期刊文献+
共找到516,888篇文章
< 1 2 250 >
每页显示 20 50 100
A novel intrusion detection model for the CAN bus packet of in-vehicle network based on attention mechanism and autoencoder 被引量:2
1
作者 Pengcheng Wei Bo Wang +2 位作者 Xiaojun Dai Li Li Fangcheng He 《Digital Communications and Networks》 SCIE CSCD 2023年第1期14-21,共8页
The attacks on in-vehicle Controller Area Network(CAN)bus messages severely disrupt normal communication between vehicles.Therefore,researches on intrusion detection models for CAN have positive business value for veh... The attacks on in-vehicle Controller Area Network(CAN)bus messages severely disrupt normal communication between vehicles.Therefore,researches on intrusion detection models for CAN have positive business value for vehicle security,and the intrusion detection technology for CAN bus messages can effectively protect the invehicle network from unlawful attacks.Previous machine learning-based models are unable to effectively identify intrusive abnormal messages due to their inherent shortcomings.Hence,to address the shortcomings of the previous machine learning-based intrusion detection technique,we propose a novel method using Attention Mechanism and AutoEncoder for Intrusion Detection(AMAEID).The AMAEID model first converts the raw hexadecimal message data into binary format to obtain better input.Then the AMAEID model encodes and decodes the binary message data using a multi-layer denoising autoencoder model to obtain a hidden feature representation that can represent the potential features behind the message data at a deeper level.Finally,the AMAEID model uses the attention mechanism and the fully connected layer network to infer whether the message is an abnormal message or not.The experimental results with three evaluation metrics on a real in-vehicle CAN bus message dataset outperform some traditional machine learning algorithms,demonstrating the effectiveness of the AMAEID model. 展开更多
关键词 Controller area network bus packet in-vehicle network Attention mechanism Autoencoder
下载PDF
In-Vehicle Network Injection Attacks Detection Based on Feature Selection and Classification
2
作者 Haojie Ji Liyong Wang +3 位作者 Hongmao Qin Yinghui Wang Junjie Zhang Biao Chen 《Automotive Innovation》 EI CSCD 2024年第1期138-149,共12页
Detecting abnormal data generated from cyberattacks has emerged as a crucial approach for identifying security threats within in-vehicle networks.The transmission of information through in-vehicle networks needs to fo... Detecting abnormal data generated from cyberattacks has emerged as a crucial approach for identifying security threats within in-vehicle networks.The transmission of information through in-vehicle networks needs to follow specific data for-mats and communication protocols regulations.Typically,statistical algorithms are employed to learn these variation rules and facilitate the identification of abnormal data.However,the effectiveness of anomaly detection outcomes often falls short when confronted with highly deceptive in-vehicle network attacks.In this study,seven representative classification algorithms are selected to detect common in-vehicle network attacks,and a comparative analysis is employed to identify the most suitable and favorable detection method.In consideration of the communication protocol characteristics of in-vehicle networks,an optimal convolutional neural network(CNN)detection algorithm is proposed that uses data field characteristics and classifier selection,and its comprehensive performance is tested.In addition,the concept of Hamming distance between two adjacent packets within the in-vehicle network is introduced,enabling the proposal of an enhanced CNN algorithm that achieves robust detection of challenging-to-identify abnormal data.This paper also presents the proposed CNN classifica-tion algorithm that effectively addresses the issue of high false negative rate(FNR)in abnormal data detection based on the timestamp feature of data packets.The experimental results validate the efficacy of the proposed abnormal data detection algorithm,highlighting its strong detection performance and its potential to provide an effective solution for safeguarding the security of in-vehicle network information. 展开更多
关键词 Classification algorithm Anomaly detection in-vehicle network Feature extraction Injecting attack
原文传递
Recent Trends of In-Vehicle Time Sensitive Networking Technologies, Applications and Challenges 被引量:2
3
作者 Yanli Xu Jian Shang Hao Tang 《China Communications》 SCIE CSCD 2023年第11期30-55,共26页
