We study the controlling of the Goos-Hanchen (GH) shifts in reflected and transmitted light beams in the triple coupled InGaAs/GaAs quantum dot (QD) nanostructures with electron tunneling and incoherent pumping fi...We study the controlling of the Goos-Hanchen (GH) shifts in reflected and transmitted light beams in the triple coupled InGaAs/GaAs quantum dot (QD) nanostructures with electron tunneling and incoherent pumping field. It is shown that the lateral shift can become either large negative or large positive, which can be controlled by the electron tunneling and the rate of incoherent pump field in different incident angles. It is also demonstrated that the properties of the OH shifts are strongly dependent on the probe absorption beam of the intracavity medium due to the switching from superluminal light propagation to subluminal behavior or vice versa. Our suggested system can be considered as a new theoretical method for developing a new nano-optoelectronic sensor.展开更多
Self-assembled In 0.35Ga 0.65As/GaAs quantum dots with low indium content are grown under different growth temperature and investigated using contact atomic force microscopy(AFM).In order to obtain high density ...Self-assembled In 0.35Ga 0.65As/GaAs quantum dots with low indium content are grown under different growth temperature and investigated using contact atomic force microscopy(AFM).In order to obtain high density and high uniformity of quantum dots,optimized conditions are concluded for MBE growth.Optimized growth conditions also compared with these of InAs/GaAs quantum dots.This will be very useful for InGaAs/GaAs QDs optoelectronic applications,such as quantum dots lasers and quantum dots infrared photodetectors.展开更多
The performance of the photodetector is significantly impacted by the inherent surface faults in GaAs nanowires(NWs).We combined three-dimensional(3D)gallium arsenide nanowires with zero-dimensional(0D)WS_(2) quantum ...The performance of the photodetector is significantly impacted by the inherent surface faults in GaAs nanowires(NWs).We combined three-dimensional(3D)gallium arsenide nanowires with zero-dimensional(0D)WS_(2) quantum dot(QDs)materials in a simple and convenient way to form a heterogeneous structure.Various performance enhancements have been realized through the formation of typeⅡenergy bands in heterostructures,opening up new research directions for the future development of photodetector devices.This work successfully fabricated a high-sensitivity photodetector based on WS_(2)QDs/GaAs NWs heterostructure.Under 660 nm laser excitation,the photodetector exhibits a responsivity of 368.07 A/W,a detectivity of 2.7×10^(12)Jones,an external quantum efficiency of 6.47×10^(2)%,a low-noise equivalent power of 2.27×10^(-17)W·Hz^(-1/2),a response time of 0.3 s,and a recovery time of 2.12 s.This study provides a new solution for the preparation of high-performance GaAs detectors and promotes the development of optoelectronic devices for GaAs NWs.展开更多
The effcts of various InGaAs layers on the structural and optical properties of InAs self-assembled quantum dots( QDs ) grown by molecular-beam epitaxy (MBE) were investigated. The emission wavelength of 1317 nm ...The effcts of various InGaAs layers on the structural and optical properties of InAs self-assembled quantum dots( QDs ) grown by molecular-beam epitaxy (MBE) were investigated. The emission wavelength of 1317 nm was obtained by embedding InAs QDs in InGaAs / GaAs quantum well. The temperature-dependent and time-resolved photoluminescence ( TDPL and TRPL ) were used to study the dynomic characteristics of carriers. InGaAs cap layer may improve the quality of quantum dots for the strain relaxation around QDs, which results in a stronger PL inteasity and an increase of PL peak lifetime up to 170 K. We found that InGaAs buffer layer may reduce the PL peak lifetime of InAs QDs, which is due to the buffer layer accelerating the carrier migration. The results also show that InGaAs cap layer can increase the temperature point when the thermal reemission and nonradiative recombination contribute significantly to the carrier dynamics.展开更多
The effects of indium composition in InGaAs interlayer and on optical properties of GaSb/InGaAs QD material on morphology of GaSb/InGaAs quantum dots (QDs) system are studied. AFM images show that the change of the ...The effects of indium composition in InGaAs interlayer and on optical properties of GaSb/InGaAs QD material on morphology of GaSb/InGaAs quantum dots (QDs) system are studied. AFM images show that the change of the indium composition in InGaAs interlayer can alter the GaSb QD morphology. It is found that low indium composition in InGaAs interlayer can promote the formation of QDs, while high indium composition can inhibit the formation of QDs. The photoluminescence (PL) spectra of GaSb/InGaAs QDs at 8 K under low excitation power indicate that the third root of the excitation power is linear with the peak position, which provides a direct evidence for their luminescence belonging to type-Ⅱ material optical transition. The PL spectra at 8 K under an excitation power of 90row show that the optical properties of GaSb/InGaAs QD material system can be affected by the indium composition in the InGaAs interlayer, and the PL peak position is linear with the indium composition. The optical properties of GaSb/InGaAs QDs can be improved by adjusting the indium composition in the InGaAs interlayer.展开更多
