A simple and effective image inpainting method is proposed in this paper, which is proved to be suitable for different kinds of target regions with shapes from little scraps to large unseemly objects in a wide range o...A simple and effective image inpainting method is proposed in this paper, which is proved to be suitable for different kinds of target regions with shapes from little scraps to large unseemly objects in a wide range of images. It is an important improvement upon the traditional image inpainting techniques. By introducing a new bijeetive-mapping term into the matching cost function, the artificial repetition problem in the final inpainting image is practically solved. In addition, by adopting an inpainting error map, not only the target pixels are refined gradually during the inpainting process but also the overlapped target patches are combined more seamlessly than previous method. Finally, the inpainting time is dramatically decreased by using a new acceleration method in the matching process.展开更多
III-Vsemiconductor nanocrystals rarely exist as spherical inclusions inside glasses, due to difficulties during their preparation, such as high toxic reagents or fast oxidation under usual glass technology temperature...III-Vsemiconductor nanocrystals rarely exist as spherical inclusions inside glasses, due to difficulties during their preparation, such as high toxic reagents or fast oxidation under usual glass technology temperatures. In this article a sol-gel method for synthesis of InP nanocrystals embedded in silica glasses was described. Gels were synthesized by hydrolysis of a complex solution of Si(OC 2 H 5 ) 4 , InCl 3 4H 2 O and PO(OC 2 H 5 ) 3 . Then, the gels were heated at 600 o C in the presence of H 2 gas to form fine cubic InP crystallites. Raman spectrum showed InP longitudinal-optic mode (342cm -1 ) and transverse-optic mode (303cm -1 ). The size of InP nanocrystals was found to be from 2 to 8 nm in diameter by transmission electron microscopy. A strong photoluminescence with peaks at, 606, 730nm 856 nm was observed from 3InP/100SiO 2 nanocompositions. The temperature-and excitation power-dependent PL spectra from the nanocomposition are measured in order to confirm the origin of the PL spectra. These behaviors of the three peaks emissions suggest that 606, 733, and 856 nm emissions do not have the same origin. The PL with peak at 856nm arise from the cubic InP nanocrystallites embedded in the SiO 2 gel glasses. The 605 and 732 nm emissions may arise from the SiO 2 gel glass matrix or the interface between the InP crystallite core and SiO2 glass matrix.展开更多
Neurons are highly polarized cells with axons reaching over a meter long in adult humans.To survive and maintain their proper function,neurons depend on specific mechanisms that regulate spatiotemporal signaling and m...Neurons are highly polarized cells with axons reaching over a meter long in adult humans.To survive and maintain their proper function,neurons depend on specific mechanisms that regulate spatiotemporal signaling and metabolic events,which need to be carried out at the right place,time,and intensity.Such mechanisms include axonal transport,local synthesis,and liquid-liquid phase separations.Alterations and malfunctions in these processes are correlated to neurodegenerative diseases such as amyotrophic lateral sclerosis(ALS).展开更多
Research on the synthesis of superoxide dismutase mimics by chemical and biologi-cal synthetic methods were reviewed.The advantages and limitations were analyzed.A prospect for the future development of superoxide dis...Research on the synthesis of superoxide dismutase mimics by chemical and biologi-cal synthetic methods were reviewed.The advantages and limitations were analyzed.A prospect for the future development of superoxide dismutase mimics is proposed.展开更多
Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts...Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts.TMPs have been produced in various morphologies,including hollow and porous nanostructures,which are features deemed desirable for electrocatalytic materials.Templated synthesis routes are often responsible for such morphologies.This paper reviews the latest advances and existing challenges in the synthesis of TMP-based OER and HER catalysts through templated methods.A comprehensive review of the structure-property-performance of TMP-based HER and OER catalysts prepared using different templates is presented.The discussion proceeds according to application,first by HER and further divided among the types of templates used-from hard templates,sacrificial templates,and soft templates to the emerging dynamic hydrogen bubble template.OER catalysts are then reviewed and grouped according to their morphology.Finally,prospective research directions for the synthesis of hollow and porous TMP-based catalysts,such as improvements on both activity and stability of TMPs,design of environmentally benign templates and processes,and analysis of the reaction mechanism through advanced material characterization techniques and theoretical calculations,are suggested.展开更多
Zeolite catalysts have found extensive applications in the synthesis of various fine chemicals.However,the micropores of zeolites impose diffusion limitations on bulky molecules,greatly reducing the catalytic efficien...Zeolite catalysts have found extensive applications in the synthesis of various fine chemicals.However,the micropores of zeolites impose diffusion limitations on bulky molecules,greatly reducing the catalytic efficiency.Herein,we explore an economic and environmentally friendly method for synthesizing hierarchical NaX zeolite that exhibits improved catalytic performance in the Knoevenagel condensation reaction for producing the useful fine chemical 2-cyano-3-phenylacrylate.The synthesis was achieved via a low-temperature activation of kaolinite and subsequent in-situ transformation strategy without any template or seed.Systematic characterizations reveal that the synthesized NaX zeolite has both intercrystalline and intra-crystalline mesopores,smaller crystal size,and larger external specific surface area compared to commercial NaX zeolite.Detailed mechanism investigations show that the inter-crystalline mesopores are generated by stacking smaller crystals formed from in-situ crystallization of the depolymerized kaolinite,and the intra-crystalline mesopores are inherited from the pores in the depolymerized kaolinite.This synthesis strategy provides an energy-saving and effective way to construct hierarchical zeolites,which may gain wide applications in fine chemical manufacturing.展开更多
In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocol...In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocolumn configuration.However,this approach frequently necessitates tedious enumeration procedures,resulting in a considerable computational burden.To surmount this formidable challenge,the present study introduces an innovative remedy:The proposition of a superstructure that encompasses both single-column and multiple two-column configurations.Additionally,a simultaneous optimization algorithm is applied to optimize both the process parameters and heat integration structures of the twocolumn configurations.The effectiveness of this approach is demonstrated through a case study focusing on industrial organosilicon separation.The results underscore that the superstructure methodology not only substantially mitigates computational time compared to exhaustive enumeration but also furnishes solutions that exhibit comparable performance.展开更多
Electrocatalytic nitrogen reduction reaction(NRR)is considered as a promising candidate to achieve ammonia synthesis because of clean electric energy,moderate reaction condition,safe operating process and harmless by-...Electrocatalytic nitrogen reduction reaction(NRR)is considered as a promising candidate to achieve ammonia synthesis because of clean electric energy,moderate reaction condition,safe operating process and harmless by-products.However,the chemical inertness of nitrogen and poor activated capacity on catalyst surface usually produce low ammonia yield and faradic efficiency.Herein,the microfluidic technology is proposed to efficiently fabricate enriched iridium nanodots/carbon architecture.Owing to in-situ co-precipitation reaction and microfluidic manipulation,the iridium nanodots/carbon nanomaterials possess small average size,uniform dispersion,high conductivity and abundant active sites,producing good proton activation and rapid electrons transmission and moderate adsorption/desorption capacity.As a result,the as-prepared iridium nanodots/carbon nanomaterials realize large ammonia yield of 28.73 μg h^(-1) cm^(-2) and faradic efficiency of 9.14%in KOH solution.Moreover,the high ammonia yield of 11.21 μg h^(-1) cm^(-2) and faradic efficiency of 24.30%are also achieved in H_(2)SO_(4) solution.The microfluidic method provides a reference for large-scale fabrication of nano-sized catalyst materials,which may accelerate the progress of electrocatalytic NRR in industrialization field.展开更多
