The suitability of five methods was discussed here,taking the typical results from in-situ load test of Renshou Mansion and Caifu Plaza in Yueyang City for example.It shows that bearing capacity can be obtained by the...The suitability of five methods was discussed here,taking the typical results from in-situ load test of Renshou Mansion and Caifu Plaza in Yueyang City for example.It shows that bearing capacity can be obtained by the proportion load and limit load from p-s curve with the first and the second point of contraflexure easily.It is recommended that the accurate value of bearing capacity can be obtained by hyperbola fitting method and minimum curvature radius method theoretically.The rebound method is clear in principle,in which the elastoplasticity characteristic is thought about.Out of consideration for the unsteadiness and unobviousness of bearing capacity from relative settlement method,it can be only adopted as reference.So bearing capacity of soft rock ground should be determined by weathering condition of soft rock and curve type.展开更多
The damage-fracture evolution of deep rock mass has obvious particularity,which is revealed in 2400-mdeep tunnels by field tests.The evolution of the excavation damaged zone depth is consistent with that of the fractu...The damage-fracture evolution of deep rock mass has obvious particularity,which is revealed in 2400-mdeep tunnels by field tests.The evolution of the excavation damaged zone depth is consistent with that of the fractured zone depth.The ratio of the excavation damaged zone depth to the excavation fractured zone depth is greater than 2.0 in a rock mass with both high strength and good integrity,but less than1.5 in a rock mass with lower strength or poor integrity.Zonal disintegration in a rock mass with high strength and fair integrity is more likely to occur when it contains more than two groups of primary fractures in damaged zones.Fractures develop outward in zonal disintegration but are totally different from the single-zone fracture,in which the fractures develop inward,and it is the starting position of the fractured zone when the excavation surface of the middle pilot is 7–9 m close to the pre-set borehole and it stops after the excavation surface of the baseplate is 11–14 m away.The most intense evolution occurs around 2–4 m from the pre-set borehole in the sidewall expansion stage.The research results provide a reference for the monitoring scheme and support design of CJPL-Ⅲin its future construction.展开更多
Dynamic load on anchoring structures(AS)within deep roadways can result in cumulative damage and failure.This study develops an experimental device designed to test AS under triaxial loads.The device enables the inves...Dynamic load on anchoring structures(AS)within deep roadways can result in cumulative damage and failure.This study develops an experimental device designed to test AS under triaxial loads.The device enables the investigation of the mechanical response,failure mode,instability assessment criteria,and anchorage effect of AS subjected to combined cyclic dynamic-static triaxial stress paths.The results show that the peak bearing strength is positively correlated with the anchoring matrix strength,anchorage length,and edgewise compressive strength.The bearing capacity decreases significantly when the anchorage direction is severely inclined.The free face failure modes are typically transverse cracking,concave fracturing,V-shaped slipping and detachment,and spallation detachment.Besides,when the anchoring matrix strength and the anchorage length decrease while the edgewise compressive strength,loading rate,and anchorage inclination angle increase,the failure intensity rises.Instability is determined by a negative tangent modulus of the displacement-strength curve or the continued deformation increase against the general downward trend.Under cyclic loads,the driving force that breaks the rock mass along the normal vector and the rigidity of the AS are the two factors that determine roadway stability.Finally,a control measure for surrounding rock stability is proposed to reduce the internal driving force via a pressure relief method and improve the rigidity of the AS by full-length anchorage and grouting modification.展开更多
The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined ...The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li_(0.33)La_(0.557)TiO_(3)(LLTO)-based solid-state batteries.Specifically,a functional SEI enriched with LiF/Li_(3)PO_(4) is formed by in-situ electrochemical conversion,which is greatly beneficial to improving interface compatibility and enhancing ion transport.While the polarized dielectric BaTiO_(3)-polyamic acid(BTO-PAA,BP)film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition.As expected,the resulting electrolyte offers considerable ionic conductivity at room temperature(4.3 x 10~(-4)S cm^(-1))and appreciable electrochemical decomposition voltage(5.23 V)after electrochemical passivation.For Li-LiFePO_(4) batteries,it shows a high specific capacity of 153 mA h g^(-1)at 0.2C after 100 cycles and a long-term durability of 115 mA h g^(-1)at 1.0 C after 800 cycles.Additionally,a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm^(-2).The stabilization mechanisms are elucidated by ex-situ XRD,ex-situ XPS,and ex-situ FTIR techniques,and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance.The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries.展开更多
The load partitioning between the magnesium and titanium phases in an extruded Mg-15%Ti(vol.%) composite from room temperature up to 300 ℃ using synchrotron radiation diffraction during in-situ compression tests. Dur...The load partitioning between the magnesium and titanium phases in an extruded Mg-15%Ti(vol.%) composite from room temperature up to 300 ℃ using synchrotron radiation diffraction during in-situ compression tests. During compression, the magnesium matrix composite deforms mainly by the activation of the extension twinning system up to 200 ℃. The volume fraction of twins increases with the plastic strain but decrease with the compression temperature. Hard titanium particles bear an additional load transferred by the soft magnesium matrix from room temperature up to 300 ℃. This effect is amplified after yield stress during plastic deformation. Additionally, twins within magnesium grains behaves as an additional reinforcement at low temperature(below 200 ℃) inducing an increase in the work hardening of the composite.展开更多
Cortical electrodes are a powerful tool for the stimulation and/or recording of electrical activity in the nervous system.However,the inevitable wound caused by surgical implantation of electrodes presents bacterial i...Cortical electrodes are a powerful tool for the stimulation and/or recording of electrical activity in the nervous system.However,the inevitable wound caused by surgical implantation of electrodes presents bacterial infection and inflammatory reaction risks associated with foreign body exposure.Moreover,inflammation of the wound area can dramatically worsen in response to bacterial infection.These consequences can not only lead to the failure of cortical electrode implantation but also threaten the lives of patients.Herein,we prepared a hydrogel made of bacterial cellulose(BC),a flexible substrate for cortical electrodes,and further loaded antibiotic tetracycline(TC)and the anti-inflammatory drug dexamethasone(DEX)onto it.The encapsulated drugs can be released from the BC hydrogel and effectively inhibit the growth of Gram-negative and Gram-positive bacteria.Next,therapeutic cortical electrodes were developed by integrating the drug-loaded BC hydrogel and nine-channel serpentine arrays;these were used to record electrocorticography(ECoG)signals in a rat model.Due to the controlled release of TC and DEX from the BC hydrogel substrate,therapeutic cortical electrodes can alleviate or prevent symptoms associated with the bacterial infection and inflammation of brain tissue.This approach facilitates the development of drug delivery electrodes for resolving complications caused by implantable electrodes.展开更多
