Li Mn_(2)O_(4)(LMO)is the substance of choice for small and medium-sized energy storage materials in daily life.In this work,Li3InCl6(LIC)is prepared on the surface of LiMn_(2)O_(4)by hydrothermal method using InCl_(3...Li Mn_(2)O_(4)(LMO)is the substance of choice for small and medium-sized energy storage materials in daily life.In this work,Li3InCl6(LIC)is prepared on the surface of LiMn_(2)O_(4)by hydrothermal method using InCl_(3)and LiCl as raw materials.This method stabilizes the LMO crystal structure by uniformly coating the LIC on the LMO surface and effectively maintains the morphology of LMO crystals during the cycling process.SEM and EDS analysis confirm the morphology and homogeneity of the synthesized material LIC on the LMO surface.The prepared material is put into a battery,and the charge-discharge test is carried out at 0.5 C and 1 C.The results show that the LIC surface-modified samples exhibit more than 6%higher cycling performance than the unmodified samples after long cycling.展开更多
基金supported by Guangxi Higher Education Key Laboratory of Advanced MaterialsCenter of Ecological Collaborative Innovation for Aluminum Industry in Guangxi+4 种基金CITIC Dameng Mining Industries Limited-Guangxi University Joint Research Institute of Manganese Resources Utilization and Advanced Materials TechnologyGuangxi University-CITIC Dameng Mining Industries Limited Joint Base of Postgraduate CultivationNational Natural Science Foundation of China(No.11364003)Guangxi Innovation Driven Development Project(Nos.AA17204100,AA18118052)the Natural Science Foundation of Guangxi Province(No.2018GXNSFAA138186)。
文摘Li Mn_(2)O_(4)(LMO)is the substance of choice for small and medium-sized energy storage materials in daily life.In this work,Li3InCl6(LIC)is prepared on the surface of LiMn_(2)O_(4)by hydrothermal method using InCl_(3)and LiCl as raw materials.This method stabilizes the LMO crystal structure by uniformly coating the LIC on the LMO surface and effectively maintains the morphology of LMO crystals during the cycling process.SEM and EDS analysis confirm the morphology and homogeneity of the synthesized material LIC on the LMO surface.The prepared material is put into a battery,and the charge-discharge test is carried out at 0.5 C and 1 C.The results show that the LIC surface-modified samples exhibit more than 6%higher cycling performance than the unmodified samples after long cycling.