This article presents the design and performance of a terahertz on-chip coupled-grounded coplanar waveguide(GCPW)power combiner using a 50μm-thick InP process.The proposed topology uses two coupled-GCPW lines at the ...This article presents the design and performance of a terahertz on-chip coupled-grounded coplanar waveguide(GCPW)power combiner using a 50μm-thick InP process.The proposed topology uses two coupled-GCPW lines at the end of the input port to substitute two quarter-wavelength GCPW lines,which is different from the conventional Wilkinson power combiner and can availably minimize the coverage area.According to the results obtained,for the frequency range of 210-250 GHz,the insertion losses for each two-way combiner and four-way combiner were lower than 1.05 dB and1.35 dB,respectively,and the in-band return losses were better than 11 dB.Moreover,the proposed on-chip GCPW-based combiners achieved a compromise in low-loss,broadband,and small-size,which can find wide applications in terahertz bands,such as power amplifiers and signal distribution networks.展开更多
基金Project supported in part by the National Natural Science Foundation of China(Grant No.61871072)。
文摘This article presents the design and performance of a terahertz on-chip coupled-grounded coplanar waveguide(GCPW)power combiner using a 50μm-thick InP process.The proposed topology uses two coupled-GCPW lines at the end of the input port to substitute two quarter-wavelength GCPW lines,which is different from the conventional Wilkinson power combiner and can availably minimize the coverage area.According to the results obtained,for the frequency range of 210-250 GHz,the insertion losses for each two-way combiner and four-way combiner were lower than 1.05 dB and1.35 dB,respectively,and the in-band return losses were better than 11 dB.Moreover,the proposed on-chip GCPW-based combiners achieved a compromise in low-loss,broadband,and small-size,which can find wide applications in terahertz bands,such as power amplifiers and signal distribution networks.