The hot forming behavior,failure mechanism,and microstructure evolution of in-situ TiB_(2)particle-reinforced 7075 aluminum matrix composite were investigated by isothermal compression test under different deformation...The hot forming behavior,failure mechanism,and microstructure evolution of in-situ TiB_(2)particle-reinforced 7075 aluminum matrix composite were investigated by isothermal compression test under different deformation conditions of deformation temperatures of 300−450℃ and strain rates of 0.001^(−1)s^(−1).The results demonstrate that the failure behavior of the composite exhibits both particle fracture and interface debonding at low temperature and high strain rate,and dimple rupture of the matrix at high temperature and low strain rate.Full dynamic recrystallization,which improves the composite formability,occurs under conditions of high temperature(450℃)and low strain rate(0.001 s^(−1));the grain size of the matrix after hot compression was significantly smaller than that of traditional 7075Al and ex-situ particle reinforced 7075Al matrix composite.Based on the flow stress curves,a constitutive model describing the relationship of the flow stress,true strain,strain rate and temperature was proposed.Furthermore,the processing maps based on both the dynamic material modeling(DMM)and modified DMM(MDMM)were established to analyze flow instability domain of the composite and optimize hot forming processing parameters.The optimum processing domain was determined at temperatures of 425−450℃ and strain rates of 0.001−0.01 s^(−1),in which the fine grain microstructure can be gained and particle crack and interface debonding can be avoided.展开更多
Bulk Cu-Ti alloy reinforced by TiB2 nano particles was prepared using in-situ reaction between Cu 3.4%Ti and Cu-0.7%B master alloys along with rapid solidification and subsequent heat treatment for 1-10 h at 900 ℃. H...Bulk Cu-Ti alloy reinforced by TiB2 nano particles was prepared using in-situ reaction between Cu 3.4%Ti and Cu-0.7%B master alloys along with rapid solidification and subsequent heat treatment for 1-10 h at 900 ℃. High-resolution transmission electron microscopy (HRTEM) characterization showed that primary TiB2 nano particles and TiB whiskers were formed by in-situ reaction between Ti and B in the liquid copper. The formation of TiB whiskers within the melt led to coarsening of TiB2 particles. Primary TiB2 particles were dispersed along the grain boundaries and hindered grain growth at high temperature, while the secondary TiB2 particles were formed during heat treatment of the alloy by diffusion reaction of solute titanium and boron inside the grains. Electrical conductivity and hardness of the composite were evaluated during heat treatment. The results indicated that the formation of secondary TiB2 particles in the matrix caused a delay in hardness reduction at high temperature. The electrical conductivity and hardness increased up to 8 h of heat treatment and reached 33.5% IACS and HV 158, respectively.展开更多
By applying electromagnetic field to a system consisting of tungsten wires and grey cast iron melt,the grey cast iron matrix composite reinforced by either in-situ WC particles or the combination ofin-situ WC particle...By applying electromagnetic field to a system consisting of tungsten wires and grey cast iron melt,the grey cast iron matrix composite reinforced by either in-situ WC particles or the combination ofin-situ WC particles and the residual tungsten wire was obtained.By means of differential thermal analysis(DTA),the pouring temperature ofiron melt was determined at 1,573 K.The microstructures of the composites were analyzed by using of X-ray diffraction(XRD),scanning electron microscopy(SEM) equipped with an energy dispersive spectrum(EDS) and pin-on-disc abrasive wear test.The obtained results indicated that,with the enhancing frequency of electromagnetic field,the amount ofin-situ WC particles gradually increases,leading to continuous decrease of the residual tungsten wires.When the electromagnetic field frequency was up to 4 kHz,tungsten wires reacted completely with carbon atoms in grey cast iron melt,forming WC particals.The electromagnetic field appeared to accelerate the elemental diffusion in the melt,to help relatively quick formation of a series of small FeW-C ternary zones and to improve the kinetic condition ofin-situ WC fabrication.As compared with the composite prepared without the electromagnetic field,the composite fabricated at 4 kHz presented good wear resistance.展开更多
The effects of silicon particle content and testing temperature on friction and wear properties of casting in-situ silicon particle reinforced ZA27 composites were investigated.The wear mechanisms were mainly discusse...The effects of silicon particle content and testing temperature on friction and wear properties of casting in-situ silicon particle reinforced ZA27 composites were investigated.The wear mechanisms were mainly discussed by observations of both worn surfaces and their side views.The results indicated that the variations of wear resistance with increasing of silicon particle content,at all of the testing temperatures applied,showed a similar tendency with a manner of non-monotonous change.It was surprised that the wear resistance decreased with the increase of silicon particle content from 2 vol.%to 5 vol.%,while it increased when the content was less than 2 vol.%or more than 5 vol.%.Similarly,the friction coefficient also did not change monotonously.The dominative wear mechanism changed from a relatively severe regime of plastic deformation accompanied by adhesion wear to a mild regime of smear,then to a very severe regime of severe plastic deformation induced wear,and finally again to a relatively mild regime of smear accompanied by abrasive wear as the silicon content increased.The wear resistance always decreased with elevating testing temperature,but the decrease ranges were different for the composites with different silicon contents.The friction coefficients changed irregularly for the different composites with the increase of testing temperature.Correspondingly,the wear mechanism alternated from a mild regime of smear accompanied by abrasive wear to a severe regime of plastic deformation accompanied by adhesion wear.展开更多