Polypropylene(PP)fiber-reinforced cement-based tailings backfill(FRCTB)is a green compound material with superior crack resistance and has good prospects for application in underground mining.However,FRCTB exhibits su...Polypropylene(PP)fiber-reinforced cement-based tailings backfill(FRCTB)is a green compound material with superior crack resistance and has good prospects for application in underground mining.However,FRCTB exhibits susceptibility to dynamic events,such as impact ground pressure and blast vibrations.This paper investigates the energy and crack distribution behavior of FRCTB under dynamic impact,considering the height/diameter(H/D)effect.Split Hopkinson pressure bar,industrial computed tomography scan,and scanning electron microscopy(SEM)experiments were carried out on six types of FRCTB.Laboratory outcomes confirmed fiber aggregation at the bottom of specimens.When H/D was less than 0.8,the proportion of PP fibers distributed along theθangle direction of80°-90°increased.For the total energy,all samples presented similar energy absorption,reflectance,and transmittance.However,a rise in H/D may cause a rise in the energy absorption rate of FRCTB during the peak phase.A positive correlation existed between the average strain rate and absorbed energy per unit volume.The increase in H/D resulted in a decreased crack volume fraction of FRCTB.When the H/D was greater than or equal to 0.7,the maximum crack volume fraction of FRCTB was observed close to the incidence plane.Radial cracks were present only in the FRCTB with an H/D ratio of 0.5.Samples with H/D ratios of 0.5 and 0.6 showed similar distributions of weakly and heavily damaged areas.PP fibers can limit the emergence and expansion of cracks by influencing their path.SEM observations revealed considerable differences in the bonding strengths between fibers and the FRCTB.Fibers that adhered particularly well to the substrate were attracted together with the hydration products adhering to surfaces.These results show that FRCTB is promising as a sustainable and green backfill for determining the design properties of mining with backfill.展开更多
This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualis...This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualise process signals in real-time,elucidating the dynamics of melt pools and vapour plumes under varying laser power conditions specifically between 40 W and 60 W.Detailed morphological analysis was performed using Scanning-Electron Microscopy(SEM),demonstrating a critical correlation between laser power and pore formation.Lower laser power led to increased pore coverage,whereas a denser structure was observed at higher laser power.This laser power influence on porosity was further confirmed via Optical Microscopy(OM)conducted on both top and cross-sectional surfaces of the samples.An increase in laser power resulted in a decrease in pore coverage and pore size,potentially leading to a denser printed part of Mg alloy.X-ray Computed Tomography(XCT)augmented these findings by providing a 3D volumetric representation of the sample internal structure,revealing an inverse relationship between laser power and overall pore volume.Lower laser power appeared to favour the formation of interconnected pores,while a reduction in interconnected pores and an increase in isolated pores were observed at higher power.The interplay between melt pool size,vapour plume effects,and laser power was found to significantly influence the resulting porosity,indicating a need for effective management of these factors to optimise the SLM process of Mg alloys.展开更多
Endangered species generally have small populations with low genetic diversity and a high genetic load.Thuja sutchuenensis is an endangered conifer endemic to southwestern China.It was once considered extinct in the w...Endangered species generally have small populations with low genetic diversity and a high genetic load.Thuja sutchuenensis is an endangered conifer endemic to southwestern China.It was once considered extinct in the wild,but in 1999 was rediscovered.However,little is known about its genetic load.We collected 67 individuals from five wild,isolated T.sutchuenensis populations,and used 636,151 SNPs to analyze the level of genetic diversity and genetic load in T.sutchuenensis to delineate the conservation units of T.sutchuenensis,based on whole transcriptome sequencing data,as well as target capture sequencing data.We found that populations of T.sutchuenensis could be divided into three groups.These groups had low levels genetic diversity and were moderately genetically differentiated.Our findings also indicate that T.sutchuenensis suffered two severe bottlenecks around the Last Glaciation Period and Last Glacial Maximum.Among Thuja species,T.sutchuenensis presented the lowest genetic load and hence might have purged deleterious mutations efficiently through purifying selection.However,distribution of fitness effects analysis indicated a high extinction risk for T.sutchuenensis.Multiple lines of evidence identified three management units for T.sutchuenensis.Although T.sutchuenensis possesses a low genetic load,low genetic diversity,suboptimal fitness,and anthropogenic pressures all present an extinction risk for this rare conifer.This might also hold true for many endangered plant species in the mountains all over the world.展开更多
Investigating natural-inspired applications is a perennially appealing subject for scientists. The current increase in the speed of natural-origin structure growth may be linked to their superior mechanical properties...Investigating natural-inspired applications is a perennially appealing subject for scientists. The current increase in the speed of natural-origin structure growth may be linked to their superior mechanical properties and environmental resilience. Biological composite structures with helicoidal schemes and designs have remarkable capacities to absorb impact energy and withstand damage. However, there is a dearth of extensive study on the influence of fiber redirection and reorientation inside the matrix of a helicoid structure on its mechanical performance and reactivity. The present study aimed to explore the static and transient responses of a bio-inspired helicoid laminated composite(B-iHLC) shell under the influence of an explosive load using an isomorphic method. The structural integrity of the shell is maintained by a viscoelastic basis known as the Pasternak foundation, which encompasses two coefficients of stiffness and one coefficient of damping. The equilibrium equations governing shell dynamics are obtained by using Hamilton's principle and including the modified first-order shear theory,therefore obviating the need to employ a shear correction factor. The paper's model and approach are validated by doing numerical comparisons with respected publications. The findings of this study may be used in the construction of military and civilian infrastructure in situations when the structure is subjected to severe stresses that might potentially result in catastrophic collapse. The findings of this paper serve as the foundation for several other issues, including geometric optimization and the dynamic response of similar mechanical structures.展开更多
