In this study, In<sub>2</sub>S<sub>3</sub> thin films have been deposited on ITO and fluorine-tinoxide FTO coated glass substrates by single source vacuum thermal evaporation annealed in vacuum...In this study, In<sub>2</sub>S<sub>3</sub> thin films have been deposited on ITO and fluorine-tinoxide FTO coated glass substrates by single source vacuum thermal evaporation annealed in vacuum a 300°C - 400°C for 1 h. The samples structure was characterized by X-ray diffraction, revealing the quadratic structure of In<sub>2</sub>S<sub>3</sub> and the crystallinity depends on the temperature of annealing and nature of substrate. The various structural parameters, such as, crystalline size, dislocation density, strain and texture coefficient were calculated. The optical properties show that the refractive index dispersion data obeyed the single oscillator of the Wemple-DiDomenico model. By using this model, the dispersion parameters and the high-frequency dielectric constant were determined. The Hall Effect has been studied at room temperature. The Hall voltages, the Hall coefficient (RH) and mobility (μH) have been measured at different magnetic and electric fields. The films show n-type behavior irrespective of temperature and composition.展开更多
Ag- and Sn-doped In2S3 thin films were deposited on glass substrates using the thermal evaporation technique. The doping was realized by thermal diffusion. The influences of Ag and Sn impurities on the electrical, str...Ag- and Sn-doped In2S3 thin films were deposited on glass substrates using the thermal evaporation technique. The doping was realized by thermal diffusion. The influences of Ag and Sn impurities on the electrical, structural, morphological, and optical properties of the In2S3 films were investigated. In all deposited samples, the x-ray diffraction spectra revealed the formation of cubic In2S3 phase. A significant increase in the crystallite size was observed after Ag doping,while the doping of Sn slightly decreased the crystallite size. The x-ray photoelectron spectroscopy verified the diffusion of Ag and Sn into the In2S3 films after annealing. The optical study illustrated that Ag doping resulted in a reduction of the optical band gap while Sn doping led to a widening of the gap. Optical properties were investigated to determine the optical constants. Besides, it was found that the resistivity decreases significantly either after Ag or Sn incorporation. The study demonstrates that the Sn-doped In2S3 thin films are more suitable for buffer layer application in solar cells than the Ag-doped In2S3 thin films.展开更多
Copper sulfide thin films are deposited onto different substrates at room temperature using the thermal evaporation technique. X-ray diffraction spectra show that the film has an orthorhombicchalcocite (7-Cu2S) phas...Copper sulfide thin films are deposited onto different substrates at room temperature using the thermal evaporation technique. X-ray diffraction spectra show that the film has an orthorhombicchalcocite (7-Cu2S) phase. The atomic force microscopy images indicate that the film exhibits nanoparticles with an average size of nearly 44 nm. Specrtophotometric measurements for the transmittance and reflectance are carried out at normal incidence in a spectral wavelength range of 450 nm-2500 nm. The refractive index, n, as well as the absorption index, k is calculated. Some dispersion parameters are determined. The analyses of el and e2 reveal several absorption peaks. The analysis of the spectral behavior of the absorption coefficient, c~, in the absorption region reveals direct and indirect allowed transitions. The dark electrical resistivity is studied as a function of film thickness and temperature. Tellier's model is adopted for determining the mean free path and bulk resistance.展开更多
Chemical bath deposition technique has been used to deposit Ni-doped Sb2S3 thin films onto glass substrate. Doping was carried out by adding 1, 3 and 5 wt% of Ni. Bath temperature was kept as 10℃ and films were annea...Chemical bath deposition technique has been used to deposit Ni-doped Sb2S3 thin films onto glass substrate. Doping was carried out by adding 1, 3 and 5 wt% of Ni. Bath temperature was kept as 10℃ and films were annealed at 250℃ under vacuum. Polycrystalline nature of films with an orthorhombic phase was analyzed by X-ray diffraction technique. Scanning electron microscopy was used for morphological study which shows that grains are spherical. Optical measurements using transmittance data indicated that films have a direct band gap of 1.00 - 2.60 eV with an absorption coefficient of ~104 cm<sup>-1</sup> in visible range. The average value of electrical conductivity was calculated as 1.66, 1.11 and 1.06 (Ω·cm)<sup>-1</sup> for as-deposited films and 1.90, 2.08 and 1.15 (Ω·cm)<sup>-1</sup> for annealed films while refractive indices were found as 2.18 - 3.38 and 1.91 - 3.74 respectively. The obtained films can be used for solar cell applications due to their good absorbing properties like higher absorption coefficient and refractive index values.展开更多