In-situ ZrB2/AZ91D magnesium matrix composite was successfully synthesized with AI/K2ZrF6+NH4BF4 by means of Direct Melt Reaction. The fabricated ZrB2/AZ91D magnesium matrix composite through direct melt mixing metho...In-situ ZrB2/AZ91D magnesium matrix composite was successfully synthesized with AI/K2ZrF6+NH4BF4 by means of Direct Melt Reaction. The fabricated ZrB2/AZ91D magnesium matrix composite through direct melt mixing method was investigated. Results from X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS) confirmed the existence of ZrB2 particles in the AZ91D alloy, and most ZrB2 particles were in the size range of just several microns, some even to 100 nm. The cast specimens were studied through corrosion testing and heat treatment. The average grain size of AZ91D decreased markedly from about 250 pm to 50 IJm. In addition, the shape and size of the ,β-MglTAI12 phase as well as the morphologies of primary a-Mg in the magnesium matrix composite were greatly changed. The network structure of the β-MglTAI12 phase was broken into small blocks and the size of a-Mg decreased significantly.展开更多
ZL202 matrix composite reinforced by Al2O3 particles was prepared by combining in-situ reaction and casting techniques. Particles' size in the composites was from 1 to 5 microns in diameter. X-ray diffraction anal...ZL202 matrix composite reinforced by Al2O3 particles was prepared by combining in-situ reaction and casting techniques. Particles' size in the composites was from 1 to 5 microns in diameter. X-ray diffraction analysis verified that the reinforcing particleswere δ-Al2O3 which belong to γ-Al2O3 series. The wetting angle between matrix andreinforcement was less than 90°. Energy spectrum analysis indicated that the reactionin bell cover pressing process took place not so completely as in flouring stir process. When the reaction was finished, the matrix was still ZL202 alloy in both.processes.展开更多
Strength and ductility are typically mutually exclusive in traditional copper-steel joints.This work pro-poses a strategy to overcome the inherent trade-off between strength and ductility through high speed electron b...Strength and ductility are typically mutually exclusive in traditional copper-steel joints.This work pro-poses a strategy to overcome the inherent trade-off between strength and ductility through high speed electron beam welding with a preferred deflection to facilitate the in-situ formation of Fe-rich particles in the Cu matrix.The Fe-rich particles with an average diameter of 178.5 nm feature a 3D spatial network distribution across practically the entire joint.The obtained joint reinforced with such Fe-rich particles achieves ultimate high tensile strength(413 MPa)while maintaining excellent ductility(22%).The im-proved strength of the copper-steel joint is derived from the combined effects of dislocation strengthen-ing and grain refinement strengthening,while the increase in room-temperature ductility is mainly due to the high Schmid factor up to 0.454,which promotes the primary slip system to initiate easily during tensile deformation.This work provides a novel perspective on creating copper-steel joints in terms of achieving microstructural refinement and outstanding strength-ductility synergy.展开更多
A Ni-base alloy composite coating reinforced with TiC particles of various shapes and sizes on medium carbon steel substrate was produced by multilayer laser cladding. The chemical compositions, microstructures and su...A Ni-base alloy composite coating reinforced with TiC particles of various shapes and sizes on medium carbon steel substrate was produced by multilayer laser cladding. The chemical compositions, microstructures and surface morphology of the cladded layer were analyzed using energy dispersive X-ray spectroscopy (EDX), scanning electron microscope (SEM), and X-ray diffractometry (XRD). The experimental results showed that an excellent metallurgical bonding between the coating and the substrate was obtained. The microstructure of the coating was mainly composed of γ-Ni dendrites, a small amount of CrB, Ni3B, M23C6 and dispersed TiC particles. Much more and larger TiC particles formed in the overlapping zone, which led to a slightly higher microhardness of this zone. The maximum microhardness of the coating was about HV0.21200. The effects of the laser processing parameters on the microstructures and properties of coating were also investigated.展开更多
Mg-4Zn-1RE-0.5Zr (ZE41) Mg alloy is extensively used in the aerospace and automobile industries.In order to improve the applicability and performance,this alloy was engineered with in-situ Ti B2reinforcement to form T...Mg-4Zn-1RE-0.5Zr (ZE41) Mg alloy is extensively used in the aerospace and automobile industries.In order to improve the applicability and performance,this alloy was engineered with in-situ Ti B2reinforcement to form Ti B2/ZE41 composite.The high temperature deformation behavior and manufacturability of the newly developed Ti B2/ZE41 composite and the parent ZE41 Mg alloy were studied via establishing constitutive modeling of flow stress,deformation activation energy and processing map over a temperature range of 250℃-450℃ and strain rate range of 0.001 s-1-10 s-1.The predicted flow stress behavior of both materials were found to be well consistent with the experimental values.A significant improvement in activation energy was found in Ti B2/ZE41 composite (171.54 k J/mol) as compared to the ZE41 alloy (148.15 k J/mol) due to the dispersed strengthening of in-situ Ti B2particles.The processing maps were developed via dynamic material modeling.A wider workability domain and higher peak efficiency (45%) were observed in Ti B2/ZE41 composite as compared to ZE41 alloy (41%).The Dynamic recrystallization is found to be the dominating deformation mechanism for both materials;however,particle stimulated nucleation was found to be an additional mode of deformation in Ti B2/ZE41 composite.The twinning and stress induced cracks were observed in both the materials at low temperature and high strain rate.A narrow range of instability zone is found in the present Ti B2/ZE41 composite among the existing published literature on Mg based composites.The detailed microstructural characterization was carried out in both workability and instability domains to establish the governing deformation mechanisms.展开更多
Under various electromagnetic induction heating powers,different Al3Ti/Al composites were fabricated by in-situ synthesis method from aluminum and titanium fibers.Microstructures and particles distribution of the comp...Under various electromagnetic induction heating powers,different Al3Ti/Al composites were fabricated by in-situ synthesis method from aluminum and titanium fibers.Microstructures and particles distribution of the composites were examined by XRD,SEM and EDS.The results show that no other intermetallic compounds beside Al3Ti can be in-situ synthesized.Around the titanium fibers,the reaction zones and diffusion zones can be obviously found.Due to the stirring of the electromagnetic function,the formation of the micro-cracks inside the reaction zone was conducive to the peeling off of the Al3Ti particles,and ensures the continuous reaction between liquid aluminum and titanium fibers,as well as the diffusion of Al3Ti particles.At the same time,there were secondary splits of Al3Ti particles located in diffusion zones.Two-body abrasion test shows that with the increase of induction heating power,the wear rates of the composites reduced and the number of grooves decreased.展开更多