Rock-encased-backfill(RB)structures are common in underground mining,for example in the cut-andfill and stoping methods.To understand the effects of cyclic excavation and blasting activities on the damage of these RB ...Rock-encased-backfill(RB)structures are common in underground mining,for example in the cut-andfill and stoping methods.To understand the effects of cyclic excavation and blasting activities on the damage of these RB structures,a series of triaxial stepwise-increasing-amplitude cyclic loading experiments was conducted with cylindrical RB specimens(rock on outside,backfill on inside)with different volume fractions of rock(VF=0.48,0.61,0.73,and 0.84),confining pressures(0,6,9,and 12 MPa),and cyclic loading rates(200,300,400,and 500 N/s).The damage evolution and meso-crack formation during the cyclic tests were analyzed with results from stress-strain hysteresis loops,acoustic emission events,and post-failure X-ray 3D fracture morphology.The results showed significant differences between cyclic and monotonic loadings of RB specimens,particularly with regard to the generation of shear microcracks,the development of stress memory and strain hardening,and the contact forces and associated friction that develops along the rock-backfill interface.One important finding is that as a function of the number of cycles,the elastic strain increases linearly and the dissipated energy increases exponentially.Also,compared with monotonic loading,the cyclic strain hardening characteristics are more sensitive to rising confining pressures during the initial compaction stage.Another finding is that compared with monotonic loading,more shear microcracks are generated during every reloading stage,but these microcracks tend to be dispersed and lessen the likelihood of large shear fracture formation.The transition from elastic to plastic behavior varies depending on the parameters of each test(confinement,volume fraction,and cyclic rate),and an interesting finding was that the transformation to plastic behavior is significantly lower under the conditions of 0.73 rock volume fraction,400 N/s cyclic loading rate,and 9 MPa confinement.All the findings have important practical implications on the ability of backfill to support underground excavations.展开更多
Coral sandy soils widely exist in coral island reefs and seashores in tropical and subtropical regions.Due to the unique marine depositional environment of coral sandy soils,the engineering characteristics and respons...Coral sandy soils widely exist in coral island reefs and seashores in tropical and subtropical regions.Due to the unique marine depositional environment of coral sandy soils,the engineering characteristics and responses of these soils subjected to monotonic and cyclic loadings have been a subject of intense interest among the geotechnical and earthquake engineering communities.This paper critically reviews the progress of experimental investigations on the undrained behavior of coral sandy soils under monotonic and cyclic loadings over the last three decades.The focus of coverage includes the contractive-dilative behavior,the pattern of excess pore-water pressure(EPWP)generation and the liquefaction mechanism and liquefaction resistance,the small-strain shear modulus and strain-dependent shear modulus and damping,the cyclic softening feature,and the anisotropic characteristics of undrained responses of saturated coral sandy soils.In particular,the advances made in the past decades are reviewed from the following aspects:(1)the characterization of factors that impact the mechanism and patterns of EPWP build-up;(2)the identification of liquefaction triggering in terms of the apparent viscosity and the average flow coefficient;(3)the establishment of the invariable form of strain-based,stress-based,or energy-based EPWP ratio formulas and the unique relationship between the new proxy of liquefaction resistance and the number of cycles required to reach liquefaction;(4)the establishment of the invariable form of the predictive formulas of small strain modulus and strain-dependent shear modulus;and(5)the investigation on the effects of stress-induced anisotropy on liquefaction susceptibility and dynamic deformation characteristics.Insights gained through the critical review of these advances in the past decades offer a perspective for future research to further resolve the fundamental issues concerning the liquefaction mechanism and responses of coral sandy sites subjected to cyclic loadings associated with seismic events in marine environments.展开更多
Existing studies have focused on the behavior of the retaining wall equipped with expanded polystyrene(EPS)geofoam inclusions under semi-infinite surcharge loading rather than limited surcharge loading.In this paper,t...Existing studies have focused on the behavior of the retaining wall equipped with expanded polystyrene(EPS)geofoam inclusions under semi-infinite surcharge loading rather than limited surcharge loading.In this paper,the failure mode and the earth pressure acting on the rigid retaining wall with EPS geofoam inclusions and granular backfills(henceforth referred to as EPS-wall),under limited surcharge loading are investigated through two-and three-dimensional model tests.The testing results show that different from the sliding of almost all the backfill in the EPS-wall under semi-infinite surcharge loading,only an approximately triangular backfill slides in the wall under limited surcharge loading.The distribution of the lateral earth pressure on the EPS-wall under limited surcharge loading is non-linear,and the distribution changes from the increase of the wall depth to the decrease with the increase of the limited surcharge loading.An approach based on the force equilibrium of a differential element is developed to predict the lateral earth pressure behind the EPS-wall subjected to limited surcharge loading,and its performance was fully validated by the three-dimensional model tests.展开更多
The poor electrochemical performance of all-solid-state batteries(ASSBs),which is assemblied by Ni-rich cathode and poly(ethylene oxide)(PEO)-based electrolytes,can be attributed to unstable cathodic interface and poo...The poor electrochemical performance of all-solid-state batteries(ASSBs),which is assemblied by Ni-rich cathode and poly(ethylene oxide)(PEO)-based electrolytes,can be attributed to unstable cathodic interface and poor crystal structure stability of Ni-rich cathode.Several coating strategies are previously employed to enhance the stability of the cathodic interface and crystal structure for Ni-rich cathode.However,these methods can hardly achieve simplicity and high efficiency simultaneously.In this work,polyacrylic acid(PAA)replaced traditional PVDF as a binder for cathode,which can achieve a uniform PAA-Li(LixPAA(0<x≤1))coating layer on the surface of single-crystal LiNi_(0.83)Co_(0.12)Mn_(0.05)O_(2)(SC-NCM83)due to H^(+)/Li^(+)exchange reaction during the initial charging-discharging process.The formation of PAA-Li coating layer on cathode can promote interfacial Li^(+)transport and enhance the stability of the cathodic interface.Furthermore,the partially-protonated surface of SC-NCM83 casued by H^(+)/Li^(+)exchange reaction can restrict Ni ions transport to enhance the crystal structure stability.The proposed SC-NCM83-PAA exhibits superior cycling performance with a retention of 92%compared with that(57.3%)of SC-NCM83-polyvinylidene difluoride(PVDF)after 200 cycles.This work provides a practical strategy to construct high-performance cathodes for ASSBs.展开更多
MgH_(2) is considered one of the most promising hydrogen storage materials because of its safety,high efficiency,high hydrogen storage quantity and low cost characteristics.But some shortcomings are still existed:high...MgH_(2) is considered one of the most promising hydrogen storage materials because of its safety,high efficiency,high hydrogen storage quantity and low cost characteristics.But some shortcomings are still existed:high operating temperature and poor hydrogen absorption dynamics,which limit its application.Porous Ni_(3)ZnC_(0.7)/Ni loaded carbon nanotubes microspheres(NZC/Ni@CNT)is prepared by facile filtration and calcination method.Then the different amount of NZC/Ni@CNT(2.5,5.0 and 7.5 wt%)is added to the MgH_(2) by ball milling.Among the three samples with different amount of NZC/Ni@CNT(2.5,5.0 and 7.5 wt%),the MgH_(2)-5 wt%NZC/Ni@CNT composite exhibits the best hydrogen storage performances.After testing,the MgH_(2)-5 wt%NZC/Ni@CNT begins to release hydrogen at around 110℃ and hydrogen absorption capacity reaches 2.34 wt%H_(2) at 80℃ within 60 min.Moreover,the composite can release about 5.36 wt%H_(2) at 300℃.In addition,hydrogen absorption and desorption activation energies of the MgH_(2)-5 wt%NZC/Ni@CNT composite are reduced to 37.28 and 84.22 KJ/mol H_(2),respectively.The in situ generated Mg_(2)NiH_(4)/Mg_(2)Ni can serve as a"hydrogen pump"that plays the main role in providing more activation sites and hydrogen diffusion channels which promotes H_(2) dissociation during hydrogen absorption process.In addition,the evenly dispersed Zn and MgZn2 in Mg and MgH_(2) could provide sites for Mg/MgH_(2) nucleation and hydrogen diffusion channel.This attempt clearly proved that the bimetallic carbide Ni_(3)ZnC_(0.7) is a effective additive for the hydrogen storage performances modification of MgH_(2),and the facile synthesis of the Ni_(3)ZnC_(0.7)/Ni@CNT can provide directions of better designing high performance carbide catalysts for improving MgH_(2).展开更多