The resonant excitation is used to generate photo-excited carriers in quantum wells to observe the process of the carriers transportation by comparing the photoluminescence results between quantum wells with and witho...The resonant excitation is used to generate photo-excited carriers in quantum wells to observe the process of the carriers transportation by comparing the photoluminescence results between quantum wells with and without a p-n junction. It is observed directly in experiment that most of the photo-excited carriers in quantum wells with a p-n junction escape from quantum wells and form photoeurrent rather than relax to the ground state of the quantum wells. The photo absorption coei^cient of multiple quantum wells is also enhanced by a p-n junction. The results pave a novel way for solar cells and photodetectors making use of low-dimensional structure.展开更多
Photoluminescence (PL) and lasing properties of InAs/GaAs quantum dots (QDs) with different growth procedures prepared by metalorganic chemical vapour deposition are studied. PL measurements show that the low grow...Photoluminescence (PL) and lasing properties of InAs/GaAs quantum dots (QDs) with different growth procedures prepared by metalorganic chemical vapour deposition are studied. PL measurements show that the low growth rate QD sample has a larger PL intensity and a narrower PL line width than the high growth rate sample. During rapid thermal annealing, however, the low growth rate sample shows a greater blueshift of PL peak wavelength. This is caused by the larger InAs layer thickness which results from the larger 2-3 dimensional transition critical layer thickness for the QDs in the low-growth-rate sample. A growth technique including growth interruption and in-situ annealing, named indium flush method, is used during the growth of GaAs cap layer, which can flatten the GaAs surface effectively. Though the method results in a blueshift of PL peak wavelength and a broadening of PL line width, it is essential for the fabrication of room temperature working QD lasers.展开更多
The first operation of an electrically pumped 1.3μm InAs/GaAs quantum-dot laser was previously reported epitaxially grown on Si (100) substrate. Here the direct epitaxial growth condition of 1.3μm InAs/OaAs quantu...The first operation of an electrically pumped 1.3μm InAs/GaAs quantum-dot laser was previously reported epitaxially grown on Si (100) substrate. Here the direct epitaxial growth condition of 1.3μm InAs/OaAs quantum on a Si substrate is further investigated using atomic force microscopy, etch pit density and temperature-dependent photoluminescence (PL) measurements. The PL for Si-based InAs/GaAs quantum dots appears to be very sensitive to the initial OaAs nucleation temperature and thickness with strongest room-temperature emission at 40000 (17Onto nucleation layer thickness), due to the lower density of defects generated under this growth condition, and stronger carrier confinement within the quantum dots.展开更多
Resonably good agreement among the photoluminescence,absorption,in-plane photocurrent and theoretical calculation demonstrates the effect of GaAs barrier width on the strain in In_(0.20)Ga_(0.80)As/GaAs single quantum...Resonably good agreement among the photoluminescence,absorption,in-plane photocurrent and theoretical calculation demonstrates the effect of GaAs barrier width on the strain in In_(0.20)Ga_(0.80)As/GaAs single quantum wells.The strain of each sample has been deduced.展开更多
The threading dislocations(TDs)in GaAs/Si epitaxial layers due to the lattice mismatch seriously degrade the performance of the lasers grown on silicon.The insertion of InAs quantum dots(QDs)acting as dislocation filt...The threading dislocations(TDs)in GaAs/Si epitaxial layers due to the lattice mismatch seriously degrade the performance of the lasers grown on silicon.The insertion of InAs quantum dots(QDs)acting as dislocation filters is a pretty good alternative to solving this problem.In this paper,a finite element method(FEM)is proposed to calculate the critical condition for InAs/GaAs QDs bending TDs into interfacial misfit dislocations(MDs).Making a comparison of elastic strain energy between the two isolated systems,a