The nano-patterned InGaN film was used in green InGaN/GaN multiple quantum wells(MQWs)structure,to relieve the unpleasantly existing mismatch between high indium content InGaN and GaN,as well as to enhance the light o...The nano-patterned InGaN film was used in green InGaN/GaN multiple quantum wells(MQWs)structure,to relieve the unpleasantly existing mismatch between high indium content InGaN and GaN,as well as to enhance the light output.The different self-assembled nano-masks were formed on InGaN by annealing thin Ni layers of different thicknesses.Whereafter,the InGaN films were etched into nano-patterned films.Compared with the green MQWs structure grown on untreated InGaN film,which on nano-patterned InGaN had better luminous performance.Among them the MQWs performed best when 3 nm thick Ni film was used as mask,because that optimally balanced the effects of nano-patterned InGaN on the crystal quality and the light output.展开更多
Ag纳米粒子的形貌对InGaN/Ga N多量子阱(MQWs)的光致发光(PL)效率有着显著影响。本文采用离子束沉积(IBD)技术将Ag沉积在InGaN/Ga N MQWs上,然后通过快速热退火处理制备Ag纳米粒子。通过改变Ag的沉积时间获得了具有不同Ag纳米粒子形貌...Ag纳米粒子的形貌对InGaN/Ga N多量子阱(MQWs)的光致发光(PL)效率有着显著影响。本文采用离子束沉积(IBD)技术将Ag沉积在InGaN/Ga N MQWs上,然后通过快速热退火处理制备Ag纳米粒子。通过改变Ag的沉积时间获得了具有不同Ag纳米粒子形貌的样品。用原子力显微镜对各样品的Ag纳米粒子形貌和尺寸进行了表征,并且测试了吸收谱、室温和变温PL谱及时间分辨光致发光(TRPL)谱。结果表明:随着Ag沉积时间的延长,所得Ag纳米粒子粒径增大,粒子纵横比先增大后减小且吸收谱峰红移。由于不同形貌的Ag纳米粒子在入射光作用下产生的局域表面等离激元(LSPs)与MQWs中激子耦合强度不同,光发射能力也不同,与没有Ag纳米粒子的样品相比,沉积时间为15 s的样品室温PL积分强度被抑制6.74倍,沉积时间为25 s和35 s的样品室温PL积分强度分别增强1.55和1.72倍且峰位发生红移,沉积时间为45 s的样品室温PL积分强度基本没有变化。TRPL与变温PL的测试结果证明,室温PL积分强度的改变是由于LSPs与MQWs中的激子耦合作用引起的。纵横比大且吸收谱与MQWs的PL谱交叠大的Ag纳米粒子能够更好地增强InGaN/Ga N MQWs的发光。展开更多
Waveguide characteristics of symmetrical separate confinement heterojunction multi quantum well (SCH MQW) AlGaN/GaN/InGaN laser diode (LD) are studied by using one dimensional (1 D) transfer matrix waveguide appro...Waveguide characteristics of symmetrical separate confinement heterojunction multi quantum well (SCH MQW) AlGaN/GaN/InGaN laser diode (LD) are studied by using one dimensional (1 D) transfer matrix waveguide approach.Aiming at photon confinement factor,threshold current,and power efficiency,layers design for SCH MQW LD is optimized.The optimal layers parameters are 3 periods In 0.02 Ga 0.98 N/In 0.15 Ga 0.85 N QW for active layer,In 0.1 Ga 0 9 N for waveguide layer with 90nm thick,and 120×(2 5nm/2 5nm) Al 0.25 Ga 0 75 N/GaN supper lattices for cladding layer with the laser wavelength of 396 6nm.展开更多
In order to investigate the inherent polarization intensity in InGaN/GaN multiple quantum well(MQW) structures,the electroluminescence(EL) spectra of three samples with different GaN barrier thicknesses of 21.3 nm, 11...In order to investigate the inherent polarization intensity in InGaN/GaN multiple quantum well(MQW) structures,the electroluminescence(EL) spectra of three samples with different GaN barrier thicknesses of 21.3 nm, 11.4 nm, and 6.5 nm are experimentally studied. All of the EL spectra present a similar blue-shift under the low-level current injection,and then turns to a red-shift tendency when the current increases to a specific value, which is defined as the turning point.The value of this turning point differs from one another for the three InGaN/GaN MQW samples. Sample A, which has the GaN barrier thickness of 21.3 nm, shows the highest current injection level at the turning point as well as the largest value of blue-shift. It indicates that sample A has the maximum intensity of the polarization field. The red-shift of the EL spectra results from the vertical electron leakage in InGaN/GaN MQWs and the corresponding self-heating effect under the high-level current injection. As a result, it is an effective approach to evaluate the polarization field in the InGaN/GaN MQW structures by using the injection current level at the turning point and the blue-shift of the EL spectra profiles.展开更多