To facilitate the coordinated and large-scale participation of residential flexible loads in demand response(DR),a load aggregator(LA)can integrate these loads for scheduling.In this study,a residential DR optimizatio...To facilitate the coordinated and large-scale participation of residential flexible loads in demand response(DR),a load aggregator(LA)can integrate these loads for scheduling.In this study,a residential DR optimization scheduling strategy was formulated considering the participation of flexible loads in DR.First,based on the operational characteristics of flexible loads such as electric vehicles,air conditioners,and dishwashers,their DR participation,the base to calculate the compensation price to users,was determined by considering these loads as virtual energy storage.It was quantified based on the state of virtual energy storage during each time slot.Second,flexible loads were clustered using the K-means algorithm,considering the typical operational and behavioral characteristics as the cluster centroid.Finally,the LA scheduling strategy was implemented by introducing a DR mechanism based on the directrix load.The simulation results demonstrate that the proposed DR approach can effectively reduce peak loads and fill valleys,thereby improving the load management performance.展开更多
In a“low-carbon”context,the power load is affected by the coupling of multiple factors,which gradually evolves from the traditional“pure load”to the generalized load with the dual characteristics of“load+power su...In a“low-carbon”context,the power load is affected by the coupling of multiple factors,which gradually evolves from the traditional“pure load”to the generalized load with the dual characteristics of“load+power supply.”Traditional time-series forecasting methods are no longer suitable owing to the complexity and uncertainty associated with generalized loads.From the perspective of image processing,this study proposes a graphical short-term prediction method for generalized loads based on modal decomposition.First,the datasets are normalized and feature-filtered by comparing the results of Xtreme gradient boosting,gradient boosted decision tree,and random forest algorithms.Subsequently,the generalized load data are decomposed into three sets of modalities by modal decomposition,and red,green,and blue(RGB)images are generated using them as the pixel values of the R,G,and B channels.The generated images are diversified,and an optimized DenseNet neural network was used for training and prediction.Finally,the base load,wind power,and photovoltaic power generation data are selected,and the characteristic curves of the generalized load scenarios under different permeabilities of wind power and photovoltaic power generation are obtained using the density-based spatial clustering of applications with noise algorithm.Based on the proposed graphical forecasting method,the feasibility of the generalized load graphical forecasting method is verified by comparing it with the traditional time-series forecasting method.展开更多
To tackle the problem of inaccurate short-term bus load prediction,especially during holidays,a Transformer-based scheme with tailored architectural enhancements is proposed.First,the input data are clustered to reduc...To tackle the problem of inaccurate short-term bus load prediction,especially during holidays,a Transformer-based scheme with tailored architectural enhancements is proposed.First,the input data are clustered to reduce complexity and capture inherent characteristics more effectively.Gated residual connections are then employed to selectively propagate salient features across layers,while an attention mechanism focuses on identifying prominent patterns in multivariate time-series data.Ultimately,a pre-trained structure is incorporated to reduce computational complexity.Experimental results based on extensive data show that the proposed scheme achieves improved prediction accuracy over comparative algorithms by at least 32.00%consistently across all buses evaluated,and the fitting effect of holiday load curves is outstanding.Meanwhile,the pre-trained structure drastically reduces the training time of the proposed algorithm by more than 65.75%.The proposed scheme can efficiently predict bus load results while enhancing robustness for holiday predictions,making it better adapted to real-world prediction scenarios.展开更多
Conservation programs require rigorous evaluation to ensure the preservation of genetic diversity and viability of conservation populations. In this study, we conducted a comparative analysis of two indigenous Chinese...Conservation programs require rigorous evaluation to ensure the preservation of genetic diversity and viability of conservation populations. In this study, we conducted a comparative analysis of two indigenous Chinese chicken breeds, Gushi and Xichuan black-bone, using whole-genome SNPs to understand their genetic diversity, track changes over time and population structure. The breeds were divided into five conservation populations(GS1, 2010, ex-situ;GS2, 2019, ex-situ;GS3, 2019, in-situ;XB1, 2010, in-situ;and XB2, 2019, in-situ) based on conservation methods and generations. The genetic diversity indices of three conservation populations of Gushi chicken showed consistent trends, with the GS3 population under in-situ strategy having the highest diversity and GS2 under ex-situ strategy having the lowest. The degree of inbreeding of GS2 was higher than that of GS1 and GS3. Conserved populations of Xichuan black-bone chicken showed no obvious changes in genetic diversity between XB1 and XB2. In terms of population structure, the GS3 population were stratified relative to GS1 and GS2. According to the conservation priority, GS3 had the highest contribution to the total gene and allelic diversity in GS breed, whereas the contribution of XB1 and XB2 were similar. We also observed that the genetic diversity of GS2 was lower than GS3, which were from the same generation but under different conservation programs(in-situ and ex-situ). While XB1 and XB2 had similar levels of genetic diversity. Overall, our findings suggested that the conservation programs performed in ex-situ could slow down the occurrence of inbreeding events, but could not entirely prevent the loss of genetic diversity when the conserved population size was small, while in-situ conservation populations with large population size could maintain a relative high level of genetic diversity.展开更多
基金National Natural Science Foundation of China(No.50874043)Scientific Research Fund of Hunan Province Education Department(No.09A028)Scientific Research Foundation for Returned Scholars,Ministry of Education of China(No.[2007]1108)
文摘The suitability of five methods was discussed here,taking the typical results from in-situ load test of Renshou Mansion and Caifu Plaza in Yueyang City for example.It shows that bearing capacity can be obtained by the proportion load and limit load from p-s curve with the first and the second point of contraflexure easily.It is recommended that the accurate value of bearing capacity can be obtained by hyperbola fitting method and minimum curvature radius method theoretically.The rebound method is clear in principle,in which the elastoplasticity characteristic is thought about.Out of consideration for the unsteadiness and unobviousness of bearing capacity from relative settlement method,it can be only adopted as reference.So bearing capacity of soft rock ground should be determined by weathering condition of soft rock and curve type.
