The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attr...The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attribute importance,Skowron discernibility matrix,and information entropy,struggle to effectively manages multiple uncertainties simultaneously in HDISs like the precise measurement of disparities between nominal attribute values,and attributes with fuzzy boundaries and abnormal values.In order to address the aforementioned issues,this paper delves into the study of attribute reduction withinHDISs.First of all,a novel metric based on the decision attribute is introduced to solve the problem of accurately measuring the differences between nominal attribute values.The newly introduced distance metric has been christened the supervised distance that can effectively quantify the differences between the nominal attribute values.Then,based on the newly developed metric,a novel fuzzy relationship is defined from the perspective of“feedback on parity of attribute values to attribute sets”.This new fuzzy relationship serves as a valuable tool in addressing the challenges posed by abnormal attribute values.Furthermore,leveraging the newly introduced fuzzy relationship,the fuzzy conditional information entropy is defined as a solution to the challenges posed by fuzzy attributes.It effectively quantifies the uncertainty associated with fuzzy attribute values,thereby providing a robust framework for handling fuzzy information in hybrid information systems.Finally,an algorithm for attribute reduction utilizing the fuzzy conditional information entropy is presented.The experimental results on 12 datasets show that the average reduction rate of our algorithm reaches 84.04%,and the classification accuracy is improved by 3.91%compared to the original dataset,and by an average of 11.25%compared to the other 9 state-of-the-art reduction algorithms.The comprehensive analysis of these research results clearly indicates that our algorithm is highly effective in managing the intricate uncertainties inherent in hybrid data.展开更多
The weights of criteria are incompletely known and the criteria values are incomplete and uncertain or even default in some fuzzy multi-criteria decision-making problems.For those problems,an approach based on evident...The weights of criteria are incompletely known and the criteria values are incomplete and uncertain or even default in some fuzzy multi-criteria decision-making problems.For those problems,an approach based on evidential reasoning is proposed,in which the criteria values are integrated on the basis of analytical algorithm of evidential reasoning,and then nonlinear programming models of each alternative are developed with the incomplete information on weights.The genetic algorithm is employed to solve the models,producing the weights and the utility interval of each alternative,and the ranking of the whole set of alternatives can be attained.Finally,an example shows the effectiveness of the method.展开更多
For the moment, the representative and hot research is decision-theoretic rough set (DTRS) which provides a new viewpoint to deal with decision-making problems under risk and uncertainty, and has been applied in many ...For the moment, the representative and hot research is decision-theoretic rough set (DTRS) which provides a new viewpoint to deal with decision-making problems under risk and uncertainty, and has been applied in many fields. Based on rough set theory, Yao proposed the three-way decision theory which is a prolongation of the classical two-way decision approach. This paper investigates the probabilistic DTRS in the framework of intuitionistic fuzzy information system (IFIS). Firstly, based on IFIS, this paper constructs fuzzy approximate spaces and intuitionistic fuzzy (IF) approximate spaces by defining fuzzy equivalence relation and IF equivalence relation, respectively. And the fuzzy probabilistic spaces and IF probabilistic spaces are based on fuzzy approximate spaces and IF approximate spaces, respectively. Thus, the fuzzy probabilistic approximate spaces and the IF probabilistic approximate spaces are constructed, respectively. Then, based on the three-way decision theory, this paper structures DTRS approach model on fuzzy probabilistic approximate spaces and IF probabilistic approximate spaces, respectively. So, the fuzzy decision-theoretic rough set (FDTRS) model and the intuitionistic fuzzy decision-theoretic rough set (IFDTRS) model are constructed on fuzzy probabilistic approximate spaces and IF probabilistic approximate spaces, respectively. Finally, based on the above DTRS model, some illustrative examples about the risk investment of projects are introduced to make decision analysis. Furthermore, the effectiveness of this method is verified.展开更多