With the vigorous development of automobile industry,in-vehicle network is also constantly upgraded to meet data transmission requirements of emerging applications.The main transmission requirements are low latency an... With the vigorous development of automobile industry,in-vehicle network is also constantly upgraded to meet data transmission requirements of emerging applications.The main transmission requirements are low latency and certainty especially for autonomous driving.Time sensitive networking(TSN)based on Ethernet gives a possible solution to these requirements.Previous surveys usually investigated TSN from a general perspective,which referred to TSN of various application fields.In this paper,we focus on the application of TSN to the in-vehicle networks.For in-vehicle networks,we discuss all related TSN standards specified by IEEE 802.1 work group up to now.We further overview and analyze recent literature on various aspects of TSN for automotive applications,including synchronization,resource reservation,scheduling,certainty,software and hardware.Application scenarios of TSN for in-vehicle networks are analyzed one by one.Since TSN of in-vehicle network is still at a very initial stage,this paper also gives insights on open issues,future research directions and possible solutions. 展开更多
关键词 automobile industry deterministic transmission in-vehicle network low latency time sensitive networking(TSN)
下载PDF
Research on Multi-modal In-Vehicle Intelligent Personal Assistant Design
4
作者 WANG Jia-rou TANG Cheng-xin SHUAI Liang-ying 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第4期136-146,共11页
Intelligent personal assistants play a pivotal role in in-vehicle systems,significantly enhancing life efficiency,driving safety,and decision-making support.In this study,the multi-modal design elements of intelligent... Intelligent personal assistants play a pivotal role in in-vehicle systems,significantly enhancing life efficiency,driving safety,and decision-making support.In this study,the multi-modal design elements of intelligent personal assistants within the context of visual,auditory,and somatosensory interactions with drivers were discussed.Their impact on the driver’s psychological state through various modes such as visual imagery,voice interaction,and gesture interaction were explored.The study also introduced innovative designs for in-vehicle intelligent personal assistants,incorporating design principles such as driver-centricity,prioritizing passenger safety,and utilizing timely feedback as a criterion.Additionally,the study employed design methods like driver behavior research and driving situation analysis to enhance the emotional connection between drivers and their vehicles,ultimately improving driver satisfaction and trust. 展开更多
关键词 Intelligent personal assistants Multi-modal design User psychology in-vehicle interaction Voice interaction Emotional design
下载PDF
Hybrid In-Vehicle Background Noise Reduction for Robust Speech Recognition:The Possibilities of Next Generation 5G Data Networks
5
作者 Radek Martinek Jan Baros +2 位作者 Rene Jaros Lukas Danys Jan Nedoma 《Computers, Materials & Continua》 SCIE EI 2022年第6期4659-4676,共18页
This pilot study focuses on employment of hybrid LMS-ICA system for in-vehicle background noise reduction.Modern vehicles are nowadays increasingly supporting voice commands,which are one of the pillars of autonomous ... This pilot study focuses on employment of hybrid LMS-ICA system for in-vehicle background noise reduction.Modern vehicles are nowadays increasingly supporting voice commands,which are one of the pillars of autonomous and SMART vehicles.Robust speaker recognition for context-aware in-vehicle applications is limited to a certain extent by in-vehicle back-ground noise.This article presents the new concept of a hybrid system which is implemented as a virtual instrument.The highly modular concept of the virtual car used in combination with real recordings of various driving scenarios enables effective testing of the investigated methods of in-vehicle background noise reduction.The study also presents a unique concept of an adaptive system using intelligent clusters of distributed next generation 5G data networks,which allows the exchange of interference information and/or optimal hybrid algorithm settings between individual vehicles.On average,the unfiltered voice commands were successfully recognized in 29.34%of all scenarios,while the LMS reached up to 71.81%,and LMS-ICA hybrid improved the performance further to 73.03%. 展开更多
关键词 5G noise reduction hybrid algorithms speech recognition 5G data networks in-vehicle background noise
下载PDF
