期刊文献+
共找到1,866篇文章
< 1 2 94 >
每页显示 20 50 100
Interplay of laser power and pore characteristics in selective laser melting of ZK60 magnesium alloys:A study based on in-situ monitoring and image analysis 被引量:1
1
作者 Weijie Xie Hau-Chung Man Chi-Wai Chan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1346-1366,共21页
This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualis... This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualise process signals in real-time,elucidating the dynamics of melt pools and vapour plumes under varying laser power conditions specifically between 40 W and 60 W.Detailed morphological analysis was performed using Scanning-Electron Microscopy(SEM),demonstrating a critical correlation between laser power and pore formation.Lower laser power led to increased pore coverage,whereas a denser structure was observed at higher laser power.This laser power influence on porosity was further confirmed via Optical Microscopy(OM)conducted on both top and cross-sectional surfaces of the samples.An increase in laser power resulted in a decrease in pore coverage and pore size,potentially leading to a denser printed part of Mg alloy.X-ray Computed Tomography(XCT)augmented these findings by providing a 3D volumetric representation of the sample internal structure,revealing an inverse relationship between laser power and overall pore volume.Lower laser power appeared to favour the formation of interconnected pores,while a reduction in interconnected pores and an increase in isolated pores were observed at higher power.The interplay between melt pool size,vapour plume effects,and laser power was found to significantly influence the resulting porosity,indicating a need for effective management of these factors to optimise the SLM process of Mg alloys. 展开更多
关键词 Selective laser melting(SLM) Magnesium(Mg)alloys Biodegradable implants POROSITY in-situ monitoring
下载PDF
Recent advances and key perspectives of in-situ studies for oxygen evolution reaction in water electrolysis
2
作者 Yi Wang Zichen Xu +1 位作者 Xianhong Wu Zhong-Shuai Wu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第10期1497-1517,共21页
Electricity-driven water splitting to produce hydrogen is one of the most efficient ways to alleviate energy crisis and environmental pollution problems,in which the anodic oxygen evolution reaction(OER)is the key hal... Electricity-driven water splitting to produce hydrogen is one of the most efficient ways to alleviate energy crisis and environmental pollution problems,in which the anodic oxygen evolution reaction(OER)is the key half-reaction of performance-limiting in water splitting.Given the complicated reaction process and surface reconstruction of the involved catalysts under actual working conditions,unraveling the real active sites,probing multiple reaction intermediates and clarifying catalytic pathways through in-situ characterization techniques and theoretical calculations are essential.In this review,we summarize the recent advancements in understanding the catalytic process,unlocking the water oxidation active phase and elucidating catalytic mechanism of water oxidation by various in-situ characterization techniques.Firstly,we introduce conventionally proposed traditional catalytic mechanisms and novel evolutionary mechanisms of OER,and highlight the significance of optimal catalytic pathways and intrinsic stability.Next,we provide a comprehensive overview of the fundamental working principles,different detection modes,applicable scenarios,and limitations associated with the in-situ characterization techniques.Further,we exemplified the in-situ studies and discussed phase transition detection,visualization of speciation evolution,electronic structure tracking,observation of reaction active intermediates,and monitoring of catalytic products,as well as establishing catalytic structure-activity relationships and catalytic mechanism.Finally,the key challenges and future perspectives for demystifying the water oxidation process are briefly proposed. 展开更多
关键词 in-situ studies Water splitting Oxygen evolution reaction Catalytic mechanism
下载PDF
In-situ elemental reaction-regulated Ag_(2)S films enable the best thermoelectric performances
3
作者 Chengcheng Xing Ruijuan Qi +4 位作者 Yi Chang Xiaoming Ma Yan Lei Shuangquan Zang Zhi Zheng 《Aggregate》 EI CAS 2024年第4期360-366,共7页