基金Acknowledgments This work has benefited from the use of 1) Los Alamos Neutron Science Facility at Los Alamos National Laboratory and 2) ISIS Pulsed Neutron and Muon Source at Rutherford-Appleton Laboratory. The financial support of the National Science Foundation's 1) International Materials Institutes (IMI) under DMR-0231320, 2) Integrative Graduate Education and Research Training (IGERT) under DGE-9987548, 3) Combined Research and Curriculum Development (CRCD) under EEC-9527527 and EEC-0203415, and 4) Major Research Instrumentation (MRI) under DMR-0231320 at the University of Tennessee with Dr HUBER C, Dr Van HARTESVELDT C J, Dr DUTTA D, Dr JENNINGS W, Dr G0LDBERG L, Ms P0ATS M, and Dr B0ULDIN C R as the Program Directors, is greatly appreciated. Additional funding for this project was gratefully received from the Tennessee Advanced Materials Laboratory, with Prof. PLUMMER E W as the Director.
基金supported by the National Natural Science Foundation of China(Nos.51909136 and 42177168)Project of Youth Inno vation Promotion Association of Chinese Academy of Sciences(No.2021326)the Open Research Fund of Key Laboratory of Geological Hazards on Three Gorges Reservoir Area(China Three Gorges University),Ministry of Education(No.2020KDZ03)。
文摘The damage-fracture evolution of deep rock mass has obvious particularity,which is revealed in 2400-mdeep tunnels by field tests.The evolution of the excavation damaged zone depth is consistent with that of the fractured zone depth.The ratio of the excavation damaged zone depth to the excavation fractured zone depth is greater than 2.0 in a rock mass with both high strength and good integrity,but less than1.5 in a rock mass with lower strength or poor integrity.Zonal disintegration in a rock mass with high strength and fair integrity is more likely to occur when it contains more than two groups of primary fractures in damaged zones.Fractures develop outward in zonal disintegration but are totally different from the single-zone fracture,in which the fractures develop inward,and it is the starting position of the fractured zone when the excavation surface of the middle pilot is 7–9 m close to the pre-set borehole and it stops after the excavation surface of the baseplate is 11–14 m away.The most intense evolution occurs around 2–4 m from the pre-set borehole in the sidewall expansion stage.The research results provide a reference for the monitoring scheme and support design of CJPL-Ⅲin its future construction.
基金This paper is financially supported by the National Natural Science Foundation of China(Grant Nos.52074263 and 52034007)the Postgraduate Research and Practice Innovation Program of Jiangsu Province(Grant No.KYCX21_2332).
文摘Dynamic load on anchoring structures(AS)within deep roadways can result in cumulative damage and failure.This study develops an experimental device designed to test AS under triaxial loads.The device enables the investigation of the mechanical response,failure mode,instability assessment criteria,and anchorage effect of AS subjected to combined cyclic dynamic-static triaxial stress paths.The results show that the peak bearing strength is positively correlated with the anchoring matrix strength,anchorage length,and edgewise compressive strength.The bearing capacity decreases significantly when the anchorage direction is severely inclined.The free face failure modes are typically transverse cracking,concave fracturing,V-shaped slipping and detachment,and spallation detachment.Besides,when the anchoring matrix strength and the anchorage length decrease while the edgewise compressive strength,loading rate,and anchorage inclination angle increase,the failure intensity rises.Instability is determined by a negative tangent modulus of the displacement-strength curve or the continued deformation increase against the general downward trend.Under cyclic loads,the driving force that breaks the rock mass along the normal vector and the rigidity of the AS are the two factors that determine roadway stability.Finally,a control measure for surrounding rock stability is proposed to reduce the internal driving force via a pressure relief method and improve the rigidity of the AS by full-length anchorage and grouting modification.
基金financially supported by the National Natural Science Foundation of China (51971080)the Shenzhen Bureau of Science,Technology and Innovation Commission (GXWD20201230155427003-20200730151200003 and JSGG20200914113601003)。
文摘The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li_(0.33)La_(0.557)TiO_(3)(LLTO)-based solid-state batteries.Specifically,a functional SEI enriched with LiF/Li_(3)PO_(4) is formed by in-situ electrochemical conversion,which is greatly beneficial to improving interface compatibility and enhancing ion transport.While the polarized dielectric BaTiO_(3)-polyamic acid(BTO-PAA,BP)film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition.As expected,the resulting electrolyte offers considerable ionic conductivity at room temperature(4.3 x 10~(-4)S cm^(-1))and appreciable electrochemical decomposition voltage(5.23 V)after electrochemical passivation.For Li-LiFePO_(4) batteries,it shows a high specific capacity of 153 mA h g^(-1)at 0.2C after 100 cycles and a long-term durability of 115 mA h g^(-1)at 1.0 C after 800 cycles.Additionally,a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm^(-2).The stabilization mechanisms are elucidated by ex-situ XRD,ex-situ XPS,and ex-situ FTIR techniques,and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance.The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries.
基金financial support of the Spanish Ministry of Economy and Competitiveness under project number MAT2016-78850-Rprovision of beamtime at the P07 beamline of the Petra Ⅲ synchrotron facility under the project I-20170054EC。
文摘The load partitioning between the magnesium and titanium phases in an extruded Mg-15%Ti(vol.%) composite from room temperature up to 300 ℃ using synchrotron radiation diffraction during in-situ compression tests. During compression, the magnesium matrix composite deforms mainly by the activation of the extension twinning system up to 200 ℃. The volume fraction of twins increases with the plastic strain but decrease with the compression temperature. Hard titanium particles bear an additional load transferred by the soft magnesium matrix from room temperature up to 300 ℃. This effect is amplified after yield stress during plastic deformation. Additionally, twins within magnesium grains behaves as an additional reinforcement at low temperature(below 200 ℃) inducing an increase in the work hardening of the composite.
基金support from the National Natural Science Foundation of China(Nos.52073230,62204204,and 62288102)the Shaanxi Provincial Science Fund for Distinguished Young Scholars(No.2023-JC-JQ-32)+2 种基金the Science and Technology Innovation 2030-Major Project(No.2022ZD0208601)the Shanghai Sailing Program(No.21YF1451000)the China National Postdoctoral Program for Innovative Talents(No.BX20230494).