Application of virtual reality technology improves the functionality of brain networks in individuals experiencing pain
6
作者 Takahiko Nagamine 《World Journal of Clinical Cases》 SCIE 2025年第3期66-68,共3页
Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the u... Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field. 展开更多
关键词 Virtual reality PAIN ANXIETY Salience network Default mode network
下载PDF
Unlocking the future:Mitochondrial genes and neural networks in predicting ovarian cancer prognosis and immunotherapy response
7
作者 Zhi-Jian Tang Yuan-Ming Pan +2 位作者 Wei Li Rui-Qiong Ma Jian-Liu Wang 《World Journal of Clinical Oncology》 2025年第1期43-52,共10页
BACKGROUND Mitochondrial genes are involved in tumor metabolism in ovarian cancer(OC)and affect immune cell infiltration and treatment responses.AIM To predict prognosis and immunotherapy response in patients diagnose... BACKGROUND Mitochondrial genes are involved in tumor metabolism in ovarian cancer(OC)and affect immune cell infiltration and treatment responses.AIM To predict prognosis and immunotherapy response in patients diagnosed with OC using mitochondrial genes and neural networks.METHODS Prognosis,immunotherapy efficacy,and next-generation sequencing data of patients with OC were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus.Mitochondrial genes were sourced from the MitoCarta3.0 database.The discovery cohort for model construction was created from 70% of the patients,whereas the remaining 30% constituted the validation cohort.Using the expression of mitochondrial genes as the predictor variable and based on neural network algorithm,the overall survival time and immunotherapy efficacy(complete or partial response)of patients were predicted.RESULTS In total,375 patients with OC were included to construct the prognostic model,and 26 patients were included to construct the immune efficacy model.The average area under the receiver operating characteristic curve of the prognostic model was 0.7268[95% confidence interval(CI):0.7258-0.7278]in the discovery cohort and 0.6475(95%CI:0.6466-0.6484)in the validation cohort.The average area under the receiver operating characteristic curve of the immunotherapy efficacy model was 0.9444(95%CI:0.8333-1.0000)in the discovery cohort and 0.9167(95%CI:0.6667-1.0000)in the validation cohort.CONCLUSION The application of mitochondrial genes and neural networks has the potential to predict prognosis and immunotherapy response in patients with OC,providing valuable insights into personalized treatment strategies. 展开更多
关键词 Ovarian cancer MITOCHONDRIA PROGNOSIS IMMUNOTHERAPY Neural network
下载PDF
An Energy Efficient Routing Protocol for In-Vehicle Wireless Sensor Networks
8
作者 Chundong Wang Zhentang Zhao +1 位作者 Likun Zhu Honglei Yao 《国际计算机前沿大会会议论文集》 2017年第2期39-40,共2页
In this paper, an advanced distributed energy-efficient clustering (ADEEC) protocol was proposed with the aim of balancing energy consumption across the nodes to achieve longer network lifetime for In-Vehicle Wireless... In this paper, an advanced distributed energy-efficient clustering (ADEEC) protocol was proposed with the aim of balancing energy consumption across the nodes to achieve longer network lifetime for In-Vehicle Wireless Sensor Networks (IVWSNs). The algorithm changes the cluster head selection probability based on residual energy and location distribution of nodes. Then node associate with the cluster head with least communication cost and high residual energy. Simulation results show that ADEEC achieves longer stability period, network lifetime,and throughput than the other classical clustering algorithms. 展开更多
关键词 in-vehicle WIRELESS Sensor network ROUTING PROTOCOL CLUSTERING Energy EFFICIENCY
下载PDF
Resting-state brain network remodeling after different nerve reconstruction surgeries:a functional magnetic resonance imaging study in brachial plexus injury rats
9
作者 Yunting Xiang Xiangxin Xing +6 位作者 Xuyun Hua Yuwen Zhang Xin Xue Jiajia Wu Mouxiong Zheng He Wang Jianguang Xu 《Neural Regeneration Research》 SCIE CAS 2025年第5期1495-1504,共10页
Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network lev... Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery. 展开更多
关键词 brain functional networks end-to-end nerve transfer end-to-side nerve transfer independent component analysis nerve repair peripheral plexus injury resting-state functional connectivity
下载PDF
Measurement of in-vehicle volatile organic compounds under static conditions 被引量:28
10
作者 YOU Ke-wei GE Yun-shan +4 位作者 HU Bin NING Zhan-wu ZHAO Shou-tang ZHANG Yan-ni XIE Peng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第10期1208-1213,共6页
