different Kc numbers and different bed sands are also given in this paper.
基金supported by the National Natural Science Foundation of China (Grant No.51209195)Foundation of Key Laboratory of Mountain Hazards and Earth Surface Process,Chinese Academy of Sciences,Science and Technology Service Network Initiative of Chinese Academy of Sciences (Grant No.KFJ-EW-STS-094)the Youth Foundation of the Institute of Mountain Hazards and Environment,CAS (Grant No.SDS-QN-1302)
文摘Debris flows are one of the common natural hazards in mountainous areas.They often cause devastating damage to the lives and property of local people.The sabo dam construction along a debris flow valley is considered to be a useful method for hazard mitigation.Previous work has concentrated on the different types of sabo dams such as close-type sabo dam,open-type sabo dam.However,little attention has been paid to the spillway structure of sabo dam.In the paper,a new type of spillway structure with lateral contraction was proposed.Debris flow patterns under four different spillway structures were investigated.The projection theory was employed to predict trajectory of debris flow out from the spillway and to estimate the incident angle and terminal velocity before it plunged into the scour hole behind the sabo dam.The results indicated that the estimated data were in good agreement with the experimental ones.The discrepancy between the estimated and experimental values of main parameters remained below 21.82%(relative error).Additionally,the effects of debris flow scales under different spillway structures were considered to study the scour law.Although the debris flow pattern and scour law behind the sabo dam under different operating conditions was analyzed in this paper,further study on the scour mechanism andthe maximum scour depth estimation based on scour theory is still required in the future.
基金the National Natural Science Foundation of China (Nos. 40901007, 50979103)
文摘The erosion shape and the law of development of debris flow sabo dam downstream is a weak part in the study on debris flow erosion. The shape and development of scour pit have an important effect on the stability and safety of debris flow sabo dam, which determines the foundational depth of the dam and the design of protective measures downstream. Study on the scouring law of sabo dam downstream can evaluate the erosion range and reasonably arrange auxiliary protective engineering. Therefore, a series of flume experiments are carried out including different debris flow characteristics (density is varying from 1.5 t/m3 to 2.1 t/m~) and different gully longitudinal slopes. The result shows that the scour pit appears as an oval shape in a plane and deep in the middle while superficial at the ends in the longitudinal section, the position of the maximum depth point moves towards downstream with an increase of flume slope angle. The maximum depth of scour pit is mainly affected by the longitudinal slope of gully, density of debris flow, and the characteristics of gully composition (particle size and the viscosity of soil). The result also indicates that the viscosity of soil will weaken the erosion extent. The interior slopes of scour pit are different between the upstream and the downstream, and the downstream slope is smaller than the upper one. For the viscous and non-viscous sands with the same distribution of gradation, the interior slope of non- viscous sand is smaller than the viscous sand.According to tbe regression analysis on the experimental data, the quantitative relationship between the interior slope of scour pit, slope of repose under water and the longitudinal slope of gully is established and it can be used to calculate the interior slope of scour pit. The results can provide the basis for the parameter design of the debris flow control engineering foundation.
基金financially supported by the key Projects of the Chinese Academy of Sciences (Grant No.KZZD-EW-05-01-04)the National Science and Technology Support Program (Grant No.2012BAC06B02)the sub-program of Science and technology research and development plan from China Railway (Grant No.2014G004-A-5)
文摘Drainage canals are engineering structures widely used for debris flow mitigation.When passing through a drainage canal,debris flow usually scours the gully bed at the back of the rib sill of the drainage canal,which leads to failure of the rib sill.Therefore,the scour depth at the back of the rib sill is an important design problem and it is related to the economic benefits of engineering and service years.To explore the law of the depth of the scour pit after debris flow through drainage canal ribs,we first proposed a formula for the calculation of the maximum scour depth at the back of a rib sill based on energy conservation.We then conducted a series of simulation experiments to test the proposed formula.The experimental results show that the scour depth,trench slope and the distance between ribs all increase with a decrease in debris flow density.We then compared the results of experiments and formula calculations.Through the testing analysis,we found that the calculation results of the conductedformula correspond with the experimental results better.Finally,taking Qipan Gully as an example,we designed the ultimate depth of a drainage canal for debris flow using the calculation formula.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFC0402605)the National Natural Science Foundation of China(Grant No.51779080)+2 种基金the Fok Ying Tung Education Foundation(Grant No.20190094210001)the Natural Science Foundation of Jiangsu Province(Grant No.BK20191299)the 111 Project of the Ministry of Education and State Administration of Foreign Expert Affairs of China(Grant No.B17015).
文摘Many studies have been undertaken to predict local scour around offshore high-rise structure foundations(HRSFs),which have been used in constructing the Donghai Wind Farm in China.However,there have been few works on the turbulent flow that drives the scour process.In this study,the characteristics of the turbulent flow fields around an HRSF were investigated using the particle image velocimetry technique.The mean flow,vorticity,and turbulence intensity were analyzed in detail.The relationship between the flow feature and scour development around an HRSF was elaborated.The results showed that the flow velocity increased to its maximum value near the third row of the pile group.The shear layer and wake vortices could not be fully developed downstream of the last row of the piles at small Reynolds numbers.The strong flow and turbulent fluctuation near the third piles explained the existence of a longtail scour pattern starting from the HRSF shoulders and a trapezoidal deposition region directly downstream of HRSF.This laboratory experiment gains insight into the mechanism of the turbulent flow around HRSFs and provides a rare dataset for numerical model verifications.