Silver sulfide thinfilm,with excellent thermoelectric properties,is few reported due to the complex and time-consuming high-temperature or high-pressure synthesis process.Here,a fast ionic conductor n-type Ag2Sfilm with ... Silver sulfide thinfilm,with excellent thermoelectric properties,is few reported due to the complex and time-consuming high-temperature or high-pressure synthesis process.Here,a fast ionic conductor n-type Ag2Sfilm with good crystallinity and uniform density is prepared by sputtering metal Agfilms of different thicknesses on glass and then reacting in S precursor solution at low temperature.At 450 K,β-Ag2Sfilms can be obtained and underwent a phase transition fromα-Ag2S monoclinic,which had a significant effect on their electrical and thermal properties.The grain size of Ag2Sfilms increases with the increase offilm thickness.Before and after the phase transition,the carrier concentration and mobility cause obvious changes in the electrical properties of Ag2S.The carrier concentration of body-centered cubic phaseβ-Ag2S is about three orders of magnitude higher than that of monoclinic phaseα-Ag2S,and the mobility is also 2–3 times that of the latter.Especially,after the phase transition,the conductivity ofβ-Ag2S rises exponentially from the zero conductivity ofα-Ag2S and increases with the increase of temperature.The Ag2Sfilm shows the highestfigure of merit of 0.830.30 at 600 K from the sample with±∼1600 nm thickness,which is the highest record among Ag2S-based thermoelectric materials reported so far. 展开更多
关键词 finefilm in-situ elemental reaction phase transition THERMOELECTRIC β-Ag2S
原文传递
Technical development of operational in-situ marine monitoring and research on its key generic technologies in China 被引量:1
4
作者 Yunzhou Li Juncheng Wang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第10期117-126,共10页
In China,operational in-situ marine monitoring is the primary means of directly obtaining hydrological,meteorological,and oceanographic environmental parameters across sea areas,and it is essential for applications su... In China,operational in-situ marine monitoring is the primary means of directly obtaining hydrological,meteorological,and oceanographic environmental parameters across sea areas,and it is essential for applications such as forecast of marine environment,prevention and mitigation of disaster,exploitation of marine resources,marine environmental protection,and management of transportation safety.In this paper,we summarise the composition,development courses,and present operational status of three systems of operational in-situ marine monitoring,namely coastal marine automated network station,ocean data buoy and voluntary observing ship measuring and reporting system.Additionally,we discuss the technical development in these in-situ systems and achievements in the key generic technologies along with future development trends. 展开更多
关键词 marine observation technology operational in-situ marine monitoring C-MAN station ocean data buoy VOS measuring and reporting system achievements in the key technologies development trend
下载PDF
Microstructure and mechanical properties of Fe/NbC composite layer prepared by in-situ reaction
5
作者 Le Chen Ji-lin Li +4 位作者 Meng-jun Wang Jie Zheng Yao Zhu Zhuo-lin Liu Bing-gui Lü 《China Foundry》 SCIE CAS CSCD 2023年第4期356-364,共9页
NbC ceramic surface-reinforced steel matrix composites were prepared by an in-situ reaction method at different temperatures(1,050℃,1,100℃and 1,150℃)for different times(1 h,2 h and 3 h).The phase constitution,micro... NbC ceramic surface-reinforced steel matrix composites were prepared by an in-situ reaction method at different temperatures(1,050℃,1,100℃and 1,150℃)for different times(1 h,2 h and 3 h).The phase constitution,microstructure and fracture morphology of NbC ceramic surface-reinforced steel matrix composites were analyzed by XRD,SEM and EDS,and the effects of the in-situ reaction temperature and time on the mechanical properties were systematically studied.The results indicate that the NbC reinforcement layer is formed through the reaction between Nb atoms and carbon atoms diffused from the steel matrix to the Nb plate.The thickness of this reinforcement layer increases as the reaction time prolongs.Additionally,an increase in reaction temperature results in a thicker reinforcement layer,although the rate of increase gradually decreases.The relationship among the thickness of the Nb C reinforcement layer,the reaction time and temperature was established by data fitting.The optimal tensile performance is achieved at 1,100℃for 1 h,with a tensile strength of 228 MPa.It is also found that the defects between the reinforcement layer and the steel matrix are related to reaction temperature.At 1,100℃,these defects are minimal.Fracture mostly occurs in the NbC reinforced layer of the composites,and the fracture mode is characterized by typical intergranular brittle fracture. 展开更多