The types and quantities of volatile organic compounds (VOCs) inside vehicles have been determined in one new vehicle and two old vehicles under static conditions using the Thermodesorber-Gas Chromatograph/Mass Spec... The types and quantities of volatile organic compounds (VOCs) inside vehicles have been determined in one new vehicle and two old vehicles under static conditions using the Thermodesorber-Gas Chromatograph/Mass Spectrometer (TD-GC/MS). Air sampling and analysis was conducted under the requirement of USEPA Method TO-17. A room-size, environment test chamber was utilized to provide stable and accurate control of the required environmental conditions (temperature, humidity, horizontal and vertical airflow velocity, and background VOCs concentration). Static vehicle testing demonstrated that although the amount of total volatile organic compounds (TVOC) detected within each vehicle was relatively distinct (4940 μg/m^3 in the new vehicle A, 1240 μg/m^3 in used vehicle B, and 132 μg/m^3 in used vehicle C), toluene, xylene, some aromatic compounds, and various C7-C12 alkanes were among the predominant VOC species in all three vehicles tested. In addition, tetramethyl succinonitrile, possibly derived from foam cushions was detected in vehicle B. The types and quantities of VOCs varied considerably according to various kinds of factors, such as, vehicle age, vehicle model, temperature, air exchange rate, and environment airflow velocity. For example, if the airflow velocity increases from 0.1 m/s to 0.7 m/s, the vehicle's air exchange rate increases from 0.15 h^-1 to 0.67 h^-1, and in-vehicle TVOC concentration decreases from 1780 to 1201 μg/m^3. 展开更多
关键词 volatile organic compounds (VOCs) in-vehicle trim material static conditions
下载PDF
Pluggable multitask diffractive neural networks based on cascaded metasurfaces 被引量:4
11
作者 Cong He Dan Zhao +8 位作者 Fei Fan Hongqiang Zhou Xin Li Yao Li Junjie Li Fei Dong Yin-Xiao Miao Yongtian Wang Lingling Huang 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第2期23-31,共9页
Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been c... Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been considered as one of the powerful tools in promoting the fields of imaging processing and object recognition.However,the existing optical system architecture cannot be reconstructed to the realization of multi-functional artificial intelligence systems simultaneously.To push the development of this issue,we propose the pluggable diffractive neural networks(P-DNN),a general paradigm resorting to the cascaded metasurfaces,which can be applied to recognize various tasks by switching internal plug-ins.As the proof-of-principle,the recognition functions of six types of handwritten digits and six types of fashions are numerical simulated and experimental demonstrated at near-infrared regimes.Encouragingly,the proposed paradigm not only improves the flexibility of the optical neural networks but paves the new route for achieving high-speed,low-power and versatile artificial intelligence systems. 展开更多
关键词 optical neural networks diffractive deep neural networks cascaded metasurfaces
下载PDF
Screening biomarkers for spinal cord injury using weighted gene co-expression network analysis and machine learning 被引量:5
12
作者 Xiaolu Li Ye Yang +3 位作者 Senming Xu Yuchang Gui Jianmin Chen Jianwen Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2723-2734,共12页
Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is s... Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is still limited understanding of the peripheral immune inflammato ry response in spinal cord inju ry.In this study.we obtained microRNA expression profiles from the peripheral blood of patients with spinal co rd injury using high-throughput sequencing.We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus(GEO)database(GSE151371).We identified 54 differentially expressed microRNAs and 1656 diffe rentially expressed genes using bioinformatics approaches.Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways,such as neutrophil extracellular trap formation pathway,T cell receptor signaling pathway,and nuclear factor-κB signal pathway,we re abnormally activated or inhibited in spinal cord inju ry patient samples.We applied an integrated strategy that combines weighted gene co-expression network analysis,LASSO logistic regression,and SVM-RFE algorithm and identified three biomarke rs associated with spinal cord injury:ANO10,BST1,and ZFP36L2.We verified the expression levels and diagnostic perfo rmance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve.Quantitative polymerase chain reaction results showed that ANO20 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients.We also constructed a small RNA-mRNA interaction network using Cytoscape.Additionally,we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal co rd injury patients using the CIBERSORT tool.The proportions of naive B cells,plasma cells,monocytes,and neutrophils were increased while the proportions of memory B cells,CD8^(+)T cells,resting natural killer cells,resting dendritic cells,and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects,and ANO10,BST1 and ZFP26L2we re closely related to the proportion of certain immune cell types.The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal co rd inju ry and suggest that ANO10,BST2,and ZFP36L2 are potential biomarkers for spinal cord injury.The study was registe red in the Chinese Clinical Trial Registry(registration No.ChiCTR2200066985,December 12,2022). 展开更多
关键词 bioinformatics analysis BIOMARKER CIBERSORT GEO dataset LASSO miRNA-mRNA network RNA sequencing spinal cord injury SVM-RFE weighted gene co-expression network analysis
下载PDF
Social-ecological perspective on the suicidal behaviour factors of early adolescents in China:a network analysis 被引量:4
13
作者 Yuan Li Peiying Li +5 位作者 Mengyuan Yuan Yonghan Li Xueying Zhang Juan Chen Gengfu Wang Puyu Su 《General Psychiatry》 CSCD 2024年第1期143-150,共8页
Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To expl... Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To explore the risk and protective factors of suicidal behaviours(ie,suicidal ideation,plans and attempts)in early adolescence in China using a social-ecological perspective.Methods Using data from the cross-sectional project‘Healthy and Risky Behaviours Among Middle School Students in Anhui Province,China',stratified random cluster sampling was used to select 5724 middle school students who had completed self-report questionnaires in November 2020.Network analysis was employed to examine the correlates of suicidal ideation,plans and attempts at four levels,namely individual(sex,academic performance,serious physical llness/disability,history of self-harm,depression,impulsivity,sleep problems,resilience),family(family economic status,relationship with mother,relationship with father,family violence,childhood abuse,parental mental illness),school(relationship with teachers,relationship with classmates,school-bullying victimisation and perpetration)and social(social support,satisfaction with society).Results In total,37.9%,19.0%and 5.5%of the students reported suicidal ideation,plans and attempts in the past 6 months,respectively.The estimated network revealed that suicidal ideation,plans and attempts were collectively associated with a history of self-harm,sleep problems,childhood abuse,school bullying and victimisation.Centrality analysis indicated that the most influential nodes in the network were history of self-harm and childhood abuse.Notably,the network also showed unique correlates of suicidal ideation(sex,weight=0.60;impulsivity,weight=0.24;family violence,weight=0.17;relationship with teachers,weight=-0.03;school-bullying perpetration,weight=0.22),suicidal plans(social support,weight=-0.15)and suicidal attempts(relationship with mother,weight=-0.10;parental mental llness,weight=0.61).Conclusions This study identified the correlates of suicidal ideation,plans and attempts,and provided practical implications for suicide prevention for young adolescents in China.Firstly,this study highlighted the importance of joint interventions across multiple departments.Secondly,the common risk factors of suicidal ideation,plans and attempts were elucidated.Thirdly,this study proposed target interventions to address the unique influencing factors of suicidal ideation,plans and attempts. 展开更多
关键词 network ANALYSIS PREVENTION
下载PDF
Image super‐resolution via dynamic network 被引量:1
14
作者 Chunwei Tian Xuanyu Zhang +2 位作者 Qi Zhang Mingming Yang Zhaojie Ju 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第4期837-849,共13页
Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely exp... Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely express predicted high‐quality images for complex scenes.A dynamic network for image super‐resolution(DSRNet)is presented,which contains a residual enhancement block,wide enhancement block,feature refine-ment block and construction block.The residual enhancement block is composed of a residual enhanced architecture to facilitate hierarchical features for image super‐resolution.To enhance robustness of obtained super‐resolution model for complex scenes,a wide enhancement block achieves a dynamic architecture to learn more robust information to enhance applicability of an obtained super‐resolution model for varying scenes.To prevent interference of components in a wide enhancement block,a refine-ment block utilises a stacked architecture to accurately learn obtained features.Also,a residual learning operation is embedded in the refinement block to prevent long‐term dependency problem.Finally,a construction block is responsible for reconstructing high‐quality images.Designed heterogeneous architecture can not only facilitate richer structural information,but also be lightweight,which is suitable for mobile digital devices.Experimental results show that our method is more competitive in terms of performance,recovering time of image super‐resolution and complexity.The code of DSRNet can be obtained at https://github.com/hellloxiaotian/DSRNet. 展开更多
关键词 CNN dynamic network image super‐resolution lightweight network
下载PDF
Chip Design for In-Vehicle System Transmitter
15
作者 Majeed Nader John Liu 《Journal of Computer and Communications》 2018年第5期66-82,共17页
This paper presents embedded system design of the In-Vehicle System (IVS) for the European Union (EU) emergency call (eCall) system. The IVS transmitter modules are designed, developed and implemented on a field progr... This paper presents embedded system design of the In-Vehicle System (IVS) for the European Union (EU) emergency call (eCall) system. The IVS transmitter modules are designed, developed and implemented on a field programmable gate array (FPGA) device. The modules are simulated, synthesized, and optimized to be loaded on a reconfigurable device as a system-on-chip (SoC) for the IVS electronic device. All the modules of the transmitter are designed as a single embedded module. The bench-top test is completed for testing and verification of the developed modules. The hardware architecture and interfaces are discussed. The IVS signal processing time is analyzed for multiple frequencies. A range of appropriate frequency and two hardware interfaces are proposed. A state-of-the-art FPGA design is employed as a first implementation approach for the IVS prototyping platform. This work is used as an initial step to implement all the modules of the IVS on a single SoC chip. 展开更多
关键词 EU Emergency-Call (eCall) FPGA in-vehicle System TRANSMITTER SYSTEM-ON-CHIP
下载PDF
Mapping Network-Coordinated Stacked Gated Recurrent Units for Turbulence Prediction 被引量:1
16
作者 Zhiming Zhang Shangce Gao +2 位作者 MengChu Zhou Mengtao Yan Shuyang Cao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1331-1341,共11页
Accurately predicting fluid forces acting on the sur-face of a structure is crucial in engineering design.However,this task becomes particularly challenging in turbulent flow,due to the complex and irregular changes i... Accurately predicting fluid forces acting on the sur-face of a structure is crucial in engineering design.However,this task becomes particularly challenging in turbulent flow,due to the complex and irregular changes in the flow field.In this study,we propose a novel deep learning method,named mapping net-work-coordinated stacked gated recurrent units(MSU),for pre-dicting pressure on a circular cylinder from velocity data.Specifi-cally,our coordinated learning strategy is designed to extract the most critical velocity point for prediction,a process that has not been explored before.In our experiments,MSU extracts one point from a velocity field containing 121 points and utilizes this point to accurately predict 100 pressure points on the cylinder.This method significantly reduces the workload of data measure-ment in practical engineering applications.Our experimental results demonstrate that MSU predictions are highly similar to the real turbulent data in both spatio-temporal and individual aspects.Furthermore,the comparison results show that MSU predicts more precise results,even outperforming models that use all velocity field points.Compared with state-of-the-art methods,MSU has an average improvement of more than 45%in various indicators such as root mean square error(RMSE).Through comprehensive and authoritative physical verification,we estab-lished that MSU’s prediction results closely align with pressure field data obtained in real turbulence fields.This confirmation underscores the considerable potential of MSU for practical applications in real engineering scenarios.The code is available at https://github.com/zhangzm0128/MSU. 展开更多
关键词 Convolutional neural network deep learning recurrent neural network turbulence prediction wind load predic-tion.