In this study,K+-doped γ-Ce2 S3 was successfully prepared via a gas-solid reaction method using CeO2,K2 CO3,and CS2 as raw materials.The effects of the suitable sulfide system and different molar ratios of K to Ce(nK...In this study,K+-doped γ-Ce2 S3 was successfully prepared via a gas-solid reaction method using CeO2,K2 CO3,and CS2 as raw materials.The effects of the suitable sulfide system and different molar ratios of K to Ce(nK/Ce=0-0.30) on the phase composition,crystal structure,chromaticity and thermal stability ofγ-Ce2 S3 were systematically investigated.Pure γ-Ce2 S3 was obtained by calcining the doped samples at840℃ for 150 min.After calcination at the same temperature the undoped K+samples exhibit a pure α-phase.Samples with a K/Ce molar ratio(nK/Ce) of 0.10-0.25 comprise only the γ-phase;and when nK/Ce exceeds 0.25,a new heterogeneous phase,KCeS2,emerges.For values of nK/Ce in the range of0-0.25,the γ-Ce2 S3 lattice parameters gradually increases with increasing K+ content.When nK/Ceexceedes 0.25,the lattice parameters remains unchanged.As nK/Ce increased,the synthesized color gradually changes from red to orange—red and finally,to yellow.The redness value a* reaches the maximum(L*=33.86,a*=36.68,b*=38.15) when nK/Ce=0.10,The nK/Ce=0.10 composition continues to exhibit the y-phase after heat treatment at 420℃ for 10 min in air.The K+doping fills the internal vacancies of γ-Ce2 S3 and formed a solid solution,which is beneficial for the stability of its lattice,thus improving the thermal stability of γ-Ce2 S3(from 350 to 420℃).展开更多
Sb_2S_3 is a kind of stable light absorption materials with suitable band gap, promising for practical applications. Here we demonstrate that the engineering on the composition ratio enables significant improvement in...Sb_2S_3 is a kind of stable light absorption materials with suitable band gap, promising for practical applications. Here we demonstrate that the engineering on the composition ratio enables significant improvement in the device performance. We found that the co-evaporation of sulfur or antimony with Sb_2S_3 is able to generate sulfur-or antimony-rich Sb_2S_3. This composition does not generate essential influence on the crystal structure, optical band and film formability, while the carrier concentration and transport dynamics are considerably changed. The device investigations show that sulfur-rich Sb_2S_3 film is favorable for efficient energy conversion, while antimony-rich Sb_2S_3 leads to greatly decreased device performance. With optimizations on the sulfur-rich Sb_2S_3 films, the final power conversion efficiency reaches5.8%, which is the highest efficiency in thermal evaporation derived Sb_2S_3 solar cells.展开更多
文摘In this study, In<sub>2</sub>S<sub>3</sub> thin films have been deposited on ITO and fluorine-tinoxide FTO coated glass substrates by single source vacuum thermal evaporation annealed in vacuum a 300°C - 400°C for 1 h. The samples structure was characterized by X-ray diffraction, revealing the quadratic structure of In<sub>2</sub>S<sub>3</sub> and the crystallinity depends on the temperature of annealing and nature of substrate. The various structural parameters, such as, crystalline size, dislocation density, strain and texture coefficient were calculated. The optical properties show that the refractive index dispersion data obeyed the single oscillator of the Wemple-DiDomenico model. By using this model, the dispersion parameters and the high-frequency dielectric constant were determined. The Hall Effect has been studied at room temperature. The Hall voltages, the Hall coefficient (RH) and mobility (μH) have been measured at different magnetic and electric fields. The films show n-type behavior irrespective of temperature and composition.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61076063,61340051,and 61306120)the Natural Science Foundation of Fujian Province,China(Grant No.2014J05073)
文摘Ag- and Sn-doped In2S3 thin films were deposited on glass substrates using the thermal evaporation technique. The doping was realized by thermal diffusion. The influences of Ag and Sn impurities on the electrical, structural, morphological, and optical properties of the In2S3 films were investigated. In all deposited samples, the x-ray diffraction spectra revealed the formation of cubic In2S3 phase. A significant increase in the crystallite size was observed after Ag doping,while the doping of Sn slightly decreased the crystallite size. The x-ray photoelectron spectroscopy verified the diffusion of Ag and Sn into the In2S3 films after annealing. The optical study illustrated that Ag doping resulted in a reduction of the optical band gap while Sn doping led to a widening of the gap. Optical properties were investigated to determine the optical constants. Besides, it was found that the resistivity decreases significantly either after Ag or Sn incorporation. The study demonstrates that the Sn-doped In2S3 thin films are more suitable for buffer layer application in solar cells than the Ag-doped In2S3 thin films.