关键词 in-situ reaction NbC reinforcement layer MICROSTRUCTURE mechanical property
下载PDF
Eutectic Solution Enables Powerful Click Reaction for In-Situ Construction of Advanced Gel Electrolytes
6
作者 Weixin Ye Jirong Wang +1 位作者 Chi Zhang Zhigang Xue 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期258-264,共7页
Thiol-ene click reaction is an intriguing strategy for preparing polymer electrolytes due to its high activity,atom economy and less side reaction.However,the explosive reaction rate and the use of non-electrolytic am... Thiol-ene click reaction is an intriguing strategy for preparing polymer electrolytes due to its high activity,atom economy and less side reaction.However,the explosive reaction rate and the use of non-electrolytic amine catalyst hamper its application in in-situ batteries.Herein,a nitrogen-containing eutectic solution is designed as both the catalyst of the thiol-ene reaction and the plasticizer to in-situ synthesize the gel polymer electrolytes,realizing a mild in-situ gelation process and the preparation of high-performance gel electrolytes.The obtained gel polymer electrolytes exhibit a high ionic conductivity of 4×10^(−4)S cm^(−1)and lithium-ion transference number(t_(Li)^(+))of 0.51 at 60°C.The as-assembled Li/LiFePO_(4)(LFP)cell delivers a high initial discharge capacity of 155.9 mAh g^(-1),and a favorable cycling stability with the capacity retention of 82%after 800 cycles at 1 C is also obtained.In addition,this eutectic solution significantly improves the rate performance of the LFP cell with high specific capacity of 141.5 and 126.8 mAh g^(-1)at 5 C and 10 C,respectively,and the cell can steadily work at various charge–discharge rate for 200 cycles.This powerful and efficient strategy may provide a novel way for in-situ preparing gel polymer electrolytes with desirable comprehensive performances. 展开更多
关键词 eutectic solution in-situ gelation lithium metal battery polymer electrolyte thiol-ene click reaction
下载PDF
In-situ monitoring of dynamic behavior of catalyst materials and reaction intermediates in semiconductor catalytic processes 被引量:1
7
作者 Zhen Fang Yao Liu +5 位作者 Chengyi Song Peng Tao Wen Shang Tao Deng Xiaoqin Zeng Jianbo Wu 《Journal of Semiconductors》 EI CAS CSCD 2022年第4期46-59,共14页
Semiconductor photocatalysis, as a key part of solar energy utilization, has far-reaching implications for industrial, agricultural, and commercial development. Lack of understanding of the catalyst evolution and the ... Semiconductor photocatalysis, as a key part of solar energy utilization, has far-reaching implications for industrial, agricultural, and commercial development. Lack of understanding of the catalyst evolution and the reaction mechanism is a critical obstacle for designing efficient and stable photocatalysts. This review summarizes the recent progress of in-situ exploring the dynamic behavior of catalyst materials and reaction intermediates. Semiconductor photocatalytic processes and two major classes of in-situ techniques that include microscopic imaging and spectroscopic characterization are presented. Finally, problems and challenges in in-situ characterization are proposed, geared toward developing more advanced in-situ techniques and monitoring more accurate and realistic reaction processes, to guide designing advanced photocatalysts. 展开更多
关键词 in-situ semiconductor photocatalyst materials evolution reaction intermediate
下载PDF
Highly mass activity electrocatalysts with ultralow Pt loading on carbon black for hydrogen evolution reaction
8
作者 Shaorou Ke Yajing Zhao +6 位作者 Xin Min Yanghong Li Ruiyu Mi Yangai Liu Xiaowen Wu Minghao Fang Zhaohui Huang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期182-190,共9页
Pt-based nanocatalysts offer excellent prospects for various industries.However,the low loading of Pt with excellent performance for efficient and stable nanocatalysts still presents a considerable challenge.In this s... Pt-based nanocatalysts offer excellent prospects for various industries.However,the low loading of Pt with excellent performance for efficient and stable nanocatalysts still presents a considerable challenge.In this study,nanocatalysts with ultralow Pt content,excellent performance,and carbon black as support were prepared through in-situ synthesis.These~2-nm particles uniformly and stably dispersed on carbon black because of the strong s-p-d orbital hybridizations between carbon black and Pt,which suppressed the agglomeration of Pt ions.This unique structure is beneficial for the hydrogen evolution reaction.The catalysts exhibited remarkable catalytic activity for hydrogen evolution reaction,exhibiting a potential of 100 mV at 100 mA·cm^(-2),which is comparable to those of commercial Pt/C catalysts.Mass activity(1.61 A/mg)was four times that of a commercial Pt/C catalyst(0.37 A/mg).The ultralow Pt loading(6.84wt%)paves the way for the development of next-generation electrocatalysts. 展开更多