下载PDF
Applying an Improved Dung Beetle Optimizer Algorithm to Network Traffic Identification 被引量:1
17
作者 Qinyue Wu Hui Xu Mengran Liu 《Computers, Materials & Continua》 SCIE EI 2024年第3期4091-4107,共17页
Network traffic identification is critical for maintaining network security and further meeting various demands of network applications.However,network traffic data typically possesses high dimensionality and complexi... Network traffic identification is critical for maintaining network security and further meeting various demands of network applications.However,network traffic data typically possesses high dimensionality and complexity,leading to practical problems in traffic identification data analytics.Since the original Dung Beetle Optimizer(DBO)algorithm,Grey Wolf Optimization(GWO)algorithm,Whale Optimization Algorithm(WOA),and Particle Swarm Optimization(PSO)algorithm have the shortcomings of slow convergence and easily fall into the local optimal solution,an Improved Dung Beetle Optimizer(IDBO)algorithm is proposed for network traffic identification.Firstly,the Sobol sequence is utilized to initialize the dung beetle population,laying the foundation for finding the global optimal solution.Next,an integration of levy flight and golden sine strategy is suggested to give dung beetles a greater probability of exploring unvisited areas,escaping from the local optimal solution,and converging more effectively towards a global optimal solution.Finally,an adaptive weight factor is utilized to enhance the search capabilities of the original DBO algorithm and accelerate convergence.With the improvements above,the proposed IDBO algorithm is then applied to traffic identification data analytics and feature selection,as so to find the optimal subset for K-Nearest Neighbor(KNN)classification.The simulation experiments use the CICIDS2017 dataset to verify the effectiveness of the proposed IDBO algorithm and compare it with the original DBO,GWO,WOA,and PSO algorithms.The experimental results show that,compared with other algorithms,the accuracy and recall are improved by 1.53%and 0.88%in binary classification,and the Distributed Denial of Service(DDoS)class identification is the most effective in multi-classification,with an improvement of 5.80%and 0.33%for accuracy and recall,respectively.Therefore,the proposed IDBO algorithm is effective in increasing the efficiency of traffic identification and solving the problem of the original DBO algorithm that converges slowly and falls into the local optimal solution when dealing with high-dimensional data analytics and feature selection for network traffic identification. 展开更多
关键词 network security network traffic identification data analytics feature selection dung beetle optimizer
下载PDF
Computing Power Network:A Survey 被引量:1
18
作者 Sun Yukun Lei Bo +4 位作者 Liu Junlin Huang Haonan Zhang Xing Peng Jing Wang Wenbo 《China Communications》 SCIE CSCD 2024年第9期109-145,共37页
With the rapid development of cloud computing,edge computing,and smart devices,computing power resources indicate a trend of ubiquitous deployment.The traditional network architecture cannot efficiently leverage these... With the rapid development of cloud computing,edge computing,and smart devices,computing power resources indicate a trend of ubiquitous deployment.The traditional network architecture cannot efficiently leverage these distributed computing power resources due to computing power island effect.To overcome these problems and improve network efficiency,a new network computing paradigm is proposed,i.e.,Computing Power Network(CPN).Computing power network can connect ubiquitous and heterogenous computing power resources through networking to realize computing power scheduling flexibly.In this survey,we make an exhaustive review on the state-of-the-art research efforts on computing power network.We first give an overview of computing power network,including definition,architecture,and advantages.Next,a comprehensive elaboration of issues on computing power modeling,information awareness and announcement,resource allocation,network forwarding,computing power transaction platform and resource orchestration platform is presented.The computing power network testbed is built and evaluated.The applications and use cases in computing power network are discussed.Then,the key enabling technologies for computing power network are introduced.Finally,open challenges and future research directions are presented as well. 展开更多