In this work, the in-situ TiC panicles reinforced composite coating was prepared by plasma transferred arc process on the surface of Q235 steel. Microstructures, phase composition and wear property of the coating were...In this work, the in-situ TiC panicles reinforced composite coating was prepared by plasma transferred arc process on the surface of Q235 steel. Microstructures, phase composition and wear property of the coating were investigated. The results showed that the composite coating consisted mainly of T-Ni, TiC, Cr23C6, Cr7C3, Ni3Si, CrB, Cr5B3 and FeNi3 phases, and was characterized by fine TiC panicles embedded in Ni matrix. The wear resistance of composite coating was significantly improved compared with that of the steel substrate. The wear volume loss of the substrate was 443 mm3, which was about 9 times as that of in-situ TiC particles reinforced composite coating (49 mm3 ). It is mainly attributed to the presence of chromium carbide particles and in-situ TiC particles and their favorable combination with Ni matrix.展开更多
Polymer flooding has been witnessed an effective technology for enhancing oil recovery from medium-to low-permeability reservoirs;however, direct visualization of polymer solution flow in such reservoir condition is s...Polymer flooding has been witnessed an effective technology for enhancing oil recovery from medium-to low-permeability reservoirs;however, direct visualization of polymer solution flow in such reservoir condition is still lacking. In this work, a three-dimensional (3D) core-on-a-chip device with a permeability of around 200 mD was prepared and employed to visualize the pore-scale flow and displacement of a self-adaptive polymer (SAP, 8.7 × 106 g·mol−1)−whose microscopic association structure and macroscopic viscosity can reversibly change in response to shear action−versus partially hydrolyzed polyacrylamide (HPAM), by recording their flow curves, monitoring dynamic transportation process via particle imaging velocimetry, and building 3D structure of remaining oil. The results show that, in single-phase flow, all polymer solutions exhibit flow thinning and then thickening regions as flow rate increases, but the transition between two regimes occurs at a small Weissenberg number (10−3−10−1) in this medium-permeable condition. In contrast to HPAM-1 with close weight-average molecular weight (Mw), the adaptive character not only extends SAP's shear-govern region, allowing SAP to propagate piece by piece and achieve higher accessible pore volume, but it also enhances the elastic resistibility of polymer in the extension-dominated regime, increasing the microscopic displacement efficiency. These two effects result in 1.5–3 times more oil recovery factor for SAP than for HPAM-1. Regarding ultra-high-Mw HPAM-2 (25 × 106 g·mol−1), plugging and chain degradation do occur, thus producing lower oil recovery than SAP. This work provides a direct approach for in-situ assessment of polymer-based displacing system under a more authentic condition of practical reservoirs.展开更多
Microstructure evolution and mechanical properties of the aging treated AlN/AZ91 composites were systematically investigated by optical microscopy(OM),high resolution scanning electron microscopy(HRSEM)with an energy ...Microstructure evolution and mechanical properties of the aging treated AlN/AZ91 composites were systematically investigated by optical microscopy(OM),high resolution scanning electron microscopy(HRSEM)with an energy dispersive spectrum(EDS),and high-angle annular dark field scanning transmission electron microscopy(HAADF-STEM).The results show that the higher fracture elongation(14±1%)and ultimate tensile strength(275±6 MPa)were simultaneously obtained in the peak-aged AlN/AZ91 composites.Comparied with AZ91 matrix alloy,the strength was increased by about 44%and the elongation was approximately five times higher,which mainly attributed to the precipitation of nano-sizedγ-Mg_(17)Al_(12)phase and the activation of non-basal slip systems induced by in-situ AlN particles at room temperature.However,the in-situ formation of AlN reinforcements consumed part of Al element in the matrix alloy,which resulted into the volume fraction decreasing ofγ-Mg_(17)Al_(12)precipitates,and then the age hardening and strengthening efficiency were reduced in the AlN/AZ91 composites.On the other hand,the mismatch of thermal expansion coefficient between AlN particles and AZ91 matrix generated high density dislocations around AlN particles,which promoted the precipitation ofγ-Mg_(17)Al_(12)phase,and then the peak aging time and temperature were decreased.展开更多
Compared to other structural alloys,magnesium alloys have a relatively poor corrosion resistance and low mechanical strength,which can be further deteriorated when these alloys are subjected to joining processes using...Compared to other structural alloys,magnesium alloys have a relatively poor corrosion resistance and low mechanical strength,which can be further deteriorated when these alloys are subjected to joining processes using the existing joining methods.Herein,we propose for the first time an additive friction stir-welding(AFSW)using fine Al powder as an additive to improve the mechanical strength as well as corrosion resistance of AZ31B weld joints.AFSW is a solid-state welding method of forming a high-Al AZ31B joint via an in-situ reaction between pure Al powders filled in a machined groove and the AZ31B matrix.To optimize the process parameters,AFSW was performed under different rotational and transverse speeds,and number of passes,using tools with a square or screw pin.In particular,to fabricate a weld zone,where the Al was homogenously dispersed,the effects of the groove shape were investigated using three types of grooves:surface one-line groove,surface-symmetric grooves,and inserted symmetric grooves.The homogenous and defect-less AFS-welded AZ31B joint was successfully fabricated with the following optimal parameters:1400 rpm,25 mm/min,four passes,inserted symmetric grooves,and the tool with a square pin.The AFSW fully dissolved the additive Al intoα-Mg and in-situ precipitated Mg_(17)Al_(12)particles,which was confirmed via scanning electron microscopy,transmission electron microscope,and X-ray diffraction analyses.The microhardness,joint efficiency,and elongation at the fracture point of the AFS-welded AZ31B joint were 80 HV,101%,and 8.9%,respectively.These values are higher than those obtained for the FS-welded AZ31 joint in previous studies.The corrosion resistance of the AFS-welded AZ31B joint,evaluated via hydrogen evolution measurements and potentiodynamic polarization tests,was enhanced to 55%relative to the FS-welded AZ31B joint.展开更多
