We report the studies of In0.15Al0.85N/AlN/GaN metal-insulator-semiconductor(MIS)high electron mobility transistors with a field plate(FP)and a plasma-enhanced chemical vapor deposition(PECVD)SiN layer as the gate die...We report the studies of In0.15Al0.85N/AlN/GaN metal-insulator-semiconductor(MIS)high electron mobility transistors with a field plate(FP)and a plasma-enhanced chemical vapor deposition(PECVD)SiN layer as the gate dielectric as well as the surface passivation layer(FP-MIS HEMTs).Compared with conventional In0.15Al0.85N/AlN/GaN high electron mobility transistors(HEMTs)of the same dimensions,the FP-MIS HEMTs exhibit a maximum drain current of 1211 mA/mm,a breakdown voltage of 120 V,an effective suppression of current collapse,about one order of magnitude reduction in reverse gate leakage,as well as more than five orders of magnitude reduction in forward gate leakage.These results confirm the potential of PECVD SiN in the application of the InAlN/AlN/GaN FP-MIS HEMTs.展开更多
Lattice-matched InAlN/AlN/GaN high electron mobility transistors (HEMTs) grown on sapphire substrate by using low-pressure metallorganic chemical vapor deposition were prepared, and the comprehensive DC characteristic...Lattice-matched InAlN/AlN/GaN high electron mobility transistors (HEMTs) grown on sapphire substrate by using low-pressure metallorganic chemical vapor deposition were prepared, and the comprehensive DC characteristics were implemented by Keithley 4200 Semiconductor Characterization System. The experimental results indicated that a maximum drain current over 400 mA/mm and a peak external transconductance of 215 mS/mm can be achieved in the initial HEMTs. However, after the devices endured a 10-h thermal aging in furnace under nitrogen condition at 300 ℃, the maximum reduction of saturation drain current and external transconductance at high gate-source voltage and drain-source voltage were 30% and 35%, respectively. Additionally, an increased drain-source leakage current was observed at three-terminal off-state. It was inferred that the degradation was mainly related to electron-trapping defects in the InAlN barrier layer.展开更多
Improved radio-frequency(RF)power performance of InAlN/GaN high electron mobility transistor(HEMT)is achieved by optimizing the rapid thermal annealing(RTA)process for high-performance low-voltage terminal application...Improved radio-frequency(RF)power performance of InAlN/GaN high electron mobility transistor(HEMT)is achieved by optimizing the rapid thermal annealing(RTA)process for high-performance low-voltage terminal applications.By optimizing the RTA temperature and time,the optimal annealing condition is found to enable low parasitic resistance and thus a high-performance device.Besides,compared with the non-optimized RTA HEMT,the optimized one demonstrates smoother ohmic metal surface morphology and better heterojunction quality including the less degraded heterojunction sheet resistance and clearer heterojunction interfaces as well as negligible material out-diffusion from the barrier to the channel and buffer.Benefiting from the lowered parasitic resistance,improved maximum output current density of 2279 mA·mm^(-1)and higher peak extrinsic transconductance of 526 mS·mm^(-1)are obtained for the optimized RTA HEMT.In addition,due to the superior heterojunction quality,the optimized HEMT shows reduced off-state leakage current of 7×10^(-3)mA·mm^(-1)and suppressed current collapse of only 4%,compared with those of 1×10^(-1)mA·mm^(-1)and 15%for the non-optimized one.At 8 GHz and V_(DS)of 6 V,a significantly improved power-added efficiency of 62%and output power density of 0.71 W·mm^(-1)are achieved for the optimized HEMT,as the result of the improvement in output current,knee voltage,off-state leakage current,and current collapse,which reveals the tremendous advantage of the optimized RTA HEMT in high-performance low-voltage terminal applications.展开更多
This paper studied the low-resistance ohmic contacts on InAlN/GaN with metal–organic chemical vapor deposition(MOCVD)regrowth technique.The 150-nm regrown n-InGaN exhibits a low sheet resistance of 31Ω/□,resulting ...This paper studied the low-resistance ohmic contacts on InAlN/GaN with metal–organic chemical vapor deposition(MOCVD)regrowth technique.The 150-nm regrown n-InGaN exhibits a low sheet resistance of 31Ω/□,resulting in an extremely low contact resistance of 0.102Ω·mm between n^(+)-InGaN and InAlN/GaN channels.Mask-free regrowth process was also used to significantly improve the sheet resistance of InAlN/GaN with MOCVD regrown ohmic contacts.Then,the diffusion mechanism between n^(+)-InGaN and InAlN during regrowth process was investigated with electrical and structural characterizations,which could benefit the further process optimization.展开更多
基金the National Natural Science Foundation of China under Grant No 61204085the Aeronautical Science Foundation of China under Grant No 20122481002the Fundamental Research Funds for the Central Universities under Grant No K5051225013.