关键词 hydrogen evolution reaction ultralow platinum in-situ synthesis ULTRASOUND
下载PDF
A review of in-situ high-temperature characterizations for understanding the processes in metallurgical engineering
9
作者 Yifan Zhao Zhiyuan Li +2 位作者 Shijie Li Weili Song Shuqiang Jiao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第11期2327-2344,共18页
For the rational manipulation of the production quality of high-temperature metallurgical engineering,there are many challenges in understanding the processes involved because of the black box chemical/electrochemical... For the rational manipulation of the production quality of high-temperature metallurgical engineering,there are many challenges in understanding the processes involved because of the black box chemical/electrochemical reactors.To overcome this issue,various in-situ characterization methods have been recently developed to analyze the interactions between the composition,microstructure,and solid-liquid interface of high-temperature electrochemical electrodes and molten salts.In this review,recent progress of in-situ hightemperature characterization techniques is discussed to summarize the advances in understanding the processes in metallurgical engineering.In-situ high-temperature technologies and analytical methods mainly include synchrotron X-ray diffraction(s-XRD),laser scanning confocal microscopy,and X-ray computed microtomography(X-rayμ-CT),which are important platforms for analyzing the structure and morphology of the electrodes to reveal the complexity and variability of their interfaces.In addition,laser-induced breakdown spectroscopy,high-temperature Raman spectroscopy,and ultraviolet-visible absorption spectroscopy provide microscale characterizations of the composition and structure of molten salts.More importantly,the combination of X-rayμ-CT and s-XRD techniques enables the investigation of the chemical reaction mechanisms at the two-phase interface.Therefore,these in-situ methods are essential for analyzing the chemical/electrochemical kinetics of high-temperature reaction processes and establishing the theoretical principles for the efficient and stable operation of chemical/electrochemical metallurgical processes. 展开更多
关键词 in-situ characterization methods high-temperature electrochemistry ELECTRODES molten salts interfacial reaction
下载PDF
Progress in in-situ electrochemical nuclear magnetic resonance for battery research
10
作者 Yong Jiang Mengmeng Zhao +1 位作者 Zhangquan Peng Guiming Zhong 《Magnetic Resonance Letters》 2024年第2期13-21,共9页
A thorough understanding of the fundamental electrochemical and chemical processes in batteries is crucial to advancing energy density and power density.However,the characterizations of such processes are complex.In-s... A thorough understanding of the fundamental electrochemical and chemical processes in batteries is crucial to advancing energy density and power density.However,the characterizations of such processes are complex.In-situ electrochemical nuclear magnetic resonance(EC-NMR)offers the capability to collect real-time data during battery operation,furnishing insights into the local structures and ionic dynamics of materials by monitoring changes in the chemical environment around the nuclei.EC-NMR also has the advantages of being both quantitative and non-destructive.This paper systematically reviews the design of EC-NMR approach,and delves into the applications and progress of EC-NMR concerning battery reaction mechanisms,failure mechanisms,and overall battery systems.The review culminates in a comprehensive summary of the perspective and challenges associated with EC-NMR. 展开更多
关键词 in-situ NMR reaction mechanism Failure mechanism Battery systems Ionic dynamics
下载PDF
Preparation and wear properties of TiB_2/Al-30Si composites via in-situ melt reactions under high-energy ultrasonic field 被引量:3
11
作者 张松利 董宪伟 +5 位作者 赵玉涛 刘满平 陈刚 张振坤 张宇荧 高雪华 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第12期3894-3900,共7页
