In order to clarify the origin of the efficiency droop effect in InGaN based blue multiple-quantum-well(MQW)light emitting diodes(LEDs),a reasonable model is set up,taking all the possible factor(carrier delocalizatio...In order to clarify the origin of the efficiency droop effect in InGaN based blue multiple-quantum-well(MQW)light emitting diodes(LEDs),a reasonable model is set up,taking all the possible factor(carrier delocalization,carrier leakage and Auger recombination)into account.By fitting the external quantum efficiency-injection current(η–Ⅰ)measurements of two LED samples,the validity of the model is demonstrated.The fit results show that the main origin of efficiency droop at a high injection current is carrier leakage.Furthermore it is also indicated that carrier delocalization plays an important role in the efficiency droop effect in those LEDs of large localization degree.展开更多
The influences of stress on the properties of InGaN/GaN multiple quantum wells (MQWs) grown on silicon substrate were investigated. The different stresses were induced by growing InGaN and A1GaN insertion layers (I...The influences of stress on the properties of InGaN/GaN multiple quantum wells (MQWs) grown on silicon substrate were investigated. The different stresses were induced by growing InGaN and A1GaN insertion layers (IL) respectively before the growth of MQWs in metal-organic chemical vapor deposition (MOCVD) system. High resolution x-ray diffrac- tion (HRXRD) and photoluminescence (PL) measurements demonstrated that the InGaN IL introduced an additional ten- sile stress in n-GaN, which released the strain in MQWs. It is helpful to increase the indium incorporation in MQWs. In comparison with MQWs without the IL, the wavelength shows a red-shift. A1GaN IL introduced a compressive stress to compensate the tensile stress, which reduces the indium composition in MQWs. PL measurement shows a blue-shift of wavelength. The two kinds of ILs were adopted to InGaN/GaN MQWs LED structures. The same wavelength shifts were also observed in the electroluminescence (EL) measurements of the LEDs. Improved indium homogeneity with InGaN IL, and phase separation with A1GaN IL were observed in the light images of the LEDs.展开更多
Introducing a thin InGaN interlayer with a relatively lower indium content between the quantum well (QW) and barrier results in a step-like InxGa1-xN/GaN potential barrier on one side of the QW. This change in the a...Introducing a thin InGaN interlayer with a relatively lower indium content between the quantum well (QW) and barrier results in a step-like InxGa1-xN/GaN potential barrier on one side of the QW. This change in the active region leads to a significant shift in photolumineseence (PL) and electroluminescence (EL) emissions to a longer wavelength compared with the conventional QW based light-emitting diodes. More importantly, an improvement against efficiency droop and an enhancement in light output power at the high-current injection are observed in the modified light-emitting diode structures. The role of the inserted layer in these improvements is investigated by simulation in detail, which shows that the creation of more sublevels in the valence band and the increase of hole concentration inside QWs are the main reasons for these improvements.展开更多
The InGaN/GaN blue light emitting diode(LED) is numerically investigated using a triangular-shaped quantum well model,which involves analysis on its energy band,carrier concentration,overlap of electron and hole wav...The InGaN/GaN blue light emitting diode(LED) is numerically investigated using a triangular-shaped quantum well model,which involves analysis on its energy band,carrier concentration,overlap of electron and hole wave functions,radiative recombination rate,and internal quantum efficiency.The simulation results reveal that the InGaN/GaN blue light emitting diode with triangular quantum wells exhibits a higher radiative recombination rate than the conventional light emitting diode with rectangular quantum wells due to the enhanced overlap of electron and hole wave functions(above 90%) under the polarization field.Consequently,the efficiency droop is only 18% in the light emitting diode with triangular-shaped quantum wells,which is three times lower than that in a conventional LED.展开更多
Blue InGaN light-emitting diodes (LEDs) with a conventional electron blocking layer (EBL), a common n-A1GaN hole blocking layer (HBL), and an n-A1GaN HBL with gradual A1 composition are investigated numerically,...Blue InGaN light-emitting diodes (LEDs) with a conventional electron blocking layer (EBL), a common n-A1GaN hole blocking layer (HBL), and an n-A1GaN HBL with gradual A1 composition are investigated numerically, which involves analyses of the carrier concentration in the active region, energy band diagram, electrostatic field, and internal quantum efficiency (IQE). The results indicate that LEDs with an n-AIGaN HBL with gradual AI composition exhibit better hole injection efficiency, lower electron leakage, and a smaller electrostatic field in the active region than LEDs with a conven tional p-A1GaN EBL or a common n-A1GaN HBL. Meanwhile, the efficiency droop is alleviated when an n-A1GaN HBL with gradual A1 composition is used.展开更多