文摘We report the studies of In0.15Al0.85N/AlN/GaN metal-insulator-semiconductor(MIS)high electron mobility transistors with a field plate(FP)and a plasma-enhanced chemical vapor deposition(PECVD)SiN layer as the gate dielectric as well as the surface passivation layer(FP-MIS HEMTs).Compared with conventional In0.15Al0.85N/AlN/GaN high electron mobility transistors(HEMTs)of the same dimensions,the FP-MIS HEMTs exhibit a maximum drain current of 1211 mA/mm,a breakdown voltage of 120 V,an effective suppression of current collapse,about one order of magnitude reduction in reverse gate leakage,as well as more than five orders of magnitude reduction in forward gate leakage.These results confirm the potential of PECVD SiN in the application of the InAlN/AlN/GaN FP-MIS HEMTs.
基金Supported by National Natural Science Foundation of China(No.60876009)Natural Science Foundation of Tianjin(No.09JCZDJC16600)
文摘Lattice-matched InAlN/AlN/GaN high electron mobility transistors (HEMTs) grown on sapphire substrate by using low-pressure metallorganic chemical vapor deposition were prepared, and the comprehensive DC characteristics were implemented by Keithley 4200 Semiconductor Characterization System. The experimental results indicated that a maximum drain current over 400 mA/mm and a peak external transconductance of 215 mS/mm can be achieved in the initial HEMTs. However, after the devices endured a 10-h thermal aging in furnace under nitrogen condition at 300 ℃, the maximum reduction of saturation drain current and external transconductance at high gate-source voltage and drain-source voltage were 30% and 35%, respectively. Additionally, an increased drain-source leakage current was observed at three-terminal off-state. It was inferred that the degradation was mainly related to electron-trapping defects in the InAlN barrier layer.
基金Project supported by the National Key Research and Development Project of China (Grant No.2021YFB3602404)part by the National Natural Science Foundation of China (Grant Nos.61904135 and 62234009)+4 种基金the Key R&D Program of Guangzhou (Grant No.202103020002)Wuhu and Xidian University special fund for industry-university-research cooperation (Grant No.XWYCXY-012021014-HT)the Fundamental Research Funds for the Central Universities (Grant No.XJS221110)the Natural Science Foundation of Shaanxi,China (Grant No.2022JM-377)the Innovation Fund of Xidian University (Grant No.YJSJ23019)。
文摘Improved radio-frequency(RF)power performance of InAlN/GaN high electron mobility transistor(HEMT)is achieved by optimizing the rapid thermal annealing(RTA)process for high-performance low-voltage terminal applications.By optimizing the RTA temperature and time,the optimal annealing condition is found to enable low parasitic resistance and thus a high-performance device.Besides,compared with the non-optimized RTA HEMT,the optimized one demonstrates smoother ohmic metal surface morphology and better heterojunction quality including the less degraded heterojunction sheet resistance and clearer heterojunction interfaces as well as negligible material out-diffusion from the barrier to the channel and buffer.Benefiting from the lowered parasitic resistance,improved maximum output current density of 2279 mA·mm^(-1)and higher peak extrinsic transconductance of 526 mS·mm^(-1)are obtained for the optimized RTA HEMT.In addition,due to the superior heterojunction quality,the optimized HEMT shows reduced off-state leakage current of 7×10^(-3)mA·mm^(-1)and suppressed current collapse of only 4%,compared with those of 1×10^(-1)mA·mm^(-1)and 15%for the non-optimized one.At 8 GHz and V_(DS)of 6 V,a significantly improved power-added efficiency of 62%and output power density of 0.71 W·mm^(-1)are achieved for the optimized HEMT,as the result of the improvement in output current,knee voltage,off-state leakage current,and current collapse,which reveals the tremendous advantage of the optimized RTA HEMT in high-performance low-voltage terminal applications.
基金the Fundamental Research Funds for the National Key Research and Development Project of China(Grant No.2020YFB1807403)the National Natural Science Foundation of China(Grant Nos.62174125 and 62131014)+1 种基金the Fundamental Research Funds for the Central Universities(Grant Nos.QTZX22022 and YJS2213)the Innovation Fund of Xidian University.
文摘This paper studied the low-resistance ohmic contacts on InAlN/GaN with metal–organic chemical vapor deposition(MOCVD)regrowth technique.The 150-nm regrown n-InGaN exhibits a low sheet resistance of 31Ω/□,resulting in an extremely low contact resistance of 0.102Ω·mm between n^(+)-InGaN and InAlN/GaN channels.Mask-free regrowth process was also used to significantly improve the sheet resistance of InAlN/GaN with MOCVD regrown ohmic contacts.Then,the diffusion mechanism between n^(+)-InGaN and InAlN during regrowth process was investigated with electrical and structural characterizations,which could benefit the further process optimization.
基金Supported by the National Natural Science Foundation of China(61822407,62074161,62004213)the National Key Research and De-velopment Program of China under(2018YFE0125700)。