TiB2/Al-30Si composites were fabricated via in-situ melt reaction under high-energy ultrasonic field. The microstructure and wear properties of the composite were investigated by XRD, SEM and dry sliding testing. The ... TiB2/Al-30Si composites were fabricated via in-situ melt reaction under high-energy ultrasonic field. The microstructure and wear properties of the composite were investigated by XRD, SEM and dry sliding testing. The results indicate that TiB2 reinforcement particles are uniformly distributed in the aluminum matrix under high-energy ultrasonic field. The morphology of the TiB2 particles is in circle-shape or quadrangle-shape, and the size of the particles is 0.1-1.5μm. The primary silicon particles are in quadrangle-shape and the average size of them is about 10μm. Hardness values of the Al-30Si matrix alloy and the TiB2/Al-30Si composites considerably increase as the high energy ultrasonic power increases. In particular, the maximum hardness value of the in-situ composites is about 1.3 times as high as that of the matrix alloy when the ultrasonic power is 1.2 kW, reaching 412 MPa. Meanwhile, the wear resistance of the in-situ TiB2/Al-30Si composites prepared under high-energy ultrasonic field is obviously improved and is insensitive to the applied loads of the dry sliding testing. 展开更多
关键词 TiB2/Al-30Si composite in-situ melt reaction high-energy ultrasonic field wear properties
下载PDF
Influences of rainfall infiltration on stability of accumulation slope by in-situ monitoring test 被引量:9
12
作者 周中 王宏贵 +1 位作者 傅鹤林 刘宝琛 《Journal of Central South University》 SCIE EI CAS 2009年第2期297-302,共6页
In order to improve the understanding of the fundamental mechanism of rainfall infiltration induced landslides in accumulation slope and to clarify some important characteristics of slope performance,artificial rainfa... In order to improve the understanding of the fundamental mechanism of rainfall infiltration induced landslides in accumulation slope and to clarify some important characteristics of slope performance,artificial rainfall simulation tests and field synthetic monitoring were carried out on a typical accumulation slope of Shangrui Freeway in Guizhou Province,China.The monitoring results show that the most accumulation landslides caused by rainfall infiltration are shallow relaxation failure,whose deformation zone lies within the top 0-4 m soil layer.The deformation of slope gradually reduces from the surface,where the greatest deformation lies in,to the deep part of slope.The average percentage of infiltration during the first 2 h is 86%,and then it reduces gradually with time because of the increase of the surface runoff.The average percentage of infiltration drop to a relatively stable value(50%)after 6 h.Rainfall infiltration causes obvious increase of pore-water pressure,which may result in a reduction of shear strength due to a decrease in effective stress and wetting-induced softening.The double-effect of rainfall infiltration is the main reason of rainfall infiltration induced landslides in accumulation slope. 展开更多
关键词 accumulation slope STABILITY rainfall infiltration in-situ monitoring
下载PDF
Piezomagnetic In-situ Stress Monitoring and its Application in the Longmenshan Fault Zone 被引量:4
13
作者 ZHANG Chongyuan WU Manlu +1 位作者 CHEN Qunce LIAO Chunting 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第5期1592-1602,共11页
The relative change of in-situ stress is an inevitable outcome of differential movement among the crust plates. Conversely, changes of in-situ stress can also lead to deformation and instability of crustal rock mass, ... The relative change of in-situ stress is an inevitable outcome of differential movement among the crust plates. Conversely, changes of in-situ stress can also lead to deformation and instability of crustal rock mass, trigger activity of faults, and induce earthquakes. Hence, monitoring real-time change of in-situ stress is of great significance. Piezomagnetic in-situ stress monitoring has good and longtime applications in large engineering constructions and geoscience study fields in China. In this paper, the new piezomagnetic in-situ stress monitoring system is introduced and it not only has overall improvements in measuring cell's structure and property, stressing and orienting way, but also enhances integration and intelligence of control and data transmission system, in general, which greatly promotes installing efficiency of measuring probe and quality of monitoring data. This paper also discusses the responses of new piezomagnetic system in large earthquake events of in-situ stress monitoring station at Qiaoqi of Baoxing and Wenxian of Gansu. The monitoring data reflect adjustments and changes of tectonic stress field at the southwestern segment of and the northern area near the Longmenshan fault zone, which shows that the new system has a good performance and application prospect in the geoscience field. Data of the Qiaoqi stress-monitoring station manifest that the Lushan Earthquake did not release stress of the southwestern segment of the Longmenshan fault zone adequately and there still probably exists seismic risk in this region in the future. Combined with absolute in-situ stress measurement, carrying out long-term in-situ stress monitoring in typical tectonic position of important regions is of great importance for researchers to assess and study regional crust stability. 展开更多