In order to fabricate dispersion strengthened alloys strengthened by submicron-sized or nano-sized stable particles through casting routes, understanding of the formation process of dispersion strengthening particles ...In order to fabricate dispersion strengthened alloys strengthened by submicron-sized or nano-sized stable particles through casting routes, understanding of the formation process of dispersion strengthening particles in metal melt is of significance. Thus, nano NiO and TiO2 particles were selected as reactant to form in-situ dispersion strengthening oxide particles in Fe20Cr5Al alloy. Nano NiO and TiO2 particle powder was separately dispersed into nano Ni powder first. The loose mixed nano powder was added in Fe20CrSAl alloy melt when pouring the melt into mold. The study shows that nano NiO particles were not as effective as nano TiO2 particles in forming dispersion strengthening Al2O3 particles. The final diameters of dispersion strengthening oxide particles arose from nano TiO2 particles were of submicron. The Brownian collision of particles had caused this coarsening.展开更多
The grain growth behavior in reactive spray formed 7075+2.91 vol percent TiCAl alloy was studied and compared with that of spray formed 7075 Al alloy at semi-solid state. Theeffects of in-situ TiC particles on the mic...The grain growth behavior in reactive spray formed 7075+2.91 vol percent TiCAl alloy was studied and compared with that of spray formed 7075 Al alloy at semi-solid state. Theeffects of in-situ TiC particles on the microstructure of spray formed 7075 Al alloy were alsoinvestigated. The specimens were heat-treated isothermally at various temperatures between thesolidus and liquidus of 7075 Al alloy for times in the range of 10-60 min, then quenched in water.The microstructure of reheated specimens was characterized using scanning electron microscopy andoptical microscopy. The grain size was measured using a mean linear intercept method. Results showthat the in-situ TiC particles can effectively retard grain growth and refine the grain at a limitedsize. The grain growth exponent in Arrhenius equation increases from 2 to 3, which indicates thatthe in-situ TiC particles have the significant pinning effect on grain coarsening in the semi-solidstate.展开更多
A kind of Al-TiB2/TiC in situ composite with a homogenous microstructure was successfully prepared through in situ reaction of pure Ti and Al-B-C alloy with molten aluminum.In order to improve the distribution of the ...A kind of Al-TiB2/TiC in situ composite with a homogenous microstructure was successfully prepared through in situ reaction of pure Ti and Al-B-C alloy with molten aluminum.In order to improve the distribution of the particles and mechanical properties of the composites,subsequent hot rolling with increasing reduction was carried out.The microstructure evolution of the composites was characterized using field emission scanning electron microscopy(FESEM)and the mechanical properties were studied through tensile tests and microhardness measurement.It is found that both the microstructure uniformity and mechanical properties of the composites are significantly improved with increasing rolling reduction.The ultimate tensile strength and microhardness of the composites with90%rolling reduction reach185.9MPa and HV59.8,respectively,140%and35%higher than those of as-cast ones.Furthermore,the strengthening mechanism of the composite was analyzed based on the fracture morphologies.展开更多
A γ-Al2O3 particles reinforced Al-Si alloy matrix composite was fabricated by adding NH4Al(SO4)2 to molten aluminum alloy. TEM observation shows that in-situ γ-Al2O3 particles are generally spherical and uniformly...A γ-Al2O3 particles reinforced Al-Si alloy matrix composite was fabricated by adding NH4Al(SO4)2 to molten aluminum alloy. TEM observation shows that in-situ γ-Al2O3 particles are generally spherical and uniformly distributed in the matrix. The results of dry sliding wear tests show that the wear resistance of the composites increases with increasing mass fraction, and the volume loss is considerably lesser than that of the matrix and is lesser than that of the composites by adding γ-Al2O3 particles directly.展开更多
Silver(Ag)paste is widely used in semiconductor metallization,especially in silicon solar cells.Ag powder is the material with the highest proportion in Ag paste.The morphology and structure of Ag powder are crucial w...Silver(Ag)paste is widely used in semiconductor metallization,especially in silicon solar cells.Ag powder is the material with the highest proportion in Ag paste.The morphology and structure of Ag powder are crucial which determine its characteristics,especially for the sintering activity.In this work,a simple method was developed to synthesize a type of microcrystalline spherical Ag particles(SP-A)with internal pores and the structural changes and sintering behavior were thoroughly studied by combining ultra-small-angle X-ray scattering(USAXS),small-angle X-ray scattering(SAXS),in-situ heating X-ray diffraction(XRD),focused ion beam(FIB),and thermal analysis measurement.Due to the unique internal pores,the grain size of SP-A is smaller,and the coefficient of thermal expansion(CTE)is higher than that of traditional solid Ag particles.As a result,the sintering activity of SP-A is excellent,which can form a denser sintered body and form silver nanoparticles at the Ag–Si interface to improve silver silicon contact.Polycrystalline silicon solar cell built with SP-A obtained a low series resistance(Rs)and a high photoelectric conversion efficiency(PCE)of 19.26%.These fill a gap in Ag particle structure research,which is significant for the development of high-performance electronic Ag particles and efficient semiconductor devices.展开更多
基金the National Science and Technology Major Project of the Ministry of Science and Technology of China(No.2018-ZX04044001-008)the National Natural Science Foundation of China(No.52075328).