The epitaxial growth of novel GaN-based light-emitting diode(LED) on Si(100) substrate has proved challenging.Here in this work, we investigate a monolithic phosphor-free semi-polar InGaN/GaN near white light-emitting...The epitaxial growth of novel GaN-based light-emitting diode(LED) on Si(100) substrate has proved challenging.Here in this work, we investigate a monolithic phosphor-free semi-polar InGaN/GaN near white light-emitting diode, which is formed on a micro-striped Si(100) substrate by metal organic chemical vapor deposition. By controlling the size of micro-stripe, InGaN/GaN multiple quantum wells(MQWs) with different well widths are grown on semi-polar(1■01)planes. Besides, indium-rich quantum dots are observed in InGaN wells by transmission electron microscopy, which is caused by indium phase separation. Due to the different widths of MQWs and indium phase separation, the indium content changes from the center to the side of the micro-stripe. Various indium content provides the wideband emission. This unique property allows the semipolar InGaN/GaN MQWs to emit wideband light, leading to the near white light emission.展开更多
与商用硅基或磷化镓光电二极管相比,In Ga N基可见光光电二极管在窄带通可见光应用领域表现出明显优势。到目前为止,In Ga N/Ga N MQWs为有源层结构和In Ga N体基结构光电二极管都表现出暗电流较大,外量子效率较低,探测带边接近紫外范...与商用硅基或磷化镓光电二极管相比,In Ga N基可见光光电二极管在窄带通可见光应用领域表现出明显优势。到目前为止,In Ga N/Ga N MQWs为有源层结构和In Ga N体基结构光电二极管都表现出暗电流较大,外量子效率较低,探测带边接近紫外范围等缺点。虽然通过器件工艺和结构设计,可以提升器件的性能,但是In Ga N材料外延技术方面的突破才是器件提升性能的根本。展开更多
To improve the logic stability of conventional multi-valued logic(MVL) circuits designed with a GaNbased resonate tunneling diode(RTD), we proposed a GaN/InGaN/AlGaN multi-quantum well(MQW) RTD. The proposed RTD...To improve the logic stability of conventional multi-valued logic(MVL) circuits designed with a GaNbased resonate tunneling diode(RTD), we proposed a GaN/InGaN/AlGaN multi-quantum well(MQW) RTD. The proposed RTD was simulated through solving the coupled Schrodinger and Poisson equations in the numerical non-equilibrium Green's function(NEGF) method on the TCAD platform. The proposed RTD was grown layer by layer in epitaxial technologies. Simulated results indicate that its current-voltage characteristic appears to have a wider total negative differential resistance region than those of conventional ones and an obvious hysteresis loop at room temperature. To increase the Al composite of AIGaN barrier layers properly results in increasing of both the total negative differential resistance region width and the hysteresis loop width, which is helpful to improve the logic stability of MVL circuits. Moreover, the complement resonate tunneling transistor pair consisted of the proposed RTDs or the proposed RTD and enhanced mode HEMT controlled RTD8 is capable of generating versatile MVL modes at different supply voltages less than 3.3 V, which is very attractive for implementing more complex MVL function digital integrated circuits and systems with less devices, super high speed linear or nonlinear ADC and voltage sensors with a built-in super high speed ADC function.展开更多
基金the National Natural Science Foundation of China(Grant No.62074120)the State Key Laboratory on Integrated Optoelectronics(Grant No.IOSKL2018KF10)the Fundamental Research Funds for the Central Universities(Grant No.JB211108).
文摘The nano-patterned InGaN film was used in green InGaN/GaN multiple quantum wells(MQWs)structure,to relieve the unpleasantly existing mismatch between high indium content InGaN and GaN,as well as to enhance the light output.The different self-assembled nano-masks were formed on InGaN by annealing thin Ni layers of different thicknesses.Whereafter,the InGaN films were etched into nano-patterned films.Compared with the green MQWs structure grown on untreated InGaN film,which on nano-patterned InGaN had better luminous performance.Among them the MQWs performed best when 3 nm thick Ni film was used as mask,because that optimally balanced the effects of nano-patterned InGaN on the crystal quality and the light output.