采用MOCVD技术在图形化硅衬底上生长了InGaN/GaN多量子阱黄光LED外延材料,研究了不同的量子阱生长气压对黄光LED光电性能的影响。使用高分辨率X射线衍射仪(HRXRD)和荧光显微镜(FL)对晶体质量进行了表征,使用电致发光系统积分球测试对光...采用MOCVD技术在图形化硅衬底上生长了InGaN/GaN多量子阱黄光LED外延材料,研究了不同的量子阱生长气压对黄光LED光电性能的影响。使用高分辨率X射线衍射仪(HRXRD)和荧光显微镜(FL)对晶体质量进行了表征,使用电致发光系统积分球测试对光电性能进行了表征。结果表明:随着气压升高,In的并入量略有降低且均匀性更好,量子阱中的点缺陷数目降低,但是阱垒间界面质量有所下降。在实验选取的4个气压4,6.65,10,13.3 k Pa下,外量子效率最大值随着量子阱生长气压的上升而显著升高,分别为16.60%、23.07%、26.40%、27.66%,但是13.3 k Pa下生长的样品在大电流下EQE随电流droop效应有所加剧,在20 A·cm-2的工作电流下,样品A、B、C、D的EQE分别为16.60%、19.77%、20.03%、19.45%,10 k Pa下生长的量子阱的整体光电性能最好。展开更多
Phonon sidebands in the electrolumiescence(EL) spectra of InGaN/GaN multiple quantum well blue light emitting diodes are investigated. S-shaped injection current dependence of the energy spacing(ES) between the zero-p...Phonon sidebands in the electrolumiescence(EL) spectra of InGaN/GaN multiple quantum well blue light emitting diodes are investigated. S-shaped injection current dependence of the energy spacing(ES) between the zero-phonon and first-order phonon-assisted luminescence lines is observed in a temperature range of 100–150 K.The S-shape is suppressed with increasing temperature from 100 to 150 K, and vanishes at temperature above200 K. The S-shaped injection dependence of ES at low temperatures could be explained by the three stages of carrier dynamics related to localization states:(i) carrier relaxation from shallow into deep localization states,(ii) band filling of shallow and deep localization states, and(iii) carrier overflow from deep to shallow localization states and to higher energy states. The three stages show strong temperature dependence. It is proposed that the fast change of the carrier lifetime with temperature is responsible for the suppression of S-shaped feature.The proposed mechanisms reveal carrier recombination dynamics in the EL of InGaN/GaN MQWs at various injection current densities and temperatures.展开更多
Inhomogeneous electroluminescence(EL)of InGaN green LEDs grown on mesh-patterned Si(111)substrate had been investigated.Sample with n-AlGaN inserted between the pre-strained layers and the first quantum well showed th...Inhomogeneous electroluminescence(EL)of InGaN green LEDs grown on mesh-patterned Si(111)substrate had been investigated.Sample with n-AlGaN inserted between the pre-strained layers and the first quantum well showed the inhomogeneous EL in the low current density range.Near-field EL emission intensity distribution images depicted that inhomogeneity in the form of premature turn-on at the periphery of the LED chip,results in stronger emission intensity at the edges.This premature turn-on effect significantly reduces the luminous efficacy and higher ideality factor value due to locally current crowding effect.Raman measurement and fluorescence microscopy results indicated that the partially relaxed in-plane stress at the edge of the window region acts as a parasitic diode with a smaller energy band gap,which is a source of edge emission.Numerical simulations showd that the tilted triangular n-AlGaN functions like a forward-biased Schottky diode,which not only impedes carrier transport,but also contributes a certain ideality factor.展开更多
Electroluminescence (EL) and temperature-dependent photolumineseenee measurements are performed to study the internal quantum efficiency droop phenomenon of blue laser diodes (LDs) before lasing. Based on the ABC ...Electroluminescence (EL) and temperature-dependent photolumineseenee measurements are performed to study the internal quantum efficiency droop phenomenon of blue laser diodes (LDs) before lasing. Based on the ABC mode, the EL result demonstrates that non-radiative recombination rates of LDs with threshold current densities of 4 and 6kA/cm2 are similar, while LD with threshold current density of 4kA/cm2 exhibits a smaller auger- like recombination rate compared with the one of 6kA/cm2. The internal quantum efficiency droop is more serious for LD with higher threshold current density. temperature-dependent photoluminescence is consistent The internal quantum efficiency value estimated from with EL measurements.展开更多
基金by the National Basic Research Program of China under Grant Nos 2011CB301902 and 2011CB301903the National High-Technology Research and Development Program of China under Grant Nos 2011AA03A112,2011AA03A106,and 2011AA03A105+2 种基金the National Key Technology Research and Development Program of the Ministry of Science and Technology of China(No 2011BAE01B07)the National Natural Science Foundation of China under Grant Nos 60723002,50706022,60977022 and 51002085the Beijing Natural Science Foundation under Grant No 4091001.