关键词 computing power modeling computing power network computing power scheduling information awareness network forwarding
下载PDF
IDS-INT:Intrusion detection system using transformer-based transfer learning for imbalanced network traffic 被引量:3
19
作者 Farhan Ullah Shamsher Ullah +1 位作者 Gautam Srivastava Jerry Chun-Wei Lin 《Digital Communications and Networks》 SCIE CSCD 2024年第1期190-204,共15页
A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a... A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a subcategory of attack,host information,malicious scripts,etc.In terms of network perspectives,network traffic may contain an imbalanced number of harmful attacks when compared to normal traffic.It is challenging to identify a specific attack due to complex features and data imbalance issues.To address these issues,this paper proposes an Intrusion Detection System using transformer-based transfer learning for Imbalanced Network Traffic(IDS-INT).IDS-INT uses transformer-based transfer learning to learn feature interactions in both network feature representation and imbalanced data.First,detailed information about each type of attack is gathered from network interaction descriptions,which include network nodes,attack type,reference,host information,etc.Second,the transformer-based transfer learning approach is developed to learn detailed feature representation using their semantic anchors.Third,the Synthetic Minority Oversampling Technique(SMOTE)is implemented to balance abnormal traffic and detect minority attacks.Fourth,the Convolution Neural Network(CNN)model is designed to extract deep features from the balanced network traffic.Finally,the hybrid approach of the CNN-Long Short-Term Memory(CNN-LSTM)model is developed to detect different types of attacks from the deep features.Detailed experiments are conducted to test the proposed approach using three standard datasets,i.e.,UNsWNB15,CIC-IDS2017,and NSL-KDD.An explainable AI approach is implemented to interpret the proposed method and develop a trustable model. 展开更多
关键词 network intrusion detection Transfer learning Features extraction Imbalance data Explainable AI CYBERSECURITY
下载PDF
Activation Redistribution Based Hybrid Asymmetric Quantization Method of Neural Networks 被引量:1
20
作者 Lu Wei Zhong Ma Chaojie Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期981-1000,共20页
The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedd... The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedded devices.In order to reduce the complexity and overhead of deploying neural networks on Integeronly hardware,most current quantization methods use a symmetric quantization mapping strategy to quantize a floating-point neural network into an integer network.However,although symmetric quantization has the advantage of easier implementation,it is sub-optimal for cases where the range could be skewed and not symmetric.This often comes at the cost of lower accuracy.This paper proposed an activation redistribution-based hybrid asymmetric quantizationmethod for neural networks.The proposedmethod takes data distribution into consideration and can resolve the contradiction between the quantization accuracy and the ease of implementation,balance the trade-off between clipping range and quantization resolution,and thus improve the accuracy of the quantized neural network.The experimental results indicate that the accuracy of the proposed method is 2.02%and 5.52%higher than the traditional symmetric quantization method for classification and detection tasks,respectively.The proposed method paves the way for computationally intensive neural network models to be deployed on devices with limited computing resources.Codes will be available on https://github.com/ycjcy/Hybrid-Asymmetric-Quantization. 展开更多
关键词 QUANTIZATION neural network hybrid asymmetric ACCURACY
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部