reasonable result is obtained.The effect of the cap layer thickness and the base width of QDs on TD bending are studied,and the results show that the bending area ratio of single QD(the bending area divided by the area of the QD base)is evidently affected by the two factors.Moreover,we present a method to evaluate the bending capability of single-layer QDs and multi-layer QDs.For the QD with 24-nm base width and 5-nm cap layer thickness,taking the QD density of 10^(11) cm^(-2) into account,the bending area ratio of single-layer QDs(the area of bending TD divided by the area of QD layer)is about 38.71%.With inserting five-layer InAs QDs,the TD density decreases by 91.35%.The results offer the guidelines for designing the QD dislocation filters and provide an important step towards realizing the photonic integration circuits on silicon.展开更多
A highly efficient single-photon source based on a semiconductor quantum dot (QD) is a promising candidate in quantum information processing. We report a single-photon source based on self-assembled GaAs QDs in nano...A highly efficient single-photon source based on a semiconductor quantum dot (QD) is a promising candidate in quantum information processing. We report a single-photon source based on self-assembled GaAs QDs in nanowires with an extraction efficiency of 14%. The second-order correlation function g(2) (0) at saturate excitation power is estimated to be 0.28. The measured polarization of QD emission depends on the geometric relations between the directions of PL collection and the long axis of nanowires.展开更多
The time-resolved photoluminescence and steady photoluminescence (TRPL and PL) spectra on self-assembled InAs/GaAs quantum dots (QDs) are investigated. By depositing GaAs/InAs short period superlattices (SLs), 1.48μm...The time-resolved photoluminescence and steady photoluminescence (TRPL and PL) spectra on self-assembled InAs/GaAs quantum dots (QDs) are investigated. By depositing GaAs/InAs short period superlattices (SLs), 1.48μm emission is obtained at room temperature. Temperature dependent PL measurements show that the PL intensity of the emission is very steady. It decays only to half as the temperature increases from 15K to room temperature, while at the same time, the intensity of the other emission decreases by a factor of 5 orders of magnitude. These two emissions are attributed to large-size QDs and short period superlattices (SLs), respectively. Large-size QDs are easier to capture and confine carriers, which benefits the lifetime of PL, and therefore makes the emission intensity insensitive to the temperature.展开更多
Left-handedness with three zero-absorption windows is achieved in a triple-quantum-dot system. With the typ- ical parameters of a GaAs/AlGaAs heterostructure, the simultaneous negative relative electric permittivity a...Left-handedness with three zero-absorption windows is achieved in a triple-quantum-dot system. With the typ- ical parameters of a GaAs/AlGaAs heterostructure, the simultaneous negative relative electric permittivity and magnetic permeability are obtained by the adjustable incoherent pumping field and two inter-dot tunnelings. Furthermore, three zero-absorption windows in the left-handedness frequency bands are observed. The left- handedness with zero-absorption in the solid state heterostrueture may solve the challenges not only in the left-handed materials achieved by the photonic resonant scheme but also in the application of negative refractive materials with a large amount of absorption.展开更多
用 PL谱测试研究了 Ga As和不同 In组份 Inx Ga1 - x As(x=0 .1,0 .2 ,0 .3)覆盖层对分子束外延生长的 In As/Ga As自组织量子点发光特性的影响 .用 Inx Ga1 - x As外延层覆盖 In As/ Ga As量子点 ,比用 Ga As做覆盖层其发光峰能量向低...用 PL谱测试研究了 Ga As和不同 In组份 Inx Ga1 - x As(x=0 .1,0 .2 ,0 .3)覆盖层对分子束外延生长的 In As/Ga As自组织量子点发光特性的影响 .用 Inx Ga1 - x As外延层覆盖 In As/ Ga As量子点 ,比用 Ga As做覆盖层其发光峰能量向低能端移动 ,发光峰半高宽变窄 ,量子点发光峰能量随温度的红移幅度变小 .理论计算证实这是由于覆盖层 Inx Ga1 - x As减小了 In As表面应力导致发光峰红移 ,而 In元素有效抑制了 In As/ Ga As界面组份的混杂 ,量子点的均匀性得到改善 ,PL 谱半高宽变窄 .用 In Ga As覆盖的 In0 .5 Ga0 .5 As/ Ga As自组织量子点实现了 1.3μm发光 ,室温下 PL谱半高宽为 19.2 me V。展开更多
文摘We study the controlling of the Goos-Hanchen (GH) shifts in reflected and transmitted light beams in the triple coupled InGaAs/GaAs quantum dot (QD) nanostructures with electron tunneling and incoherent pumping field. It is shown that the lateral shift can become either large negative or large positive, which can be controlled by the electron tunneling and the rate of incoherent pump field in different incident angles. It is also demonstrated that the properties of the OH shifts are strongly dependent on the probe absorption beam of the intracavity medium due to the switching from superluminal light propagation to subluminal behavior or vice versa. Our suggested system can be considered as a new theoretical method for developing a new nano-optoelectronic sensor.