文摘The hot forming behavior,failure mechanism,and microstructure evolution of in-situ TiB_(2)particle-reinforced 7075 aluminum matrix composite were investigated by isothermal compression test under different deformation conditions of deformation temperatures of 300−450℃ and strain rates of 0.001^(−1)s^(−1).The results demonstrate that the failure behavior of the composite exhibits both particle fracture and interface debonding at low temperature and high strain rate,and dimple rupture of the matrix at high temperature and low strain rate.Full dynamic recrystallization,which improves the composite formability,occurs under conditions of high temperature(450℃)and low strain rate(0.001 s^(−1));the grain size of the matrix after hot compression was significantly smaller than that of traditional 7075Al and ex-situ particle reinforced 7075Al matrix composite.Based on the flow stress curves,a constitutive model describing the relationship of the flow stress,true strain,strain rate and temperature was proposed.Furthermore,the processing maps based on both the dynamic material modeling(DMM)and modified DMM(MDMM)were established to analyze flow instability domain of the composite and optimize hot forming processing parameters.The optimum processing domain was determined at temperatures of 425−450℃ and strain rates of 0.001−0.01 s^(−1),in which the fine grain microstructure can be gained and particle crack and interface debonding can be avoided.
基金the Iranian nanotechnology initiative for financially supporting this project
文摘Bulk Cu-Ti alloy reinforced by TiB2 nano particles was prepared using in-situ reaction between Cu 3.4%Ti and Cu-0.7%B master alloys along with rapid solidification and subsequent heat treatment for 1-10 h at 900 ℃. High-resolution transmission electron microscopy (HRTEM) characterization showed that primary TiB2 nano particles and TiB whiskers were formed by in-situ reaction between Ti and B in the liquid copper. The formation of TiB whiskers within the melt led to coarsening of TiB2 particles. Primary TiB2 particles were dispersed along the grain boundaries and hindered grain growth at high temperature, while the secondary TiB2 particles were formed during heat treatment of the alloy by diffusion reaction of solute titanium and boron inside the grains. Electrical conductivity and hardness of the composite were evaluated during heat treatment. The results indicated that the formation of secondary TiB2 particles in the matrix caused a delay in hardness reduction at high temperature. The electrical conductivity and hardness increased up to 8 h of heat treatment and reached 33.5% IACS and HV 158, respectively.
基金supported by the fund for Key Laboratory of Nanotechnology of Shaanxi Province (Grant No.09JS032)
文摘By applying electromagnetic field to a system consisting of tungsten wires and grey cast iron melt,the grey cast iron matrix composite reinforced by either in-situ WC particles or the combination ofin-situ WC particles and the residual tungsten wire was obtained.By means of differential thermal analysis(DTA),the pouring temperature ofiron melt was determined at 1,573 K.The microstructures of the composites were analyzed by using of X-ray diffraction(XRD),scanning electron microscopy(SEM) equipped with an energy dispersive spectrum(EDS) and pin-on-disc abrasive wear test.The obtained results indicated that,with the enhancing frequency of electromagnetic field,the amount ofin-situ WC particles gradually increases,leading to continuous decrease of the residual tungsten wires.When the electromagnetic field frequency was up to 4 kHz,tungsten wires reacted completely with carbon atoms in grey cast iron melt,forming WC particals.The electromagnetic field appeared to accelerate the elemental diffusion in the melt,to help relatively quick formation of a series of small FeW-C ternary zones and to improve the kinetic condition ofin-situ WC fabrication.As compared with the composite prepared without the electromagnetic field,the composite fabricated at 4 kHz presented good wear resistance.
基金supported by the Doctor Foundation of Lanzhou University of Technology
文摘The effects of silicon particle content and testing temperature on friction and wear properties of casting in-situ silicon particle reinforced ZA27 composites were investigated.The wear mechanisms were mainly discussed by observations of both worn surfaces and their side views.The results indicated that the variations of wear resistance with increasing of silicon particle content,at all of the testing temperatures applied,showed a similar tendency with a manner of non-monotonous change.It was surprised that the wear resistance decreased with the increase of silicon particle content from 2 vol.%to 5 vol.%,while it increased when the content was less than 2 vol.%or more than 5 vol.%.Similarly,the friction coefficient also did not change monotonously.The dominative wear mechanism changed from a relatively severe regime of plastic deformation accompanied by adhesion wear to a mild regime of smear,then to a very severe regime of severe plastic deformation induced wear,and finally again to a relatively mild regime of smear accompanied by abrasive wear as the silicon content increased.The wear resistance always decreased with elevating testing temperature,but the decrease ranges were different for the composites with different silicon contents.The friction coefficients changed irregularly for the different composites with the increase of testing temperature.Correspondingly,the wear mechanism alternated from a mild regime of smear accompanied by abrasive wear to a severe regime of plastic deformation accompanied by adhesion wear.