文摘In the present study, the flow field around a circular pier is investigated with experimental measurements and numerical simulations. The transient flow patterns during erosion are studied in detail. The results show that the traditional equations of particle motion are not perfect for the calculation of the sand motion under this complex flow situation. The scouring agents, such as turbulent intensity, the fluctuating pressure and the vertical pressure gradient, having many effects on the sand motion with the increasing scouring depth, need to be considered in modifying the traditional model.
文摘Bridge pressure flow scour at clear water threshold condition is studied theoretically and experimentally.The flume experiments reveal that the measured scour profiles under a bridge are more or less 2-dimensional;all the measured scour profiles can be described by two similarity equations,where the horizontal distance is scaled by the deck width while the local scour by the maximum scour depth;the maximum scour position is located just under the bridge about 15% deck width from the downstream deck edge;the scour begins at about one deck width upstream the bridge while the deposition occurs at about 2.5 deck widths downstream the bridge;and the maximum scour depth decreases with increas-ing sediment size,but increases with deck inundation.The theoretical analysis shows that:bridge scour can be divided into three cases,i.e.downstream unsubmerged,partially submerged,and totally submerged.For downstream unsubmerged flows,the maximum bridge scour depth is an open-channel problem where the conventional methods in terms of critical velocity or bed shear stress can be applied;for partially and totally submerged flows,the equilibrium maximum scour depth can be described by a scour and an inundation similarity number,which has been confirmed by experiments with two decks and two sediment sizes.For application,a design and field evaluation procedure with examples is presented,including the maximum scour depth and scour profile.
基金financially supported by the Science and Technology Commission Foundation of Shanghai(Grant Nos.22DZ1208903,20DZ2251900)the National Natural Science Foundation of China(Grant No.51679134)。
文摘A new scour countermeasure using solidified slurry for offshore foundation has been proposed recently.Fluidized solidified slurry is pumped to seabed area around foundation for scour protection or pumped into the developed scour holes for scour repair as the fluidized material solidifies gradually.In the pumping operation and solidification,the engineering behaviors of solidified slurry require to be considered synthetically for the reliable application in scour repair and protection of ocean engineering such as the pumpability related flow value,flow diffusion behavior related rheological property,anti-scour performance related retention rate in solidification and bearing capacity related strength property after solidification.In this study,a series of laboratory tests are conducted to investigate the effects of mix proportion(initial water content and binder content)on the flow value,rheological properties,density,retention rate of solidified slurry and unconfined compressive strength(UCS).The results reveal that the flow value increases with the water content and decreases with the binder amount.All the solidified slurry exhibits Bingham plastic behavior when the shear rate is larger than 5 s^(-1).The Bingham model has been employed to fit the rheology test results,and empirical formulas for obtaining the density,yield stress and viscosity are established,providing scientific support for the numerical assessment of flow and diffusion of solidified slurry.Retention rate of solidified slurry decreases with the water flow velocity and flow value,which means the pumpability of solidified slurry is contrary to anti-scour performance.The unconfined compressive strength after solidification reduces as the water content increases and binder content decreases.A design and application procedure of solidified soil for scour repair and protection is also proposed for engineering reference.
文摘The main purpose of this paper is to analyze the influence of different turbulence flow models on scouring pit of bridge-pier. Flow-3D software is applied in line with the purpose. The key motivation for this study is to contribute to the Flow-3D software by means of some modification and adjustment in the sediment scour model and shallow water model. An assessment of turbulence model adopted with the parameters of the Melville experiment to estimate the maximum scour-depth was performed. In the simulation results, the alternate eddy formation and shedding were repeated while the Karman vortex street formed behind the pier for the large eddy simulation LES turbulence model is more realistic in the flow phenomenon. The results of the scour development of large eddy simulation (LES) turbulence model were found to be more satisfied than the Renormalized group (RNG) turbulence model and close to the prior experiment results. The simulated scour results were significantly different with the observed data collected from previous literature in the reason of some unsuitability of meshing method in Flow-3D software.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51509178 and 51509177)the Natural Science Foundation of Tianjin City(Grant No.14JCYBJC22100)the Natural Science Foundation of Tianjin Education Commission(Grant No.2017KJ046)
文摘The interactions of cnoidal waves with a submerged quartercircular breakwater are investigated by a ReynoldsAveraged Navier–Stokes(RANS) flow solver with a Volume of Fluid(VOF) surface capturing scheme(RANSVOF) model. The vertical variation of the instantaneous velocity indicates that flow separation occurs at the boundary layer near the breakwater. The temporal evolution of the velocity and vorticity fields demonstrates vortex generation and shedding around the submerged quartercircular breakwater due to the flow separation. An empirical relationship between the vortex intensity and a few hydrodynamic parameters is proposed based on parametric analysis. In addition, the instantaneous and time-averaged vorticity fields reveal a pair of vortices of opposite signs at the breakwater which are expected to have significant effect on sediment entrainment, suspension, and transportation,therefore, scour on the leeside of the breakwater.