关键词 in-situ stress monitoring new piezomagnetic in-situ stress monitoring system theLongmenshan fault zone regional stress field dynamic changes
下载PDF
An ultra-robust fingerprinting method for quality assessment of traditional Chinese medicine using multiple reaction monitoring mass spectrometry 被引量:4
14
作者 Zhenhao Li Xiaohui Zhang +2 位作者 Jie Liao Xiaohui Fan Yiyu Cheng 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2021年第1期88-95,共8页
Chromatographic fingerprinting has been perceived as an essential tool for assessing quality and chemical equivalence of traditional Chinese medicine.However,this pattern-oriented approach still has some weak points i... Chromatographic fingerprinting has been perceived as an essential tool for assessing quality and chemical equivalence of traditional Chinese medicine.However,this pattern-oriented approach still has some weak points in terms of chemical coverage and robustness.In this work,we proposed a multiple reaction monitoring(MRM)-based fingerprinting method in which approximately 100 constituents were simultaneously detected for quality assessment.The derivative MRM approach was employed to rapidly design MRM transitions independent of chemical standards,based on which the large-scale fingerprinting method was efficiently established.This approach was exemplified on QiShenYiQi Pill(QSYQ),a traditional Chinese medicine-derived drug product,and its robustness was systematically evaluated by four indices:clustering analysis by principal component analysis,similarity analysis by the congruence coefficient,the number of separated peaks,and the peak area proportion of separated peaks.Compared with conventional ultraviolet-based fingerprints,the MRM fingerprints provided not only better discriminatory capacity for the tested normal/abnormal QSYQ samples,but also higher robustness under different chromatographic conditions(i.e.,flow rate,apparent pH,column temperature,and column).The result also showed for such large-scale fingerprints including a large number of peaks,the angle cosine measure after min-max normalization was more suitable for setting a decision criterion than the unnormalized algorithm.This proof-of-concept application gives evidence that combining MRM technique with proper similarity analysis metrices can provide a highly sensitive,robust and comprehensive analytical approach for quality assessment of traditional Chinese medicine. 展开更多
关键词 Multiple reaction monitoring Mass spectrometry-based fingerprinting Quality assessment Traditional Chinese medicine Robustness evaluation
下载PDF
In-situ self-templated preparation of porous core-shell Fe_(1-x)S@N,S co-doped carbon architecture for highly efficient oxygen reduction reaction 被引量:2
15
作者 Zhi Li Wei Wang +6 位作者 Minjie Zhou Binhong He Wenqing Ren Liang Chen Wenyuan Xu Zhaohui Hou Yangyang Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期310-317,共8页
Transition metal compound(TMC)/carbon hybrids,as prospering electrocatalyst,have attracted great attention in the field of oxygen reduction reaction(ORR).Their morphology,structure and composition often play a crucial... Transition metal compound(TMC)/carbon hybrids,as prospering electrocatalyst,have attracted great attention in the field of oxygen reduction reaction(ORR).Their morphology,structure and composition often play a crucial role in determining the ORR performance.In this work,we for the first time report the successful fabrication of porous core-shell Fe_(1-x)S@N,S co-doped carbon(Fe_(1-x)S@NSC-t,t represents etching time)by a novel in-situ self-template induced strategy using Fe3O4 nanospheres and pyrrole as sacrificial self-template.The post-polymerization of pyrrole can be accomplished by the Fe^(3+)released through the etching of Fe_(3)O_(4) by HCl acid.Thus,the etching time has a significant effect on the morphology,structure,composition a nd ORR performance of Fe_(1-x)S@NSC-t.Based on the cha racterizations,we find Fe_(1-x)S@NSC-24 can realize effective and balanced combination of Fe_(1-x)S and NSC,possessing porous core-shell architecture,optimized structure defect,specific surface area and doped heteroatoms configurations(especially for pyridinic N,graphitic N and Fe-N structure).These features thus lead to outstanding catalytic activity and cycling stability towards ORR.Our work provides a good guidance on the design of TMC/carbon-based electrodes with unique stable morphology and optimized structure and composition. 展开更多