文摘Cortical electrodes are a powerful tool for the stimulation and/or recording of electrical activity in the nervous system.However,the inevitable wound caused by surgical implantation of electrodes presents bacterial infection and inflammatory reaction risks associated with foreign body exposure.Moreover,inflammation of the wound area can dramatically worsen in response to bacterial infection.These consequences can not only lead to the failure of cortical electrode implantation but also threaten the lives of patients.Herein,we prepared a hydrogel made of bacterial cellulose(BC),a flexible substrate for cortical electrodes,and further loaded antibiotic tetracycline(TC)and the anti-inflammatory drug dexamethasone(DEX)onto it.The encapsulated drugs can be released from the BC hydrogel and effectively inhibit the growth of Gram-negative and Gram-positive bacteria.Next,therapeutic cortical electrodes were developed by integrating the drug-loaded BC hydrogel and nine-channel serpentine arrays;these were used to record electrocorticography(ECoG)signals in a rat model.Due to the controlled release of TC and DEX from the BC hydrogel substrate,therapeutic cortical electrodes can alleviate or prevent symptoms associated with the bacterial infection and inflammation of brain tissue.This approach facilitates the development of drug delivery electrodes for resolving complications caused by implantable electrodes.
基金financially supported by the National Key Research and Development Program of China(No.2022YFC2905004)the China Postdoctoral Science Foundation(No.2023M742134)。
文摘Polypropylene(PP)fiber-reinforced cement-based tailings backfill(FRCTB)is a green compound material with superior crack resistance and has good prospects for application in underground mining.However,FRCTB exhibits susceptibility to dynamic events,such as impact ground pressure and blast vibrations.This paper investigates the energy and crack distribution behavior of FRCTB under dynamic impact,considering the height/diameter(H/D)effect.Split Hopkinson pressure bar,industrial computed tomography scan,and scanning electron microscopy(SEM)experiments were carried out on six types of FRCTB.Laboratory outcomes confirmed fiber aggregation at the bottom of specimens.When H/D was less than 0.8,the proportion of PP fibers distributed along theθangle direction of80°-90°increased.For the total energy,all samples presented similar energy absorption,reflectance,and transmittance.However,a rise in H/D may cause a rise in the energy absorption rate of FRCTB during the peak phase.A positive correlation existed between the average strain rate and absorbed energy per unit volume.The increase in H/D resulted in a decreased crack volume fraction of FRCTB.When the H/D was greater than or equal to 0.7,the maximum crack volume fraction of FRCTB was observed close to the incidence plane.Radial cracks were present only in the FRCTB with an H/D ratio of 0.5.Samples with H/D ratios of 0.5 and 0.6 showed similar distributions of weakly and heavily damaged areas.PP fibers can limit the emergence and expansion of cracks by influencing their path.SEM observations revealed considerable differences in the bonding strengths between fibers and the FRCTB.Fibers that adhered particularly well to the substrate were attracted together with the hydration products adhering to surfaces.These results show that FRCTB is promising as a sustainable and green backfill for determining the design properties of mining with backfill.
基金supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region(152131/18E).
文摘This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualise process signals in real-time,elucidating the dynamics of melt pools and vapour plumes under varying laser power conditions specifically between 40 W and 60 W.Detailed morphological analysis was performed using Scanning-Electron Microscopy(SEM),demonstrating a critical correlation between laser power and pore formation.Lower laser power led to increased pore coverage,whereas a denser structure was observed at higher laser power.This laser power influence on porosity was further confirmed via Optical Microscopy(OM)conducted on both top and cross-sectional surfaces of the samples.An increase in laser power resulted in a decrease in pore coverage and pore size,potentially leading to a denser printed part of Mg alloy.X-ray Computed Tomography(XCT)augmented these findings by providing a 3D volumetric representation of the sample internal structure,revealing an inverse relationship between laser power and overall pore volume.Lower laser power appeared to favour the formation of interconnected pores,while a reduction in interconnected pores and an increase in isolated pores were observed at higher power.The interplay between melt pool size,vapour plume effects,and laser power was found to significantly influence the resulting porosity,indicating a need for effective management of these factors to optimise the SLM process of Mg alloys.
基金This study was financially supported by National Natural Science Foundation of China(grant No.U20A2080,31622015)the Institutional Research Fund from Sichuan University(2021SCUNL102)Fundamental Research Fund for the Central Universities of China(SCU 2021D006,SCU 2022D003).
文摘Endangered species generally have small populations with low genetic diversity and a high genetic load.Thuja sutchuenensis is an endangered conifer endemic to southwestern China.It was once considered extinct in the wild,but in 1999 was rediscovered.However,little is known about its genetic load.We collected 67 individuals from five wild,isolated T.sutchuenensis populations,and used 636,151 SNPs to analyze the level of genetic diversity and genetic load in T.sutchuenensis to delineate the conservation units of T.sutchuenensis,based on whole transcriptome sequencing data,as well as target capture sequencing data.We found that populations of T.sutchuenensis could be divided into three groups.These groups had low levels genetic diversity and were moderately genetically differentiated.Our findings also indicate that T.sutchuenensis suffered two severe bottlenecks around the Last Glaciation Period and Last Glacial Maximum.Among Thuja species,T.sutchuenensis presented the lowest genetic load and hence might have purged deleterious mutations efficiently through purifying selection.However,distribution of fitness effects analysis indicated a high extinction risk for T.sutchuenensis.Multiple lines of evidence identified three management units for T.sutchuenensis.Although T.sutchuenensis possesses a low genetic load,low genetic diversity,suboptimal fitness,and anthropogenic pressures all present an extinction risk for this rare conifer.This might also hold true for many endangered plant species in the mountains all over the world.
文摘Investigating natural-inspired applications is a perennially appealing subject for scientists. The current increase in the speed of natural-origin structure growth may be linked to their superior mechanical properties and environmental resilience. Biological composite structures with helicoidal schemes and designs have remarkable capacities to absorb impact energy and withstand damage. However, there is a dearth of extensive study on the influence of fiber redirection and reorientation inside the matrix of a helicoid structure on its mechanical performance and reactivity. The present study aimed to explore the static and transient responses of a bio-inspired helicoid laminated composite(B-iHLC) shell under the influence of an explosive load using an isomorphic method. The structural integrity of the shell is maintained by a viscoelastic basis known as the Pasternak foundation, which encompasses two coefficients of stiffness and one coefficient of damping. The equilibrium equations governing shell dynamics are obtained by using Hamilton's principle and including the modified first-order shear theory,therefore obviating the need to employ a shear correction factor. The paper's model and approach are validated by doing numerical comparisons with respected publications. The findings of this study may be used in the construction of military and civilian infrastructure in situations when the structure is subjected to severe stresses that might potentially result in catastrophic collapse. The findings of this paper serve as the foundation for several other issues, including geometric optimization and the dynamic response of similar mechanical structures.
基金We acknowledge the funding support from the National Natural Science Foundation of China Youth Fund(Grant No.52004019)the National Natural Science Foundation of China(Grant No.41825018)China Postdoctoral Science Foundation(Grant No.2023M733481).
