A planar InP-based Gunn diode with a notch doping structure is designed and fabricated for integration into millimeter-wave and terahertz integrated circuits.We design two kinds of InP-based Gunn diodes.One has a fixe...A planar InP-based Gunn diode with a notch doping structure is designed and fabricated for integration into millimeter-wave and terahertz integrated circuits.We design two kinds of InP-based Gunn diodes.One has a fixed diameter of cathode area,but has variable spacing between anode and cathode;the other has fixed spacing,but a varying diameter.The threshold voltage and saturated current exhibit their strong dependences on the spacing(10 μm-20 μm) and diameter(40 μm-60 μm) of the InP Gunn diode.The threshold voltage is approximately 4.5 V and the saturated current is in a range of 293 mA-397 mA.In this work,the diameter of the diode and the space between anode and cathode are optimized.The devices are fabricated using a wet etching technique and show excellent performances.The results strongly suggest that low-cost and reliable InP planar Gunn diodes can be used as single chip terahertz sources.展开更多
GaAs-based planar Gunn diodes with A1GaAs hot electron injector have been successfully developed to be used as a local oscillator of 76 GHz in monolithic millimeter-wave integrated circuits. We designed two kinds of s...GaAs-based planar Gunn diodes with A1GaAs hot electron injector have been successfully developed to be used as a local oscillator of 76 GHz in monolithic millimeter-wave integrated circuits. We designed two kinds of structure diode, one has a fixed distance between the anode and cathode, but has variational cathode area, the other has a fixed cathode area, but has different distances between two electrodes. The fabrication of Gunn diode is performed in accordance with the order of operations: cathode defining, mesa etching, anode defining, isolation, passivation, via hole and electroplating. A peak current density of 29.5 kA/cm^2 is obtained. And the charavteristics of negative differential resistance and the asymmetry of the current-voltage curve due to the A1GaAs hot electron injector are discussed in detail. It is demonstrated that the smaller size of active area corresponds to the smaller current, and the shorter distance between anode and cathode also corresponds to the lower threshold voltage and higher peak current, and hot electron injector can effectively enhance the radio frequency conversion efficiency and output power.展开更多
基金Project supported by the Main Direction Program of Knowledge Innovation of the Chinese Academy of Sciences (Grant No. 2A2011YYYJ-1123)
文摘A planar InP-based Gunn diode with a notch doping structure is designed and fabricated for integration into millimeter-wave and terahertz integrated circuits.We design two kinds of InP-based Gunn diodes.One has a fixed diameter of cathode area,but has variable spacing between anode and cathode;the other has fixed spacing,but a varying diameter.The threshold voltage and saturated current exhibit their strong dependences on the spacing(10 μm-20 μm) and diameter(40 μm-60 μm) of the InP Gunn diode.The threshold voltage is approximately 4.5 V and the saturated current is in a range of 293 mA-397 mA.In this work,the diameter of the diode and the space between anode and cathode are optimized.The devices are fabricated using a wet etching technique and show excellent performances.The results strongly suggest that low-cost and reliable InP planar Gunn diodes can be used as single chip terahertz sources.
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 60806024)the Fundamental Research Funds for Central University of China (Grant No. XDJK2009C020)
文摘GaAs-based planar Gunn diodes with A1GaAs hot electron injector have been successfully developed to be used as a local oscillator of 76 GHz in monolithic millimeter-wave integrated circuits. We designed two kinds of structure diode, one has a fixed distance between the anode and cathode, but has variational cathode area, the other has a fixed cathode area, but has different distances between two electrodes. The fabrication of Gunn diode is performed in accordance with the order of operations: cathode defining, mesa etching, anode defining, isolation, passivation, via hole and electroplating. A peak current density of 29.5 kA/cm^2 is obtained. And the charavteristics of negative differential resistance and the asymmetry of the current-voltage curve due to the A1GaAs hot electron injector are discussed in detail. It is demonstrated that the smaller size of active area corresponds to the smaller current, and the shorter distance between anode and cathode also corresponds to the lower threshold voltage and higher peak current, and hot electron injector can effectively enhance the radio frequency conversion efficiency and output power.