文摘Self-assembled In 0.35Ga 0.65As/GaAs quantum dots with low indium content are grown under different growth temperature and investigated using contact atomic force microscopy(AFM).In order to obtain high density and high uniformity of quantum dots,optimized conditions are concluded for MBE growth.Optimized growth conditions also compared with these of InAs/GaAs quantum dots.This will be very useful for InGaAs/GaAs QDs optoelectronic applications,such as quantum dots lasers and quantum dots infrared photodetectors.
文摘The performance of the photodetector is significantly impacted by the inherent surface faults in GaAs nanowires(NWs).We combined three-dimensional(3D)gallium arsenide nanowires with zero-dimensional(0D)WS_(2) quantum dot(QDs)materials in a simple and convenient way to form a heterogeneous structure.Various performance enhancements have been realized through the formation of typeⅡenergy bands in heterostructures,opening up new research directions for the future development of photodetector devices.This work successfully fabricated a high-sensitivity photodetector based on WS_(2)QDs/GaAs NWs heterostructure.Under 660 nm laser excitation,the photodetector exhibits a responsivity of 368.07 A/W,a detectivity of 2.7×10^(12)Jones,an external quantum efficiency of 6.47×10^(2)%,a low-noise equivalent power of 2.27×10^(-17)W·Hz^(-1/2),a response time of 0.3 s,and a recovery time of 2.12 s.This study provides a new solution for the preparation of high-performance GaAs detectors and promotes the development of optoelectronic devices for GaAs NWs.
文摘The effcts of various InGaAs layers on the structural and optical properties of InAs self-assembled quantum dots( QDs ) grown by molecular-beam epitaxy (MBE) were investigated. The emission wavelength of 1317 nm was obtained by embedding InAs QDs in InGaAs / GaAs quantum well. The temperature-dependent and time-resolved photoluminescence ( TDPL and TRPL ) were used to study the dynomic characteristics of carriers. InGaAs cap layer may improve the quality of quantum dots for the strain relaxation around QDs, which results in a stronger PL inteasity and an increase of PL peak lifetime up to 170 K. We found that InGaAs buffer layer may reduce the PL peak lifetime of InAs QDs, which is due to the buffer layer accelerating the carrier migration. The results also show that InGaAs cap layer can increase the temperature point when the thermal reemission and nonradiative recombination contribute significantly to the carrier dynamics.