文摘In order to clarify the origin of the efficiency droop effect in InGaN based blue multiple-quantum-well(MQW)light emitting diodes(LEDs),a reasonable model is set up,taking all the possible factor(carrier delocalization,carrier leakage and Auger recombination)into account.By fitting the external quantum efficiency-injection current(η–Ⅰ)measurements of two LED samples,the validity of the model is demonstrated.The fit results show that the main origin of efficiency droop at a high injection current is carrier leakage.Furthermore it is also indicated that carrier delocalization plays an important role in the efficiency droop effect in those LEDs of large localization degree.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61274039 and 51177175)the National Basic Research Program of China(Grant Nos.2010CB923201 and 2011CB301903)+4 种基金the Ph.D.Program Foundation of the Ministry of Education of China(Grant No.20110171110021)the International Science and Technology Collaboration Program of China(Grant No.2012DFG52260)the National High Technology Research and Development Program of China(Grant No.2014AA032606)the International Science and Technology Collaboration Program of Guangdong Province,China(Grant No.2013B051000041)the Opened Fund of the State Key Laboratory on Integrated Optoelectronics(Grant No.IOSKL2014KF17)
文摘The influences of stress on the properties of InGaN/GaN multiple quantum wells (MQWs) grown on silicon substrate were investigated. The different stresses were induced by growing InGaN and A1GaN insertion layers (IL) respectively before the growth of MQWs in metal-organic chemical vapor deposition (MOCVD) system. High resolution x-ray diffrac- tion (HRXRD) and photoluminescence (PL) measurements demonstrated that the InGaN IL introduced an additional ten- sile stress in n-GaN, which released the strain in MQWs. It is helpful to increase the indium incorporation in MQWs. In comparison with MQWs without the IL, the wavelength shows a red-shift. A1GaN IL introduced a compressive stress to compensate the tensile stress, which reduces the indium composition in MQWs. PL measurement shows a blue-shift of wavelength. The two kinds of ILs were adopted to InGaN/GaN MQWs LED structures. The same wavelength shifts were also observed in the electroluminescence (EL) measurements of the LEDs. Improved indium homogeneity with InGaN IL, and phase separation with A1GaN IL were observed in the light images of the LEDs.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61334005,51272008 and 60990314the Beijing Municipal Science and Technology Project under Grant No H030430020000the National Basic Research Program of China under Grant Nos 2012CB619304 and 2012CB619306
文摘Introducing a thin InGaN interlayer with a relatively lower indium content between the quantum well (QW) and barrier results in a step-like InxGa1-xN/GaN potential barrier on one side of the QW. This change in the active region leads to a significant shift in photolumineseence (PL) and electroluminescence (EL) emissions to a longer wavelength compared with the conventional QW based light-emitting diodes. More importantly, an improvement against efficiency droop and an enhancement in light output power at the high-current injection are observed in the modified light-emitting diode structures. The role of the inserted layer in these improvements is investigated by simulation in detail, which shows that the creation of more sublevels in the valence band and the increase of hole concentration inside QWs are the main reasons for these improvements.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61076013,51102003,and 60990313)the National Basic Research Program of China (Grant No. 2012CB619304)the Specialized Research Fund for the Doctoral Program of Higher Education,China (Grant No. 20100001120014)
文摘The InGaN/GaN blue light emitting diode(LED) is numerically investigated using a triangular-shaped quantum well model,which involves analysis on its energy band,carrier concentration,overlap of electron and hole wave functions,radiative recombination rate,and internal quantum efficiency.The simulation results reveal that the InGaN/GaN blue light emitting diode with triangular quantum wells exhibits a higher radiative recombination rate than the conventional light emitting diode with rectangular quantum wells due to the enhanced overlap of electron and hole wave functions(above 90%) under the polarization field.Consequently,the efficiency droop is only 18% in the light emitting diode with triangular-shaped quantum wells,which is three times lower than that in a conventional LED.
基金supported by the National Natural Science Foundation of China(Grant No.61176043)the Special Funds for Provincial Strategic and Emerging Industries Projects of Guangdong Province,China(Grant Nos.2010A081002005,2011A081301003,and 2012A080304016)the Youth Foundation of South China Normal University(Grant No.2012KJ018)
文摘Blue InGaN light-emitting diodes (LEDs) with a conventional electron blocking layer (EBL), a common n-A1GaN hole blocking layer (HBL), and an n-A1GaN HBL with gradual A1 composition are investigated numerically, which involves analyses of the carrier concentration in the active region, energy band diagram, electrostatic field, and internal quantum efficiency (IQE). The results indicate that LEDs with an n-AIGaN HBL with gradual AI composition exhibit better hole injection efficiency, lower electron leakage, and a smaller electrostatic field in the active region than LEDs with a conven tional p-A1GaN EBL or a common n-A1GaN HBL. Meanwhile, the efficiency droop is alleviated when an n-A1GaN HBL with gradual A1 composition is used.