Nitrogen(N)-doped carbon materials as metal catalyst supports have attracted signifi cant attention,but the eff ect of N dopants on catalytic performance remains unclear,especially for complex reaction processes such ...Nitrogen(N)-doped carbon materials as metal catalyst supports have attracted signifi cant attention,but the eff ect of N dopants on catalytic performance remains unclear,especially for complex reaction processes such as Fischer-Tropsch synthesis(FTS).Herein,we engineered ruthenium(Ru)FTS catalysts supported on N-doped carbon overlayers on TiO_(2)nanoparticles.By regulating the carbonization temperatures,we successfully controlled the types and contents of N dopants to identify their impacts on metal-support interactions(MSI).Our fi ndings revealed that N dopants establish a favorable surface environment for electron transfer from the support to the Ru species.Moreover,pyridinic N demonstrates the highest electron-donating ability,followed by pyrrolic N and graphitic N.In addition to realizing excellent catalytic stability,strengthening the interaction between Ru sites and N dopants increases the Ru^(0)/Ru^(δ+)ratios to enlarge the active site numbers and surface electron density of Ru species to enhance the strength of adsorbed CO.Consequently,it improves the catalyst’s overall performance,encompassing intrinsic and apparent activities,as well as its ability for carbon chain growth.Accordingly,the as-synthesized Ru/TiO_(2)@CN-700 catalyst with abundant pyridine N dopants exhibits a superhigh C_(5+)time yield of 219.4 mol CO/(mol Ru·h)and C_(5+)selectivity of 85.5%.展开更多
Developing a simple scalable method to fabricate electrodes with high capacity and wide voltage range is desired for the real use of electrochemical supercapacitors.Herein,we synthesized amorphous NiCo-LDH nanosheets ...Developing a simple scalable method to fabricate electrodes with high capacity and wide voltage range is desired for the real use of electrochemical supercapacitors.Herein,we synthesized amorphous NiCo-LDH nanosheets vertically aligned on activated carbon cloth substrate,which was in situ transformed from Co-metal-organic framework materials nano-columns by a simple ion exchange process at room temperature.Due to the amorphous and vertically aligned ultrathin structure of NiCo-LDH,the NiCo-LDH/activated carbon cloth composites present high areal capacities of 3770 and 1480 mF cm^(-2)as cathode and anode at 2 mA cm^(-2),and 79.5%and 80%capacity have been preserved at 50 mA cm^(-2).In the meantime,they all showed excellent cycling performance with negligible change after>10000 cycles.By fabricating them into an asymmetric supercapacitor,the device achieves high energy densities(5.61 mWh cm^(-2)and 0.352 mW cm^(-3)).This work provides an innovative strategy for simplifying the design of supercapacitors as well as providing a new understanding of improving the rate capabilities/cycling stability of NiCo-LDH materials.展开更多
目的探讨肿瘤蛋白p53诱导的核蛋白2(tumor protein p53 inducible nuclear protein 2,TP53INP2)和溶质载体有机阴离子转运蛋白家族成员2A1(solute carrier organic anion transporter family member 2A1,SLCO2A1)在分化型甲状腺癌(diffe...目的探讨肿瘤蛋白p53诱导的核蛋白2(tumor protein p53 inducible nuclear protein 2,TP53INP2)和溶质载体有机阴离子转运蛋白家族成员2A1(solute carrier organic anion transporter family member 2A1,SLCO2A1)在分化型甲状腺癌(differentiated thyroid carcinoma,DTC)中的表达及其与临床病理特征和预后的关系。方法选取2024年3月至5月于南京医科大学第三附属医院行甲状腺癌根治术的DTC患者80例,比较TP53INP2和SLCO2A1在DTC患者的癌组织、癌旁组织及淋巴结转移组织中的表达,分析其与DTC患者临床病理特征之间的关系。从癌症基因组图谱(The Cancer GenomeAtlas,TCGA)数据库下载正常人甲状腺和DTC组织的表达矩阵、临床病理参数及预后资料,使用R软件进行基因集变异分析(gene set variation analysis,GSVA),分析GSVA评分与DTC患者临床病理特征及预后之间的关系。采用Kaplan-Meier法分析基因集GSVA评分与DTC患者无进展生存(progress free survive,PFS)之间的关系。采用Cox单因素及多因素分析探讨影响DTC患者预后的因素。结果DTC患者癌组织及淋巴结转移组织中的TP53INP2和SLCO2A1表达显著降低(P<0.05)。GSVA评分与肿瘤侵袭、淋巴结转移、远处转移和病理类型显著相关(P<0.05)。GSVA评分低的DTC患者的PFS率显著低于GSVA评分高者(P=0.002)。Cox多因素分析结果显示肿瘤侵袭及GSVA评分低均是导致DTC患者预后不良的独立影响因素(P<0.05)。结论TP53INP2和SLCO2A1在DTC组织中表达降低,其表达降低与肿瘤侵袭、淋巴结转移、远处转移及不良预后有关,或可成为DTC患者预后判断的潜在靶点。展开更多
基金Supported by the National Natural Science Foundation of China (No. 60403044, No. 60373070) and partly funded by Microsoft Research Asia: Project 2004-Image-01.