基金Supported by the Science and Technology Planning Projects of Guangdong Province under Grant Nos 2014B050505020,2015B010114007 and 2014B090904045the Research Fund for the Doctoral Program of Higher Education of China under Grant No 20134407110008+1 种基金the Guangzhou Science and Technology Project of Guangdong Province under Grant No 2016201604030027the Zhongshan Science and Technology Project of Guangdong Province under Grant No 2013B3FC0003
文摘The effects of indium composition in InGaAs interlayer and on optical properties of GaSb/InGaAs QD material on morphology of GaSb/InGaAs quantum dots (QDs) system are studied. AFM images show that the change of the indium composition in InGaAs interlayer can alter the GaSb QD morphology. It is found that low indium composition in InGaAs interlayer can promote the formation of QDs, while high indium composition can inhibit the formation of QDs. The photoluminescence (PL) spectra of GaSb/InGaAs QDs at 8 K under low excitation power indicate that the third root of the excitation power is linear with the peak position, which provides a direct evidence for their luminescence belonging to type-Ⅱ material optical transition. The PL spectra at 8 K under an excitation power of 90row show that the optical properties of GaSb/InGaAs QD material system can be affected by the indium composition in the InGaAs interlayer, and the PL peak position is linear with the indium composition. The optical properties of GaSb/InGaAs QDs can be improved by adjusting the indium composition in the InGaAs interlayer.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11574362,61210014,and 11374340the Innovative Clean-Energy Research and Application Program of Beijing Municipal Science and Technology Commission under Grant No Z151100003515001
文摘The resonant excitation is used to generate photo-excited carriers in quantum wells to observe the process of the carriers transportation by comparing the photoluminescence results between quantum wells with and without a p-n junction. It is observed directly in experiment that most of the photo-excited carriers in quantum wells with a p-n junction escape from quantum wells and form photoeurrent rather than relax to the ground state of the quantum wells. The photo absorption coei^cient of multiple quantum wells is also enhanced by a p-n junction. The results pave a novel way for solar cells and photodetectors making use of low-dimensional structure.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60706009, 90401025, 60736036, 60777021 and60476009)the National Key Basic Research Program of China (Grant Nos 2006CB604901 and 2006CB604902)the National High Technology Research and Development Program of China (Grant Nos 2006AA01Z256, 2007AA03Z419 and 2007AA03Z417)
文摘Photoluminescence (PL) and lasing properties of InAs/GaAs quantum dots (QDs) with different growth procedures prepared by metalorganic chemical vapour deposition are studied. PL measurements show that the low growth rate QD sample has a larger PL intensity and a narrower PL line width than the high growth rate sample. During rapid thermal annealing, however, the low growth rate sample shows a greater blueshift of PL peak wavelength. This is caused by the larger InAs layer thickness which results from the larger 2-3 dimensional transition critical layer thickness for the QDs in the low-growth-rate sample. A growth technique including growth interruption and in-situ annealing, named indium flush method, is used during the growth of GaAs cap layer, which can flatten the GaAs surface effectively. Though the method results in a blueshift of PL peak wavelength and a broadening of PL line width, it is essential for the fabrication of room temperature working QD lasers.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11434010,11574356 and 11504415the Funds from the Royal Society,the Defense Science Technology Laboratory and UK Engineering and Physics Research Council
文摘The first operation of an electrically pumped 1.3μm InAs/GaAs quantum-dot laser was previously reported epitaxially grown on Si (100) substrate. Here the direct epitaxial growth condition of 1.3μm InAs/OaAs quantum on a Si substrate is further investigated using atomic force microscopy, etch pit density and temperature-dependent photoluminescence (PL) measurements. The PL for Si-based InAs/GaAs quantum dots appears to be very sensitive to the initial OaAs nucleation temperature and thickness with strongest room-temperature emission at 40000 (17Onto nucleation layer thickness), due to the lower density of defects generated under this growth condition, and stronger carrier confinement within the quantum dots.
文摘Resonably good agreement among the photoluminescence,absorption,in-plane photocurrent and theoretical calculation demonstrates the effect of GaAs barrier width on the strain in In_(0.20)Ga_(0.80)As/GaAs single quantum wells.The strain of each sample has been deduced.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61874148,61974141,and 61674020)the Beijing Natural Science Foundation,China(Grant No.4192043)+3 种基金the National Key Research and Development Program of China(Grant No.2018YFB2200104)the Fund from the Beijing Municipal Science&Technology Commission,China(Grant No.Z191100004819012)the Project of the State Key Laboratory of Information Photonics and Optical Communications,Beijing University of Posts and Telecommunications,China(Grant No.IPOC2018ZT01)the 111 Project of China(Grant No.B07005).