文摘Ag纳米粒子的形貌对InGaN/Ga N多量子阱(MQWs)的光致发光(PL)效率有着显著影响。本文采用离子束沉积(IBD)技术将Ag沉积在InGaN/Ga N MQWs上,然后通过快速热退火处理制备Ag纳米粒子。通过改变Ag的沉积时间获得了具有不同Ag纳米粒子形貌的样品。用原子力显微镜对各样品的Ag纳米粒子形貌和尺寸进行了表征,并且测试了吸收谱、室温和变温PL谱及时间分辨光致发光(TRPL)谱。结果表明:随着Ag沉积时间的延长,所得Ag纳米粒子粒径增大,粒子纵横比先增大后减小且吸收谱峰红移。由于不同形貌的Ag纳米粒子在入射光作用下产生的局域表面等离激元(LSPs)与MQWs中激子耦合强度不同,光发射能力也不同,与没有Ag纳米粒子的样品相比,沉积时间为15 s的样品室温PL积分强度被抑制6.74倍,沉积时间为25 s和35 s的样品室温PL积分强度分别增强1.55和1.72倍且峰位发生红移,沉积时间为45 s的样品室温PL积分强度基本没有变化。TRPL与变温PL的测试结果证明,室温PL积分强度的改变是由于LSPs与MQWs中的激子耦合作用引起的。纵横比大且吸收谱与MQWs的PL谱交叠大的Ag纳米粒子能够更好地增强InGaN/Ga N MQWs的发光。
文摘Waveguide characteristics of symmetrical separate confinement heterojunction multi quantum well (SCH MQW) AlGaN/GaN/InGaN laser diode (LD) are studied by using one dimensional (1 D) transfer matrix waveguide approach.Aiming at photon confinement factor,threshold current,and power efficiency,layers design for SCH MQW LD is optimized.The optimal layers parameters are 3 periods In 0.02 Ga 0.98 N/In 0.15 Ga 0.85 N QW for active layer,In 0.1 Ga 0 9 N for waveguide layer with 90nm thick,and 120×(2 5nm/2 5nm) Al 0.25 Ga 0 75 N/GaN supper lattices for cladding layer with the laser wavelength of 396 6nm.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2016YFB0400803 and 2016YFB0401801)the National Natural Science Foundation of China(Grant Nos.61674138,61674139,61604145,61574135,and 61574134)。
文摘In order to investigate the inherent polarization intensity in InGaN/GaN multiple quantum well(MQW) structures,the electroluminescence(EL) spectra of three samples with different GaN barrier thicknesses of 21.3 nm, 11.4 nm, and 6.5 nm are experimentally studied. All of the EL spectra present a similar blue-shift under the low-level current injection,and then turns to a red-shift tendency when the current increases to a specific value, which is defined as the turning point.The value of this turning point differs from one another for the three InGaN/GaN MQW samples. Sample A, which has the GaN barrier thickness of 21.3 nm, shows the highest current injection level at the turning point as well as the largest value of blue-shift. It indicates that sample A has the maximum intensity of the polarization field. The red-shift of the EL spectra results from the vertical electron leakage in InGaN/GaN MQWs and the corresponding self-heating effect under the high-level current injection. As a result, it is an effective approach to evaluate the polarization field in the InGaN/GaN MQW structures by using the injection current level at the turning point and the blue-shift of the EL spectra profiles.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51472229,61422405,and 11574301)the Natural Science Foundation of Tianjin(Grant No.14JCQNJC01000)the National Science Foundation for Post-doctoral Scientists of China(Grant No.2016M600231)
文摘The epitaxial growth of novel GaN-based light-emitting diode(LED) on Si(100) substrate has proved challenging.Here in this work, we investigate a monolithic phosphor-free semi-polar InGaN/GaN near white light-emitting diode, which is formed on a micro-striped Si(100) substrate by metal organic chemical vapor deposition. By controlling the size of micro-stripe, InGaN/GaN multiple quantum wells(MQWs) with different well widths are grown on semi-polar(1■01)planes. Besides, indium-rich quantum dots are observed in InGaN wells by transmission electron microscopy, which is caused by indium phase separation. Due to the different widths of MQWs and indium phase separation, the indium content changes from the center to the side of the micro-stripe. Various indium content provides the wideband emission. This unique property allows the semipolar InGaN/GaN MQWs to emit wideband light, leading to the near white light emission.
文摘与商用硅基或磷化镓光电二极管相比,In Ga N基可见光光电二极管在窄带通可见光应用领域表现出明显优势。到目前为止,In Ga N/Ga N MQWs为有源层结构和In Ga N体基结构光电二极管都表现出暗电流较大,外量子效率较低,探测带边接近紫外范围等缺点。虽然通过器件工艺和结构设计,可以提升器件的性能,但是In Ga N材料外延技术方面的突破才是器件提升性能的根本。
基金Project supported by the National Natural Science Foundation of China(Nos.61302009,61571171)
文摘To improve the logic stability of conventional multi-valued logic(MVL) circuits designed with a GaNbased resonate tunneling diode(RTD), we proposed a GaN/InGaN/AlGaN multi-quantum well(MQW) RTD. The proposed RTD was simulated through solving the coupled Schrodinger and Poisson equations in the numerical non-equilibrium Green's function(NEGF) method on the TCAD platform. The proposed RTD was grown layer by layer in epitaxial technologies. Simulated results indicate that its current-voltage characteristic appears to have a wider total negative differential resistance region than those of conventional ones and an obvious hysteresis loop at room temperature. To increase the Al composite of AIGaN barrier layers properly results in increasing of both the total negative differential resistance region width and the hysteresis loop width, which is helpful to improve the logic stability of MVL circuits. Moreover, the complement resonate tunneling transistor pair consisted of the proposed RTDs or the proposed RTD and enhanced mode HEMT controlled RTD8 is capable of generating versatile MVL modes at different supply voltages less than 3.3 V, which is very attractive for implementing more complex MVL function digital integrated circuits and systems with less devices, super high speed linear or nonlinear ADC and voltage sensors with a built-in super high speed ADC function.