文摘A simple and effective image inpainting method is proposed in this paper, which is proved to be suitable for different kinds of target regions with shapes from little scraps to large unseemly objects in a wide range of images. It is an important improvement upon the traditional image inpainting techniques. By introducing a new bijeetive-mapping term into the matching cost function, the artificial repetition problem in the final inpainting image is practically solved. In addition, by adopting an inpainting error map, not only the target pixels are refined gradually during the inpainting process but also the overlapped target patches are combined more seamlessly than previous method. Finally, the inpainting time is dramatically decreased by using a new acceleration method in the matching process.
文摘III-Vsemiconductor nanocrystals rarely exist as spherical inclusions inside glasses, due to difficulties during their preparation, such as high toxic reagents or fast oxidation under usual glass technology temperatures. In this article a sol-gel method for synthesis of InP nanocrystals embedded in silica glasses was described. Gels were synthesized by hydrolysis of a complex solution of Si(OC 2 H 5 ) 4 , InCl 3 4H 2 O and PO(OC 2 H 5 ) 3 . Then, the gels were heated at 600 o C in the presence of H 2 gas to form fine cubic InP crystallites. Raman spectrum showed InP longitudinal-optic mode (342cm -1 ) and transverse-optic mode (303cm -1 ). The size of InP nanocrystals was found to be from 2 to 8 nm in diameter by transmission electron microscopy. A strong photoluminescence with peaks at, 606, 730nm 856 nm was observed from 3InP/100SiO 2 nanocompositions. The temperature-and excitation power-dependent PL spectra from the nanocomposition are measured in order to confirm the origin of the PL spectra. These behaviors of the three peaks emissions suggest that 606, 733, and 856 nm emissions do not have the same origin. The PL with peak at 856nm arise from the cubic InP nanocrystallites embedded in the SiO 2 gel glasses. The 605 and 732 nm emissions may arise from the SiO 2 gel glass matrix or the interface between the InP crystallite core and SiO2 glass matrix.
文摘Neurons are highly polarized cells with axons reaching over a meter long in adult humans.To survive and maintain their proper function,neurons depend on specific mechanisms that regulate spatiotemporal signaling and metabolic events,which need to be carried out at the right place,time,and intensity.Such mechanisms include axonal transport,local synthesis,and liquid-liquid phase separations.Alterations and malfunctions in these processes are correlated to neurodegenerative diseases such as amyotrophic lateral sclerosis(ALS).
文摘Research on the synthesis of superoxide dismutase mimics by chemical and biologi-cal synthetic methods were reviewed.The advantages and limitations were analyzed.A prospect for the future development of superoxide dismutase mimics is proposed.
基金Supported by the National Natural Science Foundation of China(12027805,62171136,62174166,U2241219)the Science and Technology Commission of Shanghai Municipality(2019SHZDZX01,22JC1402902)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB43010200)。
基金Supported by the National Natural Science Foundation of China(NSFC)(62174166,11991063,U2241219)Shanghai Municipal Science and Technology Major Project(2019SHZDZX01,22JC1402902)the Strategic Priority Research Program of Chinese Academy of Sciences(XDB43010200)。
基金the support from the CIPHER Project(IIID 2018-008)funded by the Commission on Higher Education-Philippine California Advanced Research Institutes(CHED-PCARI)。
文摘Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts.TMPs have been produced in various morphologies,including hollow and porous nanostructures,which are features deemed desirable for electrocatalytic materials.Templated synthesis routes are often responsible for such morphologies.This paper reviews the latest advances and existing challenges in the synthesis of TMP-based OER and HER catalysts through templated methods.A comprehensive review of the structure-property-performance of TMP-based HER and OER catalysts prepared using different templates is presented.The discussion proceeds according to application,first by HER and further divided among the types of templates used-from hard templates,sacrificial templates,and soft templates to the emerging dynamic hydrogen bubble template.OER catalysts are then reviewed and grouped according to their morphology.Finally,prospective research directions for the synthesis of hollow and porous TMP-based catalysts,such as improvements on both activity and stability of TMPs,design of environmentally benign templates and processes,and analysis of the reaction mechanism through advanced material characterization techniques and theoretical calculations,are suggested.