文摘The threading dislocations(TDs)in GaAs/Si epitaxial layers due to the lattice mismatch seriously degrade the performance of the lasers grown on silicon.The insertion of InAs quantum dots(QDs)acting as dislocation filters is a pretty good alternative to solving this problem.In this paper,a finite element method(FEM)is proposed to calculate the critical condition for InAs/GaAs QDs bending TDs into interfacial misfit dislocations(MDs).Making a comparison of elastic strain energy between the two isolated systems,a reasonable result is obtained.The effect of the cap layer thickness and the base width of QDs on TD bending are studied,and the results show that the bending area ratio of single QD(the bending area divided by the area of the QD base)is evidently affected by the two factors.Moreover,we present a method to evaluate the bending capability of single-layer QDs and multi-layer QDs.For the QD with 24-nm base width and 5-nm cap layer thickness,taking the QD density of 10^(11) cm^(-2) into account,the bending area ratio of single-layer QDs(the area of bending TD divided by the area of QD layer)is about 38.71%.With inserting five-layer InAs QDs,the TD density decreases by 91.35%.The results offer the guidelines for designing the QD dislocation filters and provide an important step towards realizing the photonic integration circuits on silicon.
基金Supported by the National Key Basic Research Program of China under Grant No 2013CB922304the National Natural Science Foundation of China under Grant Nos 11474275 and 11204297
文摘A highly efficient single-photon source based on a semiconductor quantum dot (QD) is a promising candidate in quantum information processing. We report a single-photon source based on self-assembled GaAs QDs in nanowires with an extraction efficiency of 14%. The second-order correlation function g(2) (0) at saturate excitation power is estimated to be 0.28. The measured polarization of QD emission depends on the geometric relations between the directions of PL collection and the long axis of nanowires.
基金Natural Science Foundation of Fujian Province(A992001)
文摘The time-resolved photoluminescence and steady photoluminescence (TRPL and PL) spectra on self-assembled InAs/GaAs quantum dots (QDs) are investigated. By depositing GaAs/InAs short period superlattices (SLs), 1.48μm emission is obtained at room temperature. Temperature dependent PL measurements show that the PL intensity of the emission is very steady. It decays only to half as the temperature increases from 15K to room temperature, while at the same time, the intensity of the other emission decreases by a factor of 5 orders of magnitude. These two emissions are attributed to large-size QDs and short period superlattices (SLs), respectively. Large-size QDs are easier to capture and confine carriers, which benefits the lifetime of PL, and therefore makes the emission intensity insensitive to the temperature.
基金Supported by the National Natural Science Foundation of China under Grant No 61205205the Foundation for Personnel Training Projects of Yunnan Province under Grant No KKSY201207068
文摘Left-handedness with three zero-absorption windows is achieved in a triple-quantum-dot system. With the typ- ical parameters of a GaAs/AlGaAs heterostructure, the simultaneous negative relative electric permittivity and magnetic permeability are obtained by the adjustable incoherent pumping field and two inter-dot tunnelings. Furthermore, three zero-absorption windows in the left-handedness frequency bands are observed. The left- handedness with zero-absorption in the solid state heterostrueture may solve the challenges not only in the left-handed materials achieved by the photonic resonant scheme but also in the application of negative refractive materials with a large amount of absorption.
文摘用 PL谱测试研究了 Ga As和不同 In组份 Inx Ga1 - x As(x=0 .1,0 .2 ,0 .3)覆盖层对分子束外延生长的 In As/Ga As自组织量子点发光特性的影响 .用 Inx Ga1 - x As外延层覆盖 In As/ Ga As量子点 ,比用 Ga As做覆盖层其发光峰能量向低能端移动 ,发光峰半高宽变窄 ,量子点发光峰能量随温度的红移幅度变小 .理论计算证实这是由于覆盖层 Inx Ga1 - x As减小了 In As表面应力导致发光峰红移 ,而 In元素有效抑制了 In As/ Ga As界面组份的混杂 ,量子点的均匀性得到改善 ,PL 谱半高宽变窄 .用 In Ga As覆盖的 In0 .5 Ga0 .5 As/ Ga As自组织量子点实现了 1.3μm发光 ,室温下 PL谱半高宽为 19.2 me V。