文摘采用MOCVD技术在图形化硅衬底上生长了InGaN/GaN多量子阱黄光LED外延材料,研究了不同的量子阱生长气压对黄光LED光电性能的影响。使用高分辨率X射线衍射仪(HRXRD)和荧光显微镜(FL)对晶体质量进行了表征,使用电致发光系统积分球测试对光电性能进行了表征。结果表明:随着气压升高,In的并入量略有降低且均匀性更好,量子阱中的点缺陷数目降低,但是阱垒间界面质量有所下降。在实验选取的4个气压4,6.65,10,13.3 k Pa下,外量子效率最大值随着量子阱生长气压的上升而显著升高,分别为16.60%、23.07%、26.40%、27.66%,但是13.3 k Pa下生长的样品在大电流下EQE随电流droop效应有所加剧,在20 A·cm-2的工作电流下,样品A、B、C、D的EQE分别为16.60%、19.77%、20.03%、19.45%,10 k Pa下生长的量子阱的整体光电性能最好。
基金Supported by the National Science Foundation for Young Scientists of China under Grant No 11604137the Jiangxi Province Postdoctoral Science Foundation Funded Project under Grant No 2015KY32the State Key Program of Research and Development of China under Grant Nos 2016YFB040060 and 2016YFB0400601
文摘Phonon sidebands in the electrolumiescence(EL) spectra of InGaN/GaN multiple quantum well blue light emitting diodes are investigated. S-shaped injection current dependence of the energy spacing(ES) between the zero-phonon and first-order phonon-assisted luminescence lines is observed in a temperature range of 100–150 K.The S-shape is suppressed with increasing temperature from 100 to 150 K, and vanishes at temperature above200 K. The S-shaped injection dependence of ES at low temperatures could be explained by the three stages of carrier dynamics related to localization states:(i) carrier relaxation from shallow into deep localization states,(ii) band filling of shallow and deep localization states, and(iii) carrier overflow from deep to shallow localization states and to higher energy states. The three stages show strong temperature dependence. It is proposed that the fast change of the carrier lifetime with temperature is responsible for the suppression of S-shaped feature.The proposed mechanisms reveal carrier recombination dynamics in the EL of InGaN/GaN MQWs at various injection current densities and temperatures.
基金the National Key Research and Development Program of China(Grant Nos.2017YFB0403105 and 2017YFB0403100)the National Natural Science Foundation of China(Grant Nos.11674147,61604066,51602141,and 11604137).
文摘Inhomogeneous electroluminescence(EL)of InGaN green LEDs grown on mesh-patterned Si(111)substrate had been investigated.Sample with n-AlGaN inserted between the pre-strained layers and the first quantum well showed the inhomogeneous EL in the low current density range.Near-field EL emission intensity distribution images depicted that inhomogeneity in the form of premature turn-on at the periphery of the LED chip,results in stronger emission intensity at the edges.This premature turn-on effect significantly reduces the luminous efficacy and higher ideality factor value due to locally current crowding effect.Raman measurement and fluorescence microscopy results indicated that the partially relaxed in-plane stress at the edge of the window region acts as a parasitic diode with a smaller energy band gap,which is a source of edge emission.Numerical simulations showd that the tilted triangular n-AlGaN functions like a forward-biased Schottky diode,which not only impedes carrier transport,but also contributes a certain ideality factor.
基金Supported by the National Key Research and Development Program of China under Grant Nos 2016YFB0401803 and 2016YFB0402002the National Natural Science Foundation of China under Grant Nos 61574160 and 61334005+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDA09020401the Visiting Professorship for Senior International Scientists of the Chinese Academy of Sciences under Grant No 2013T2J0048
文摘Electroluminescence (EL) and temperature-dependent photolumineseenee measurements are performed to study the internal quantum efficiency droop phenomenon of blue laser diodes (LDs) before lasing. Based on the ABC mode, the EL result demonstrates that non-radiative recombination rates of LDs with threshold current densities of 4 and 6kA/cm2 are similar, while LD with threshold current density of 4kA/cm2 exhibits a smaller auger- like recombination rate compared with the one of 6kA/cm2. The internal quantum efficiency droop is more serious for LD with higher threshold current density. temperature-dependent photoluminescence is consistent The internal quantum efficiency value estimated from with EL measurements.