基金The financial supports from the National Natural Science Foundation of China (22178059, 22208054 and 22072019)Natural Science Foundation of Fujian Province, China (2020J01513)+1 种基金Sinochem Quanzhou Energy Technology Co., Ltd. (ZHQZKJ-19-F-ZS0076)Qingyuan Innovation Laboratory (00121002)
文摘Zeolite catalysts have found extensive applications in the synthesis of various fine chemicals.However,the micropores of zeolites impose diffusion limitations on bulky molecules,greatly reducing the catalytic efficiency.Herein,we explore an economic and environmentally friendly method for synthesizing hierarchical NaX zeolite that exhibits improved catalytic performance in the Knoevenagel condensation reaction for producing the useful fine chemical 2-cyano-3-phenylacrylate.The synthesis was achieved via a low-temperature activation of kaolinite and subsequent in-situ transformation strategy without any template or seed.Systematic characterizations reveal that the synthesized NaX zeolite has both intercrystalline and intra-crystalline mesopores,smaller crystal size,and larger external specific surface area compared to commercial NaX zeolite.Detailed mechanism investigations show that the inter-crystalline mesopores are generated by stacking smaller crystals formed from in-situ crystallization of the depolymerized kaolinite,and the intra-crystalline mesopores are inherited from the pores in the depolymerized kaolinite.This synthesis strategy provides an energy-saving and effective way to construct hierarchical zeolites,which may gain wide applications in fine chemical manufacturing.
文摘In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocolumn configuration.However,this approach frequently necessitates tedious enumeration procedures,resulting in a considerable computational burden.To surmount this formidable challenge,the present study introduces an innovative remedy:The proposition of a superstructure that encompasses both single-column and multiple two-column configurations.Additionally,a simultaneous optimization algorithm is applied to optimize both the process parameters and heat integration structures of the twocolumn configurations.The effectiveness of this approach is demonstrated through a case study focusing on industrial organosilicon separation.The results underscore that the superstructure methodology not only substantially mitigates computational time compared to exhaustive enumeration but also furnishes solutions that exhibit comparable performance.
基金supported by the National Natural Science Foundation of China(22025801)and(22208190)National Postdoctoral Program for Innovative Talents(BX2021146)Shuimu Tsinghua Scholar Program(2021SM055).
文摘Electrocatalytic nitrogen reduction reaction(NRR)is considered as a promising candidate to achieve ammonia synthesis because of clean electric energy,moderate reaction condition,safe operating process and harmless by-products.However,the chemical inertness of nitrogen and poor activated capacity on catalyst surface usually produce low ammonia yield and faradic efficiency.Herein,the microfluidic technology is proposed to efficiently fabricate enriched iridium nanodots/carbon architecture.Owing to in-situ co-precipitation reaction and microfluidic manipulation,the iridium nanodots/carbon nanomaterials possess small average size,uniform dispersion,high conductivity and abundant active sites,producing good proton activation and rapid electrons transmission and moderate adsorption/desorption capacity.As a result,the as-prepared iridium nanodots/carbon nanomaterials realize large ammonia yield of 28.73 μg h^(-1) cm^(-2) and faradic efficiency of 9.14%in KOH solution.Moreover,the high ammonia yield of 11.21 μg h^(-1) cm^(-2) and faradic efficiency of 24.30%are also achieved in H_(2)SO_(4) solution.The microfluidic method provides a reference for large-scale fabrication of nano-sized catalyst materials,which may accelerate the progress of electrocatalytic NRR in industrialization field.
基金the financial support from by the National Key Research and Development Program of China(No.2022YFB4101800)National Natural Science Foundation of China(No.22278298)Program for Introducing Talents of Discipline to Universities of China(No.BP0618007).