文摘Rock-encased-backfill(RB)structures are common in underground mining,for example in the cut-andfill and stoping methods.To understand the effects of cyclic excavation and blasting activities on the damage of these RB structures,a series of triaxial stepwise-increasing-amplitude cyclic loading experiments was conducted with cylindrical RB specimens(rock on outside,backfill on inside)with different volume fractions of rock(VF=0.48,0.61,0.73,and 0.84),confining pressures(0,6,9,and 12 MPa),and cyclic loading rates(200,300,400,and 500 N/s).The damage evolution and meso-crack formation during the cyclic tests were analyzed with results from stress-strain hysteresis loops,acoustic emission events,and post-failure X-ray 3D fracture morphology.The results showed significant differences between cyclic and monotonic loadings of RB specimens,particularly with regard to the generation of shear microcracks,the development of stress memory and strain hardening,and the contact forces and associated friction that develops along the rock-backfill interface.One important finding is that as a function of the number of cycles,the elastic strain increases linearly and the dissipated energy increases exponentially.Also,compared with monotonic loading,the cyclic strain hardening characteristics are more sensitive to rising confining pressures during the initial compaction stage.Another finding is that compared with monotonic loading,more shear microcracks are generated during every reloading stage,but these microcracks tend to be dispersed and lessen the likelihood of large shear fracture formation.The transition from elastic to plastic behavior varies depending on the parameters of each test(confinement,volume fraction,and cyclic rate),and an interesting finding was that the transformation to plastic behavior is significantly lower under the conditions of 0.73 rock volume fraction,400 N/s cyclic loading rate,and 9 MPa confinement.All the findings have important practical implications on the ability of backfill to support underground excavations.
基金National Natural Science Foundation of China under Grant No.52278503。
文摘Coral sandy soils widely exist in coral island reefs and seashores in tropical and subtropical regions.Due to the unique marine depositional environment of coral sandy soils,the engineering characteristics and responses of these soils subjected to monotonic and cyclic loadings have been a subject of intense interest among the geotechnical and earthquake engineering communities.This paper critically reviews the progress of experimental investigations on the undrained behavior of coral sandy soils under monotonic and cyclic loadings over the last three decades.The focus of coverage includes the contractive-dilative behavior,the pattern of excess pore-water pressure(EPWP)generation and the liquefaction mechanism and liquefaction resistance,the small-strain shear modulus and strain-dependent shear modulus and damping,the cyclic softening feature,and the anisotropic characteristics of undrained responses of saturated coral sandy soils.In particular,the advances made in the past decades are reviewed from the following aspects:(1)the characterization of factors that impact the mechanism and patterns of EPWP build-up;(2)the identification of liquefaction triggering in terms of the apparent viscosity and the average flow coefficient;(3)the establishment of the invariable form of strain-based,stress-based,or energy-based EPWP ratio formulas and the unique relationship between the new proxy of liquefaction resistance and the number of cycles required to reach liquefaction;(4)the establishment of the invariable form of the predictive formulas of small strain modulus and strain-dependent shear modulus;and(5)the investigation on the effects of stress-induced anisotropy on liquefaction susceptibility and dynamic deformation characteristics.Insights gained through the critical review of these advances in the past decades offer a perspective for future research to further resolve the fundamental issues concerning the liquefaction mechanism and responses of coral sandy sites subjected to cyclic loadings associated with seismic events in marine environments.
基金funding support from National Natural Science Foundation of China(Grant No.52179109)Jiangsu Provincial Natural Science Foundation(Grant No.BK20230967)Open Research Fund of State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures,Shijiazhuang Tiedao University(Grant No.KF2022-02).
文摘Existing studies have focused on the behavior of the retaining wall equipped with expanded polystyrene(EPS)geofoam inclusions under semi-infinite surcharge loading rather than limited surcharge loading.In this paper,the failure mode and the earth pressure acting on the rigid retaining wall with EPS geofoam inclusions and granular backfills(henceforth referred to as EPS-wall),under limited surcharge loading are investigated through two-and three-dimensional model tests.The testing results show that different from the sliding of almost all the backfill in the EPS-wall under semi-infinite surcharge loading,only an approximately triangular backfill slides in the wall under limited surcharge loading.The distribution of the lateral earth pressure on the EPS-wall under limited surcharge loading is non-linear,and the distribution changes from the increase of the wall depth to the decrease with the increase of the limited surcharge loading.An approach based on the force equilibrium of a differential element is developed to predict the lateral earth pressure behind the EPS-wall subjected to limited surcharge loading,and its performance was fully validated by the three-dimensional model tests.
基金the financial support from the National Natural Science Foundation of China(Nos.52034011 and 52204328)the Science and Technology Innovation Program of Hunan Province(2023RC305)the Changsha Municipal Natural Science Foundation(kq2202085)。
文摘The poor electrochemical performance of all-solid-state batteries(ASSBs),which is assemblied by Ni-rich cathode and poly(ethylene oxide)(PEO)-based electrolytes,can be attributed to unstable cathodic interface and poor crystal structure stability of Ni-rich cathode.Several coating strategies are previously employed to enhance the stability of the cathodic interface and crystal structure for Ni-rich cathode.However,these methods can hardly achieve simplicity and high efficiency simultaneously.In this work,polyacrylic acid(PAA)replaced traditional PVDF as a binder for cathode,which can achieve a uniform PAA-Li(LixPAA(0<x≤1))coating layer on the surface of single-crystal LiNi_(0.83)Co_(0.12)Mn_(0.05)O_(2)(SC-NCM83)due to H^(+)/Li^(+)exchange reaction during the initial charging-discharging process.The formation of PAA-Li coating layer on cathode can promote interfacial Li^(+)transport and enhance the stability of the cathodic interface.Furthermore,the partially-protonated surface of SC-NCM83 casued by H^(+)/Li^(+)exchange reaction can restrict Ni ions transport to enhance the crystal structure stability.The proposed SC-NCM83-PAA exhibits superior cycling performance with a retention of 92%compared with that(57.3%)of SC-NCM83-polyvinylidene difluoride(PVDF)after 200 cycles.This work provides a practical strategy to construct high-performance cathodes for ASSBs.
基金supported by research programs of National Natural Science Foundation of China(52101274,51731002)Natural Science Foundation of Shandong Province(No.ZR2020QE011)Youth Top Talent Foundation of Yantai University(2219008).