基金financially supported by the Specialized Research Fund Project for the Doctoral Program of Higher Education of China (No.20070299004)the Jiangsu Higher Education Institutions Natural Science Foundation Research Program (No.10KJD430003)+2 种基金the Jiangsu University Outstanding Talents Building Project (No.1213000004)the Jiangsu University Undergraduate Practice-Innovation Training Project (No.1201220038)Doctoral Foundation of Jiangsu University (No.1281220014)
文摘In-situ ZrB2/AZ91D magnesium matrix composite was successfully synthesized with AI/K2ZrF6+NH4BF4 by means of Direct Melt Reaction. The fabricated ZrB2/AZ91D magnesium matrix composite through direct melt mixing method was investigated. Results from X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS) confirmed the existence of ZrB2 particles in the AZ91D alloy, and most ZrB2 particles were in the size range of just several microns, some even to 100 nm. The cast specimens were studied through corrosion testing and heat treatment. The average grain size of AZ91D decreased markedly from about 250 pm to 50 IJm. In addition, the shape and size of the ,β-MglTAI12 phase as well as the morphologies of primary a-Mg in the magnesium matrix composite were greatly changed. The network structure of the β-MglTAI12 phase was broken into small blocks and the size of a-Mg decreased significantly.
文摘ZL202 matrix composite reinforced by Al2O3 particles was prepared by combining in-situ reaction and casting techniques. Particles' size in the composites was from 1 to 5 microns in diameter. X-ray diffraction analysis verified that the reinforcing particleswere δ-Al2O3 which belong to γ-Al2O3 series. The wetting angle between matrix andreinforcement was less than 90°. Energy spectrum analysis indicated that the reactionin bell cover pressing process took place not so completely as in flouring stir process. When the reaction was finished, the matrix was still ZL202 alloy in both.processes.
基金supported by the National MCF En-ergy R&D Program(No.2022YFE03140003)the National Natural Science Foundation of China(No.12192283)the Youth Innova-tion Promotion Association CAS(No.15117008038).
文摘Strength and ductility are typically mutually exclusive in traditional copper-steel joints.This work pro-poses a strategy to overcome the inherent trade-off between strength and ductility through high speed electron beam welding with a preferred deflection to facilitate the in-situ formation of Fe-rich particles in the Cu matrix.The Fe-rich particles with an average diameter of 178.5 nm feature a 3D spatial network distribution across practically the entire joint.The obtained joint reinforced with such Fe-rich particles achieves ultimate high tensile strength(413 MPa)while maintaining excellent ductility(22%).The im-proved strength of the copper-steel joint is derived from the combined effects of dislocation strengthen-ing and grain refinement strengthening,while the increase in room-temperature ductility is mainly due to the high Schmid factor up to 0.454,which promotes the primary slip system to initiate easily during tensile deformation.This work provides a novel perspective on creating copper-steel joints in terms of achieving microstructural refinement and outstanding strength-ductility synergy.
基金This research was supported by the Natural Science Foundation of Inner Mongolia (No. 200508010704)the Science Foundation of Inner Mongolia University of Technology (No. ZD200521) the Postdoctoral Science Foundation of China.
文摘A Ni-base alloy composite coating reinforced with TiC particles of various shapes and sizes on medium carbon steel substrate was produced by multilayer laser cladding. The chemical compositions, microstructures and surface morphology of the cladded layer were analyzed using energy dispersive X-ray spectroscopy (EDX), scanning electron microscope (SEM), and X-ray diffractometry (XRD). The experimental results showed that an excellent metallurgical bonding between the coating and the substrate was obtained. The microstructure of the coating was mainly composed of γ-Ni dendrites, a small amount of CrB, Ni3B, M23C6 and dispersed TiC particles. Much more and larger TiC particles formed in the overlapping zone, which led to a slightly higher microhardness of this zone. The maximum microhardness of the coating was about HV0.21200. The effects of the laser processing parameters on the microstructures and properties of coating were also investigated.
基金Department of Science and Technology, India [grant number of DST/TDT/AMT/ 2017/211(G)] (MEE/18–19/412/DSTX/SUSH) for the financial support and FIST grant, Department of Science and Technology, India [grant number SR/FST/ET11–059/2012 (G)] for funding electron microscope facilitya part of Center of Excellence (Co E) in Applied Magnesium Research (A Vertical of Center for Materials and Manufacturing for Futuristic Mobility), IIT Madrasthe Ministry of Human Resource and Development for funding this CoE through grant number–SB20210992MEMHRD008517。
文摘Mg-4Zn-1RE-0.5Zr (ZE41) Mg alloy is extensively used in the aerospace and automobile industries.In order to improve the applicability and performance,this alloy was engineered with in-situ Ti B2reinforcement to form Ti B2/ZE41 composite.The high temperature deformation behavior and manufacturability of the newly developed Ti B2/ZE41 composite and the parent ZE41 Mg alloy were studied via establishing constitutive modeling of flow stress,deformation activation energy and processing map over a temperature range of 250℃-450℃ and strain rate range of 0.001 s-1-10 s-1.The predicted flow stress behavior of both materials were found to be well consistent with the experimental values.A significant improvement in activation energy was found in Ti B2/ZE41 composite (171.54 k J/mol) as compared to the ZE41 alloy (148.15 k J/mol) due to the dispersed strengthening of in-situ Ti B2particles.The processing maps were developed via dynamic material modeling.A wider workability domain and higher peak efficiency (45%) were observed in Ti B2/ZE41 composite as compared to ZE41 alloy (41%).The Dynamic recrystallization is found to be the dominating deformation mechanism for both materials;however,particle stimulated nucleation was found to be an additional mode of deformation in Ti B2/ZE41 composite.The twinning and stress induced cracks were observed in both the materials at low temperature and high strain rate.A narrow range of instability zone is found in the present Ti B2/ZE41 composite among the existing published literature on Mg based composites.The detailed microstructural characterization was carried out in both workability and instability domains to establish the governing deformation mechanisms.