文摘Nitrogen(N)-doped carbon materials as metal catalyst supports have attracted signifi cant attention,but the eff ect of N dopants on catalytic performance remains unclear,especially for complex reaction processes such as Fischer-Tropsch synthesis(FTS).Herein,we engineered ruthenium(Ru)FTS catalysts supported on N-doped carbon overlayers on TiO_(2)nanoparticles.By regulating the carbonization temperatures,we successfully controlled the types and contents of N dopants to identify their impacts on metal-support interactions(MSI).Our fi ndings revealed that N dopants establish a favorable surface environment for electron transfer from the support to the Ru species.Moreover,pyridinic N demonstrates the highest electron-donating ability,followed by pyrrolic N and graphitic N.In addition to realizing excellent catalytic stability,strengthening the interaction between Ru sites and N dopants increases the Ru^(0)/Ru^(δ+)ratios to enlarge the active site numbers and surface electron density of Ru species to enhance the strength of adsorbed CO.Consequently,it improves the catalyst’s overall performance,encompassing intrinsic and apparent activities,as well as its ability for carbon chain growth.Accordingly,the as-synthesized Ru/TiO_(2)@CN-700 catalyst with abundant pyridine N dopants exhibits a superhigh C_(5+)time yield of 219.4 mol CO/(mol Ru·h)and C_(5+)selectivity of 85.5%.
基金the funding from Natural Science Foundation of China(No.52003163)Guangdong Basic and Applied Basic Research Foundation(No.2022A1515010670)+1 种基金Science and Technology Innovation Commission of Shenzhen(Nos.KQTD20170810105439418 and 20200812112006001)NTUT-SZU Joint Research Program(Nos.2022005 and 2022015)
文摘Developing a simple scalable method to fabricate electrodes with high capacity and wide voltage range is desired for the real use of electrochemical supercapacitors.Herein,we synthesized amorphous NiCo-LDH nanosheets vertically aligned on activated carbon cloth substrate,which was in situ transformed from Co-metal-organic framework materials nano-columns by a simple ion exchange process at room temperature.Due to the amorphous and vertically aligned ultrathin structure of NiCo-LDH,the NiCo-LDH/activated carbon cloth composites present high areal capacities of 3770 and 1480 mF cm^(-2)as cathode and anode at 2 mA cm^(-2),and 79.5%and 80%capacity have been preserved at 50 mA cm^(-2).In the meantime,they all showed excellent cycling performance with negligible change after>10000 cycles.By fabricating them into an asymmetric supercapacitor,the device achieves high energy densities(5.61 mWh cm^(-2)and 0.352 mW cm^(-3)).This work provides an innovative strategy for simplifying the design of supercapacitors as well as providing a new understanding of improving the rate capabilities/cycling stability of NiCo-LDH materials.
文摘目的探讨肿瘤蛋白p53诱导的核蛋白2(tumor protein p53 inducible nuclear protein 2,TP53INP2)和溶质载体有机阴离子转运蛋白家族成员2A1(solute carrier organic anion transporter family member 2A1,SLCO2A1)在分化型甲状腺癌(differentiated thyroid carcinoma,DTC)中的表达及其与临床病理特征和预后的关系。方法选取2024年3月至5月于南京医科大学第三附属医院行甲状腺癌根治术的DTC患者80例,比较TP53INP2和SLCO2A1在DTC患者的癌组织、癌旁组织及淋巴结转移组织中的表达,分析其与DTC患者临床病理特征之间的关系。从癌症基因组图谱(The Cancer GenomeAtlas,TCGA)数据库下载正常人甲状腺和DTC组织的表达矩阵、临床病理参数及预后资料,使用R软件进行基因集变异分析(gene set variation analysis,GSVA),分析GSVA评分与DTC患者临床病理特征及预后之间的关系。采用Kaplan-Meier法分析基因集GSVA评分与DTC患者无进展生存(progress free survive,PFS)之间的关系。采用Cox单因素及多因素分析探讨影响DTC患者预后的因素。结果DTC患者癌组织及淋巴结转移组织中的TP53INP2和SLCO2A1表达显著降低(P<0.05)。GSVA评分与肿瘤侵袭、淋巴结转移、远处转移和病理类型显著相关(P<0.05)。GSVA评分低的DTC患者的PFS率显著低于GSVA评分高者(P=0.002)。Cox多因素分析结果显示肿瘤侵袭及GSVA评分低均是导致DTC患者预后不良的独立影响因素(P<0.05)。结论TP53INP2和SLCO2A1在DTC组织中表达降低,其表达降低与肿瘤侵袭、淋巴结转移、远处转移及不良预后有关,或可成为DTC患者预后判断的潜在靶点。