关键词 in-situ self-template Induced polymerization Porous core-shell Fe_(1-x)S@NSC Oxygen reduction reaction
下载PDF
Dense copper azide synthesized by in-situ reaction of assembled nanoporous copper microspheres and its initiation performance 被引量:1
16
作者 Xing-yu Wu Ming-yu Li +1 位作者 Qing-xuan Zeng Qing-xia Yu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第6期1065-1072,共8页
Copper azide with high density was successfully synthesized by in-situ reaction of nanoporous copper(NPC)precursor with HN_(3) gaseous.NPC with pore size of about 529 nm has been prepared by electroless plating using ... Copper azide with high density was successfully synthesized by in-situ reaction of nanoporous copper(NPC)precursor with HN_(3) gaseous.NPC with pore size of about 529 nm has been prepared by electroless plating using polystyrene(PS)as templates.The copper shells thickness of NPC was controlled by adjusting the PS loading amount.The effects of copper shell on the morphology,structure and density of copper azide were investigated.The conversion increased from 87.12%to 95.31%when copper shell thickness decrease from 100 to 50 nm.Meanwhile,the density of copper azide prepared by 529 nm NPC for 24 h was up to 2.38 g/cm^(3).The hollow structure of this NPC was filled by swelling of copper azide which guaranteed enough filling volume for keeping the same shape as well as improving the charge density.Moreover,HNS-IV explosive was successfully initiated by copper azide with minimum charge thickness of 0.55 mm,showing that copper azide prepared has excellent initiation performance,which has more advantages in the application of miniaturized explosive systems. 展开更多
关键词 Nanoporous copper Electroless plating in-situ reaction Copper azide
下载PDF
Use of Magic Angle Spinning ~1H NMR Spectroscopy to Monitor Reactions in Solid-Phase Synthesis 被引量:1
17
作者 Ai Ming YU Hua Zheng YANG(The State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071)Ping Chuan SUN +1 位作者 Zhen Pu ZHANG Ming LI(The State Key Laboratory of Functional Polymeric Materials for Adsorption and Separation,Nankai Uni 《Chinese Chemical Letters》 SCIE CAS CSCD 1997年第12期0-0,共2页
Proton NMR-spectra of Wang resin bound compounds were obtained using the magic angle spinning 1HNMR technique with standard equipment. It was possible to analyse the spectra to evaluate their utility in solid-phase ch... Proton NMR-spectra of Wang resin bound compounds were obtained using the magic angle spinning 1HNMR technique with standard equipment. It was possible to analyse the spectra to evaluate their utility in solid-phase chernistry. A typical example was presented, which could directly monitor solid-phase reactions 展开更多
关键词 NMR Spectroscopy to monitor reactions in Solid-Phase Synthesis Use of Magic Angle Spinning DCC DCM
下载PDF
A Review of In‑Situ Techniques for Probing Active Sites and Mechanisms of Electrocatalytic Oxygen Reduction Reactions 被引量:4
18
作者 Jinyu Zhao Jie Lian +2 位作者 Zhenxin Zhao Xiaomin Wang Jiujun Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第2期61-113,共53页
Electrocatalytic oxygen reduction reaction(ORR)is one of the most important reactions in electrochemical energy technologies such as fuel cells and metal–O2/air batteries,etc.However,the essential catalysts to overco... Electrocatalytic oxygen reduction reaction(ORR)is one of the most important reactions in electrochemical energy technologies such as fuel cells and metal–O2/air batteries,etc.However,the essential catalysts to overcome its slow reaction kinetic always undergo a complex dynamic evolution in the actual catalytic process,and the concomitant intermediates and catalytic products also occur continuous conversion and reconstruction.This makes them difficult to be accurately captured,making the identification of ORR active sites and the elucidation of ORR mechanisms difficult.Thus,it is necessary to use extensive in-situ characterization techniques to proceed the real-time monitoring of the catalyst structure and the evolution state of intermediates and products during ORR.This work reviews the major advances in the use of various in-situ techniques to characterize the catalytic processes of various catalysts.Specifically,the catalyst structure evolutions revealed directly by in-situ techniques are systematically summarized,such as phase,valence,electronic transfer,coordination,and spin states varies.In-situ revelation of intermediate adsorption/desorption behavior,and the real-time monitoring of the product nucleation,growth,and reconstruction evolution are equally emphasized in the discussion.Other interference factors,as well as in-situ signal assignment with the aid of theoretical calculations,are also covered.Finally,some major challenges and prospects of in-situ techniques for future catalysts research in the ORR process are proposed. 展开更多