基金Project(2015DFR50990-01)supported by International Cooperation Project of Ministry of Science and Technology of ChinaProjects(18JS060,18JS075)supported by the Shaanxi Key Laboratory of Nano-materials and Technology,China。
文摘Under various electromagnetic induction heating powers,different Al3Ti/Al composites were fabricated by in-situ synthesis method from aluminum and titanium fibers.Microstructures and particles distribution of the composites were examined by XRD,SEM and EDS.The results show that no other intermetallic compounds beside Al3Ti can be in-situ synthesized.Around the titanium fibers,the reaction zones and diffusion zones can be obviously found.Due to the stirring of the electromagnetic function,the formation of the micro-cracks inside the reaction zone was conducive to the peeling off of the Al3Ti particles,and ensures the continuous reaction between liquid aluminum and titanium fibers,as well as the diffusion of Al3Ti particles.At the same time,there were secondary splits of Al3Ti particles located in diffusion zones.Two-body abrasion test shows that with the increase of induction heating power,the wear rates of the composites reduced and the number of grooves decreased.
文摘In this work, the in-situ TiC panicles reinforced composite coating was prepared by plasma transferred arc process on the surface of Q235 steel. Microstructures, phase composition and wear property of the coating were investigated. The results showed that the composite coating consisted mainly of T-Ni, TiC, Cr23C6, Cr7C3, Ni3Si, CrB, Cr5B3 and FeNi3 phases, and was characterized by fine TiC panicles embedded in Ni matrix. The wear resistance of composite coating was significantly improved compared with that of the steel substrate. The wear volume loss of the substrate was 443 mm3, which was about 9 times as that of in-situ TiC particles reinforced composite coating (49 mm3 ). It is mainly attributed to the presence of chromium carbide particles and in-situ TiC particles and their favorable combination with Ni matrix.
基金financially supported by the National Natural Science Foundation of China(grant number U1762218).
文摘Polymer flooding has been witnessed an effective technology for enhancing oil recovery from medium-to low-permeability reservoirs;however, direct visualization of polymer solution flow in such reservoir condition is still lacking. In this work, a three-dimensional (3D) core-on-a-chip device with a permeability of around 200 mD was prepared and employed to visualize the pore-scale flow and displacement of a self-adaptive polymer (SAP, 8.7 × 106 g·mol−1)−whose microscopic association structure and macroscopic viscosity can reversibly change in response to shear action−versus partially hydrolyzed polyacrylamide (HPAM), by recording their flow curves, monitoring dynamic transportation process via particle imaging velocimetry, and building 3D structure of remaining oil. The results show that, in single-phase flow, all polymer solutions exhibit flow thinning and then thickening regions as flow rate increases, but the transition between two regimes occurs at a small Weissenberg number (10−3−10−1) in this medium-permeable condition. In contrast to HPAM-1 with close weight-average molecular weight (Mw), the adaptive character not only extends SAP's shear-govern region, allowing SAP to propagate piece by piece and achieve higher accessible pore volume, but it also enhances the elastic resistibility of polymer in the extension-dominated regime, increasing the microscopic displacement efficiency. These two effects result in 1.5–3 times more oil recovery factor for SAP than for HPAM-1. Regarding ultra-high-Mw HPAM-2 (25 × 106 g·mol−1), plugging and chain degradation do occur, thus producing lower oil recovery than SAP. This work provides a direct approach for in-situ assessment of polymer-based displacing system under a more authentic condition of practical reservoirs.
基金support for this research by the National Natural Science Foundation of China(Grant Nos.52071268,51771151)Key Laboratory of Interface Science and Engineering in Advanced Materials,Ministry of Education,Taiyuan University of Technology,Taiyuan 030024,China(Grant No.KLISEAM201603)+1 种基金State Key Laboratory of Advanced Metals and Materials(Grant No.2019-Z06)the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University,China(Grant No.CX201905).
文摘Microstructure evolution and mechanical properties of the aging treated AlN/AZ91 composites were systematically investigated by optical microscopy(OM),high resolution scanning electron microscopy(HRSEM)with an energy dispersive spectrum(EDS),and high-angle annular dark field scanning transmission electron microscopy(HAADF-STEM).The results show that the higher fracture elongation(14±1%)and ultimate tensile strength(275±6 MPa)were simultaneously obtained in the peak-aged AlN/AZ91 composites.Comparied with AZ91 matrix alloy,the strength was increased by about 44%and the elongation was approximately five times higher,which mainly attributed to the precipitation of nano-sizedγ-Mg_(17)Al_(12)phase and the activation of non-basal slip systems induced by in-situ AlN particles at room temperature.However,the in-situ formation of AlN reinforcements consumed part of Al element in the matrix alloy,which resulted into the volume fraction decreasing ofγ-Mg_(17)Al_(12)precipitates,and then the age hardening and strengthening efficiency were reduced in the AlN/AZ91 composites.On the other hand,the mismatch of thermal expansion coefficient between AlN particles and AZ91 matrix generated high density dislocations around AlN particles,which promoted the precipitation ofγ-Mg_(17)Al_(12)phase,and then the peak aging time and temperature were decreased.
基金This study was supported by the Research Program funded by the SeoulTech(Seoul National University of Science and Technology,Republic of Korea).