文摘MgH_(2) is considered one of the most promising hydrogen storage materials because of its safety,high efficiency,high hydrogen storage quantity and low cost characteristics.But some shortcomings are still existed:high operating temperature and poor hydrogen absorption dynamics,which limit its application.Porous Ni_(3)ZnC_(0.7)/Ni loaded carbon nanotubes microspheres(NZC/Ni@CNT)is prepared by facile filtration and calcination method.Then the different amount of NZC/Ni@CNT(2.5,5.0 and 7.5 wt%)is added to the MgH_(2) by ball milling.Among the three samples with different amount of NZC/Ni@CNT(2.5,5.0 and 7.5 wt%),the MgH_(2)-5 wt%NZC/Ni@CNT composite exhibits the best hydrogen storage performances.After testing,the MgH_(2)-5 wt%NZC/Ni@CNT begins to release hydrogen at around 110℃ and hydrogen absorption capacity reaches 2.34 wt%H_(2) at 80℃ within 60 min.Moreover,the composite can release about 5.36 wt%H_(2) at 300℃.In addition,hydrogen absorption and desorption activation energies of the MgH_(2)-5 wt%NZC/Ni@CNT composite are reduced to 37.28 and 84.22 KJ/mol H_(2),respectively.The in situ generated Mg_(2)NiH_(4)/Mg_(2)Ni can serve as a"hydrogen pump"that plays the main role in providing more activation sites and hydrogen diffusion channels which promotes H_(2) dissociation during hydrogen absorption process.In addition,the evenly dispersed Zn and MgZn2 in Mg and MgH_(2) could provide sites for Mg/MgH_(2) nucleation and hydrogen diffusion channel.This attempt clearly proved that the bimetallic carbide Ni_(3)ZnC_(0.7) is a effective additive for the hydrogen storage performances modification of MgH_(2),and the facile synthesis of the Ni_(3)ZnC_(0.7)/Ni@CNT can provide directions of better designing high performance carbide catalysts for improving MgH_(2).
基金supported by the Basic Science(Natural Science)Research Project of Jiangsu Higher Education Institutions(No.23KJB470020)the Natural Science Foundation of Jiangsu Province(Youth Fund)(No.BK20230384)。
文摘To facilitate the coordinated and large-scale participation of residential flexible loads in demand response(DR),a load aggregator(LA)can integrate these loads for scheduling.In this study,a residential DR optimization scheduling strategy was formulated considering the participation of flexible loads in DR.First,based on the operational characteristics of flexible loads such as electric vehicles,air conditioners,and dishwashers,their DR participation,the base to calculate the compensation price to users,was determined by considering these loads as virtual energy storage.It was quantified based on the state of virtual energy storage during each time slot.Second,flexible loads were clustered using the K-means algorithm,considering the typical operational and behavioral characteristics as the cluster centroid.Finally,the LA scheduling strategy was implemented by introducing a DR mechanism based on the directrix load.The simulation results demonstrate that the proposed DR approach can effectively reduce peak loads and fill valleys,thereby improving the load management performance.
基金supported by the National Natural Science Foundation of China(Grant No.62063016).
文摘In a“low-carbon”context,the power load is affected by the coupling of multiple factors,which gradually evolves from the traditional“pure load”to the generalized load with the dual characteristics of“load+power supply.”Traditional time-series forecasting methods are no longer suitable owing to the complexity and uncertainty associated with generalized loads.From the perspective of image processing,this study proposes a graphical short-term prediction method for generalized loads based on modal decomposition.First,the datasets are normalized and feature-filtered by comparing the results of Xtreme gradient boosting,gradient boosted decision tree,and random forest algorithms.Subsequently,the generalized load data are decomposed into three sets of modalities by modal decomposition,and red,green,and blue(RGB)images are generated using them as the pixel values of the R,G,and B channels.The generated images are diversified,and an optimized DenseNet neural network was used for training and prediction.Finally,the base load,wind power,and photovoltaic power generation data are selected,and the characteristic curves of the generalized load scenarios under different permeabilities of wind power and photovoltaic power generation are obtained using the density-based spatial clustering of applications with noise algorithm.Based on the proposed graphical forecasting method,the feasibility of the generalized load graphical forecasting method is verified by comparing it with the traditional time-series forecasting method.
文摘To tackle the problem of inaccurate short-term bus load prediction,especially during holidays,a Transformer-based scheme with tailored architectural enhancements is proposed.First,the input data are clustered to reduce complexity and capture inherent characteristics more effectively.Gated residual connections are then employed to selectively propagate salient features across layers,while an attention mechanism focuses on identifying prominent patterns in multivariate time-series data.Ultimately,a pre-trained structure is incorporated to reduce computational complexity.Experimental results based on extensive data show that the proposed scheme achieves improved prediction accuracy over comparative algorithms by at least 32.00%consistently across all buses evaluated,and the fitting effect of holiday load curves is outstanding.Meanwhile,the pre-trained structure drastically reduces the training time of the proposed algorithm by more than 65.75%.The proposed scheme can efficiently predict bus load results while enhancing robustness for holiday predictions,making it better adapted to real-world prediction scenarios.
基金supported by the Key Research Project of the Shennong Laboratory,Henan Province,China(SN012022-05)the National Natural Science Foundation of China(32272866)+1 种基金the Young Elite Scientists Sponsorship Program by CAST(2021QNRC001)the Starting Foundation for Outstanding Young Scientists of Henan Agricultural University,China(30500664&30501280)。
文摘Conservation programs require rigorous evaluation to ensure the preservation of genetic diversity and viability of conservation populations. In this study, we conducted a comparative analysis of two indigenous Chinese chicken breeds, Gushi and Xichuan black-bone, using whole-genome SNPs to understand their genetic diversity, track changes over time and population structure. The breeds were divided into five conservation populations(GS1, 2010, ex-situ;GS2, 2019, ex-situ;GS3, 2019, in-situ;XB1, 2010, in-situ;and XB2, 2019, in-situ) based on conservation methods and generations. The genetic diversity indices of three conservation populations of Gushi chicken showed consistent trends, with the GS3 population under in-situ strategy having the highest diversity and GS2 under ex-situ strategy having the lowest. The degree of inbreeding of GS2 was higher than that of GS1 and GS3. Conserved populations of Xichuan black-bone chicken showed no obvious changes in genetic diversity between XB1 and XB2. In terms of population structure, the GS3 population were stratified relative to GS1 and GS2. According to the conservation priority, GS3 had the highest contribution to the total gene and allelic diversity in GS breed, whereas the contribution of XB1 and XB2 were similar. We also observed that the genetic diversity of GS2 was lower than GS3, which were from the same generation but under different conservation programs(in-situ and ex-situ). While XB1 and XB2 had similar levels of genetic diversity. Overall, our findings suggested that the conservation programs performed in ex-situ could slow down the occurrence of inbreeding events, but could not entirely prevent the loss of genetic diversity when the conserved population size was small, while in-situ conservation populations with large population size could maintain a relative high level of genetic diversity.