磷化铟(InP)材料具有禁带宽度大、电子迁移率高、耐高温、抗辐照等优点,是制备航天器电子器件的优良材料.近地轨道内的质子和α粒子对近地卫星威胁巨大,其在InP电子器件中产生的位移损失效应是导致InP电子器件电学性能下降的主要因素....磷化铟(InP)材料具有禁带宽度大、电子迁移率高、耐高温、抗辐照等优点,是制备航天器电子器件的优良材料.近地轨道内的质子和α粒子对近地卫星威胁巨大,其在InP电子器件中产生的位移损失效应是导致InP电子器件电学性能下降的主要因素.本文使用蒙特卡罗软件Geant4研究近地轨道的质子与α粒子分别经过150μm二氧化硅和2.54 mm铝层屏蔽后,在500/1000/5000μm InP材料中产生的非电离能量损失(non-ionizing energy loss,NIEL)、平均非电离损伤能随深度分布以及年总非电离损伤能.研究发现:低能质子射程短且较易发生非电离反应,入射粒子能谱中低能粒子占比越大,材料厚度越小,NIEL值越大;计算质子和α粒子年总非电离损伤能,质子的年总非电离损伤能占比达98%,表明质子是近地轨道内产生位移损伤的主要因素;α粒子年总非电离损伤能占比小,但其在InP中的NIEL约为质子的2-10倍,应关注α粒子在InP中产生的单粒子位移损伤效应.本文计算为InP材料在空间辐射环境的应用提供了参考依据.展开更多
Miniaturized light sources at telecommunication wavelengths are essential components for on-chip optical communication systems.Here,we report the growth and fabrication of highly uniform p-i-n core-shell InGaAs/InP si...Miniaturized light sources at telecommunication wavelengths are essential components for on-chip optical communication systems.Here,we report the growth and fabrication of highly uniform p-i-n core-shell InGaAs/InP single quantum well(QW)nanowire array light emitting diodes(LEDs)with multi-wavelength and high-speed operations.Two-dimensional cathodoluminescence mapping reveals that axial and radial QWs in the nanowire structure contribute to strong emission at the wavelength of~1.35 and~1.55μm,respectively,ideal for low-loss optical communications.As a result of simultaneous contributions from both axial and radial QWs,broadband electroluminescence emission with a linewidth of 286 nm is achieved with a peak power of~17μW.A large spectral blueshift is observed with the increase of applied bias,which is ascribed to the band-filling effect based on device simulation,and enables voltage tunable multi-wavelength operation at the telecommunication wavelength range.Multi-wavelength operation is also achieved by fabricating nanowire array LEDs with different pitch sizes on the same substrate,leading to QW formation with different emission wavelengths.Furthermore,high-speed GHz-level modulation and small pixel size LED are demonstrated,showing the promise for ultrafast operation and ultracompact integration.The voltage and pitch size controlled multi-wavelength highspeed nanowire array LED presents a compact and efficient scheme for developing high-performance nanoscale light sources for future optical communication applications.展开更多
基金Supported by the National Natural Science Foundation of China(12027805,62171136,62174166,U2241219)the Science and Technology Commission of Shanghai Municipality(2019SHZDZX01,22JC1402902)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB43010200)。
基金Supported by the National Natural Science Foundation of China(NSFC)(62174166,11991063,U2241219)Shanghai Municipal Science and Technology Major Project(2019SHZDZX01,22JC1402902)the Strategic Priority Research Program of Chinese Academy of Sciences(XDB43010200)。
文摘磷化铟(InP)材料具有禁带宽度大、电子迁移率高、耐高温、抗辐照等优点,是制备航天器电子器件的优良材料.近地轨道内的质子和α粒子对近地卫星威胁巨大,其在InP电子器件中产生的位移损失效应是导致InP电子器件电学性能下降的主要因素.本文使用蒙特卡罗软件Geant4研究近地轨道的质子与α粒子分别经过150μm二氧化硅和2.54 mm铝层屏蔽后,在500/1000/5000μm InP材料中产生的非电离能量损失(non-ionizing energy loss,NIEL)、平均非电离损伤能随深度分布以及年总非电离损伤能.研究发现:低能质子射程短且较易发生非电离反应,入射粒子能谱中低能粒子占比越大,材料厚度越小,NIEL值越大;计算质子和α粒子年总非电离损伤能,质子的年总非电离损伤能占比达98%,表明质子是近地轨道内产生位移损伤的主要因素;α粒子年总非电离损伤能占比小,但其在InP中的NIEL约为质子的2-10倍,应关注α粒子在InP中产生的单粒子位移损伤效应.本文计算为InP材料在空间辐射环境的应用提供了参考依据.
文摘Miniaturized light sources at telecommunication wavelengths are essential components for on-chip optical communication systems.Here,we report the growth and fabrication of highly uniform p-i-n core-shell InGaAs/InP single quantum well(QW)nanowire array light emitting diodes(LEDs)with multi-wavelength and high-speed operations.Two-dimensional cathodoluminescence mapping reveals that axial and radial QWs in the nanowire structure contribute to strong emission at the wavelength of~1.35 and~1.55μm,respectively,ideal for low-loss optical communications.As a result of simultaneous contributions from both axial and radial QWs,broadband electroluminescence emission with a linewidth of 286 nm is achieved with a peak power of~17μW.A large spectral blueshift is observed with the increase of applied bias,which is ascribed to the band-filling effect based on device simulation,and enables voltage tunable multi-wavelength operation at the telecommunication wavelength range.Multi-wavelength operation is also achieved by fabricating nanowire array LEDs with different pitch sizes on the same substrate,leading to QW formation with different emission wavelengths.Furthermore,high-speed GHz-level modulation and small pixel size LED are demonstrated,showing the promise for ultrafast operation and ultracompact integration.The voltage and pitch size controlled multi-wavelength highspeed nanowire array LED presents a compact and efficient scheme for developing high-performance nanoscale light sources for future optical communication applications.