文摘Compared to other structural alloys,magnesium alloys have a relatively poor corrosion resistance and low mechanical strength,which can be further deteriorated when these alloys are subjected to joining processes using the existing joining methods.Herein,we propose for the first time an additive friction stir-welding(AFSW)using fine Al powder as an additive to improve the mechanical strength as well as corrosion resistance of AZ31B weld joints.AFSW is a solid-state welding method of forming a high-Al AZ31B joint via an in-situ reaction between pure Al powders filled in a machined groove and the AZ31B matrix.To optimize the process parameters,AFSW was performed under different rotational and transverse speeds,and number of passes,using tools with a square or screw pin.In particular,to fabricate a weld zone,where the Al was homogenously dispersed,the effects of the groove shape were investigated using three types of grooves:surface one-line groove,surface-symmetric grooves,and inserted symmetric grooves.The homogenous and defect-less AFS-welded AZ31B joint was successfully fabricated with the following optimal parameters:1400 rpm,25 mm/min,four passes,inserted symmetric grooves,and the tool with a square pin.The AFSW fully dissolved the additive Al intoα-Mg and in-situ precipitated Mg_(17)Al_(12)particles,which was confirmed via scanning electron microscopy,transmission electron microscope,and X-ray diffraction analyses.The microhardness,joint efficiency,and elongation at the fracture point of the AFS-welded AZ31B joint were 80 HV,101%,and 8.9%,respectively.These values are higher than those obtained for the FS-welded AZ31 joint in previous studies.The corrosion resistance of the AFS-welded AZ31B joint,evaluated via hydrogen evolution measurements and potentiodynamic polarization tests,was enhanced to 55%relative to the FS-welded AZ31B joint.
基金Item Sponsored by International Co-operation Project (20061415)
文摘In order to fabricate dispersion strengthened alloys strengthened by submicron-sized or nano-sized stable particles through casting routes, understanding of the formation process of dispersion strengthening particles in metal melt is of significance. Thus, nano NiO and TiO2 particles were selected as reactant to form in-situ dispersion strengthening oxide particles in Fe20Cr5Al alloy. Nano NiO and TiO2 particle powder was separately dispersed into nano Ni powder first. The loose mixed nano powder was added in Fe20CrSAl alloy melt when pouring the melt into mold. The study shows that nano NiO particles were not as effective as nano TiO2 particles in forming dispersion strengthening Al2O3 particles. The final diameters of dispersion strengthening oxide particles arose from nano TiO2 particles were of submicron. The Brownian collision of particles had caused this coarsening.
基金This work was financially supported by the National Natural Science Foundation of China (No.50171010)
文摘The grain growth behavior in reactive spray formed 7075+2.91 vol percent TiCAl alloy was studied and compared with that of spray formed 7075 Al alloy at semi-solid state. Theeffects of in-situ TiC particles on the microstructure of spray formed 7075 Al alloy were alsoinvestigated. The specimens were heat-treated isothermally at various temperatures between thesolidus and liquidus of 7075 Al alloy for times in the range of 10-60 min, then quenched in water.The microstructure of reheated specimens was characterized using scanning electron microscopy andoptical microscopy. The grain size was measured using a mean linear intercept method. Results showthat the in-situ TiC particles can effectively retard grain growth and refine the grain at a limitedsize. The grain growth exponent in Arrhenius equation increases from 2 to 3, which indicates thatthe in-situ TiC particles have the significant pinning effect on grain coarsening in the semi-solidstate.
基金Project(51501092)supported by the National Natural Science Foundation of ChinaProject(30915011332)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2014M550292)supported by China Postdoctoral Science Foundation
文摘A kind of Al-TiB2/TiC in situ composite with a homogenous microstructure was successfully prepared through in situ reaction of pure Ti and Al-B-C alloy with molten aluminum.In order to improve the distribution of the particles and mechanical properties of the composites,subsequent hot rolling with increasing reduction was carried out.The microstructure evolution of the composites was characterized using field emission scanning electron microscopy(FESEM)and the mechanical properties were studied through tensile tests and microhardness measurement.It is found that both the microstructure uniformity and mechanical properties of the composites are significantly improved with increasing rolling reduction.The ultimate tensile strength and microhardness of the composites with90%rolling reduction reach185.9MPa and HV59.8,respectively,140%and35%higher than those of as-cast ones.Furthermore,the strengthening mechanism of the composite was analyzed based on the fracture morphologies.
基金the Key Project of Ministry of Education of China (No.105055).
文摘A γ-Al2O3 particles reinforced Al-Si alloy matrix composite was fabricated by adding NH4Al(SO4)2 to molten aluminum alloy. TEM observation shows that in-situ γ-Al2O3 particles are generally spherical and uniformly distributed in the matrix. The results of dry sliding wear tests show that the wear resistance of the composites increases with increasing mass fraction, and the volume loss is considerably lesser than that of the matrix and is lesser than that of the composites by adding γ-Al2O3 particles directly.
基金support of the Soft Science Research Project of Guangdong Province(No.2017B030301013)the Guangdong Innovative Team Program(No.2013N080)the Guangdong Province Major Talent Introducing Program(No.2021QN020687).
文摘Silver(Ag)paste is widely used in semiconductor metallization,especially in silicon solar cells.Ag powder is the material with the highest proportion in Ag paste.The morphology and structure of Ag powder are crucial which determine its characteristics,especially for the sintering activity.In this work,a simple method was developed to synthesize a type of microcrystalline spherical Ag particles(SP-A)with internal pores and the structural changes and sintering behavior were thoroughly studied by combining ultra-small-angle X-ray scattering(USAXS),small-angle X-ray scattering(SAXS),in-situ heating X-ray diffraction(XRD),focused ion beam(FIB),and thermal analysis measurement.Due to the unique internal pores,the grain size of SP-A is smaller,and the coefficient of thermal expansion(CTE)is higher than that of traditional solid Ag particles.As a result,the sintering activity of SP-A is excellent,which can form a denser sintered body and form silver nanoparticles at the Ag–Si interface to improve silver silicon contact.Polycrystalline silicon solar cell built with SP-A obtained a low series resistance(Rs)and a high photoelectric conversion efficiency(PCE)of 19.26%.These fill a gap in Ag particle structure research,which is significant for the development of high-performance electronic Ag particles and efficient semiconductor devices.