关键词 Oxygen reduction reaction CATALYSTS in-situ techniques Active sites MECHANISMS
下载PDF
Visualization of atomic scale reaction dynamics of supported nanocatalysts during oxidation and ammonia synthesis using in-situ environmental(scanning) transmission electron microscopy
19
作者 Michael R.Ward Robert W.Mitchell +1 位作者 Edward D.Boyes Pratibha L.Gai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第6期281-290,I0007,共11页
Reaction dynamics in gases at operating temperatures at the atomic level are the basis of heterogeneous gas-solid catalyst reactions and are crucial to the catalyst function.Supported noble metal nanocatalysts such as... Reaction dynamics in gases at operating temperatures at the atomic level are the basis of heterogeneous gas-solid catalyst reactions and are crucial to the catalyst function.Supported noble metal nanocatalysts such as platinum are of interest in fuel cells and as diesel oxidation catalysts for pollution control,and practical ruthenium nanocatalysts are explored for ammonia synthesis.Graphite and graphitic carbons are of interest as supports for the nanocatalysts.Despite considerable literature on the catalytic processes on graphite and graphitic supports,reaction dynamics of the nanocatalysts on the supports in different reactive gas environments and operating temperatures at the single atom level are not well understood.Here we present real time in-situ observations and analyses of reaction dynamics of Pt in oxidation,and practical Ru nanocatalysts in ammonia synthesis,on graphite and related supports under controlled reaction environments using a novel in-situ environmental(scanning) transmission electron microscope with single atom resolution.By recording snapshots of the reaction dynamics,the behaviour of the catalysts is imaged.The images reveal single metal atoms,clusters of a few atoms on the graphitic supports and the support function.These all play key roles in the mobility,sintering and growth of the catalysts.The experimental findings provide new structural insights into atomic scale reaction dynamics,morphology and stability of the nanocatalysts. 展开更多
关键词 in-situ visualization Atomic scale reaction dynamics in-situ environmental scanning transmission electron microscopy with single atom resolution Supported nanoparticles Ammonia synthesis Oxidation reactions
下载PDF
In-situ magnetic field enhanced performances in ferromagnetic FeCo_(2)O_(4) nanofibers-based rechargeable Zinc-air batteries 被引量:1
20
作者 Zhengmei Zhang Lei Jia +4 位作者 Tong Li Jinmei Qian Xiaolei Liang Desheng Xue Daqiang Gao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期447-453,I0013,共8页
Field-assisted electrocatalytic reactions are demonstrated to be sufficient strategies in enhancing the electrocatalyst activities for oxygen evolution reaction(OER).Here,we report the in-situ magnetic field enhanced ... Field-assisted electrocatalytic reactions are demonstrated to be sufficient strategies in enhancing the electrocatalyst activities for oxygen evolution reaction(OER).Here,we report the in-situ magnetic field enhanced electrocatalytic activity in ferromagnetic FeCo_(2)O_(4)nanofibers.Our results demonstrate that the overpotential of FeCo_(2)O_(4)nanofibers at 10 mA cm^(-2)shows a left-shift of 40 mV for the OER by applying an external magnetic field,and no obvious change has been observed in the non-ferromagnetic-order Co3O4nanofibers.Calculation results indicate that there are more overlaps between the density of states for Co3d and O 2p by applying an external magnetic field.Accordingly,the spin hybridization of 3d-2p and the kinetics of spin charge transfer are optimized in ferromagnetic FeCo_(2)O_(4),which can promote the adsorption of oxygen-intermediates and electron transfer,significantly improving its electrocatalytic efficiency.What’s more,the maximum power density of the FeCo_(2)O_(4)nanofibers based Zn-air battery(ZAB)increases from 97.3 mW cm^(-2)to 108.2 mW cm^(-2)by applying an external magnetic field,providing a new idea for the application of magnetic cathode electrocatalysts in ZABs. 展开更多
关键词 in-situ magneticfield Oxygen evolution reaction Spin hybridization Zn-air battery
下载PDF
上一页 1 2 94 下一页 到第
使用帮助 返回顶部