文摘Copper sulfide thin films are deposited onto different substrates at room temperature using the thermal evaporation technique. X-ray diffraction spectra show that the film has an orthorhombicchalcocite (7-Cu2S) phase. The atomic force microscopy images indicate that the film exhibits nanoparticles with an average size of nearly 44 nm. Specrtophotometric measurements for the transmittance and reflectance are carried out at normal incidence in a spectral wavelength range of 450 nm-2500 nm. The refractive index, n, as well as the absorption index, k is calculated. Some dispersion parameters are determined. The analyses of el and e2 reveal several absorption peaks. The analysis of the spectral behavior of the absorption coefficient, c~, in the absorption region reveals direct and indirect allowed transitions. The dark electrical resistivity is studied as a function of film thickness and temperature. Tellier's model is adopted for determining the mean free path and bulk resistance.
文摘Chemical bath deposition technique has been used to deposit Ni-doped Sb2S3 thin films onto glass substrate. Doping was carried out by adding 1, 3 and 5 wt% of Ni. Bath temperature was kept as 10℃ and films were annealed at 250℃ under vacuum. Polycrystalline nature of films with an orthorhombic phase was analyzed by X-ray diffraction technique. Scanning electron microscopy was used for morphological study which shows that grains are spherical. Optical measurements using transmittance data indicated that films have a direct band gap of 1.00 - 2.60 eV with an absorption coefficient of ~104 cm<sup>-1</sup> in visible range. The average value of electrical conductivity was calculated as 1.66, 1.11 and 1.06 (Ω·cm)<sup>-1</sup> for as-deposited films and 1.90, 2.08 and 1.15 (Ω·cm)<sup>-1</sup> for annealed films while refractive indices were found as 2.18 - 3.38 and 1.91 - 3.74 respectively. The obtained films can be used for solar cell applications due to their good absorbing properties like higher absorption coefficient and refractive index values.
基金Project supported by National Natural Science Foundation of China (51462010)Natural Science Foundation of Jiangxi Province(20161BAB206132,20171ACB20022)The Innovation fund of Jingdezhen Ceramic Institute (JYC-201803)。
文摘In this study,K+-doped γ-Ce2 S3 was successfully prepared via a gas-solid reaction method using CeO2,K2 CO3,and CS2 as raw materials.The effects of the suitable sulfide system and different molar ratios of K to Ce(nK/Ce=0-0.30) on the phase composition,crystal structure,chromaticity and thermal stability ofγ-Ce2 S3 were systematically investigated.Pure γ-Ce2 S3 was obtained by calcining the doped samples at840℃ for 150 min.After calcination at the same temperature the undoped K+samples exhibit a pure α-phase.Samples with a K/Ce molar ratio(nK/Ce) of 0.10-0.25 comprise only the γ-phase;and when nK/Ce exceeds 0.25,a new heterogeneous phase,KCeS2,emerges.For values of nK/Ce in the range of0-0.25,the γ-Ce2 S3 lattice parameters gradually increases with increasing K+ content.When nK/Ceexceedes 0.25,the lattice parameters remains unchanged.As nK/Ce increased,the synthesized color gradually changes from red to orange—red and finally,to yellow.The redness value a* reaches the maximum(L*=33.86,a*=36.68,b*=38.15) when nK/Ce=0.10,The nK/Ce=0.10 composition continues to exhibit the y-phase after heat treatment at 420℃ for 10 min in air.The K+doping fills the internal vacancies of γ-Ce2 S3 and formed a solid solution,which is beneficial for the stability of its lattice,thus improving the thermal stability of γ-Ce2 S3(from 350 to 420℃).
基金supported by the National Natural Science Foundation of China (22005293, U19A2092 and 22275180)the National Key Research and Development Program of China (2019YFA0405600)+1 种基金the Institute of Energy, Hefei Comprehensive National Science Center (21KZS212)the Collaborative Innovation Program of Hefei Science Center, CAS。
基金supported by the Fundamental Research Funds for the Central Universities(WK2060140023,CX3430000001,and WK2060140024)the Major/Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology(2016FXZY003)the National Natural Science Foundation of China(U1732150)
文摘Sb_2S_3 is a kind of stable light absorption materials with suitable band gap, promising for practical applications. Here we demonstrate that the engineering on the composition ratio enables significant improvement in the device performance. We found that the co-evaporation of sulfur or antimony with Sb_2S_3 is able to generate sulfur-or antimony-rich Sb_2S_3. This composition does not generate essential influence on the crystal structure, optical band and film formability, while the carrier concentration and transport dynamics are considerably changed. The device investigations show that sulfur-rich Sb_2S_3 film is favorable for efficient energy conversion, while antimony-rich Sb_2S_3 leads to greatly decreased device performance. With optimizations on the sulfur-rich Sb_2S_3 films, the final power conversion efficiency reaches5.8%, which is the highest efficiency in thermal evaporation derived Sb_2S_3 solar cells.