Attribute reduction is one of the most important problems in rough set theory. This paper introduces the concept of lower approximation reduction in ordered information systems with fuzzy decision. Moreover, the judgm...Attribute reduction is one of the most important problems in rough set theory. This paper introduces the concept of lower approximation reduction in ordered information systems with fuzzy decision. Moreover, the judgment theorem and discernable matrix are obtained, in which case an approach to attribute reduction in ordered information system with fuzzy decision is constructed. As an application of lower approximation reduction, some examples are applied to examine the validity of works obtained in our works..展开更多
In many practical situation, some of the attribute values for an object may be interval and set-valued. This paper introduces the interval and set-valued information systems and decision systems. According to the sema...In many practical situation, some of the attribute values for an object may be interval and set-valued. This paper introduces the interval and set-valued information systems and decision systems. According to the semantic relation of attribute values, interval and set-valued information systems can be classified into two categories: disjunctive (Type 1) and conjunctive (Type 2) systems. In this paper, we mainly focus on semantic interpretation of Type 1. Then, we define a new fuzzy preference relation and construct a fuzzy rough set model for interval and set-valued information systems. Moreover, based on the new fuzzy preference relation, the concepts of the significance measure of condition attributes and the relative significance measure of condition attributes are given in interval and set-valued decision information systems by the introduction of fuzzy positive region and the dependency degree. And on this basis, a heuristic algorithm for calculating fuzzy positive region reduction in interval and set-valued decision information systems is given. Finally, we give an illustrative example to substantiate the theoretical arguments. The results will help us to gain much more insights into the meaning of fuzzy rough set theory. Furthermore, it has provided a new perspective to study the attribute reduction problem in decision systems.展开更多
A context-aware privacy protection framework was designed for context-aware services and privacy control methods about access personal information in pervasive environment. In the process of user's privacy decision, ...A context-aware privacy protection framework was designed for context-aware services and privacy control methods about access personal information in pervasive environment. In the process of user's privacy decision, it can produce fuzzy privacy decision as the change of personal information sensitivity and personal information receiver trust. The uncertain privacy decision model was proposed about personal information disclosure based on the change of personal information receiver trust and personal information sensitivity. A fuzzy privacy decision information system was designed according to this model. Personal privacy control policies can be extracted from this information system by using rough set theory. It also solves the problem about learning privacy control policies of personal information disclosure.展开更多
Watershed vulnerability was assessed for Bernalillo County, New Mexico using a multi-criteria Fuzzy Inference System (FIS) implemented in a Geographic Information System (GIS). A vulnerability map was produced by mean...Watershed vulnerability was assessed for Bernalillo County, New Mexico using a multi-criteria Fuzzy Inference System (FIS) implemented in a Geographic Information System (GIS). A vulnerability map was produced by means of a weighted overlay analysis that combined soil erosion and infiltration maps derived from the FIS methodology. Five vulnerability classes were stipulated in the model: not vulnerable (N), slightly vulnerable (SV), moderately vulnerable (MV), highly vulnerable (HV), and extremely vulnerable (EV). The results indicate that about 88% of the study area is susceptible to slight (SV) to moderate vulnerability (MV), with 11% of the area subject to experience high or extreme vulnerability (HV/EV). For land use and land cover (LULC) classifications, shrub land was identified to experience the most vulnerability. Weighted overlay output compared similarly with the results predicted by Revised Universal Soil Loss Equation (RUSLE) model with the exception of the not vulnerable (N) class. The eastern portion of the county was identified as most vulnerable due to its high slope and high precipitation. Herein, structural stormwater control measures (SCMs) may be viable for managing runoff and sediment transport offsite. This multi-criteria FIS/GIS approach can provide useful information to guide decision makers in selection of suitable structural and non-structural SCMs for the arid Southwest.展开更多
Geographic Information System (GIS) software was used to create a watershed vulnerability model for Bernalillo County, New Mexico. Watershed vulnerability was investigated as a function of soil erosion and infiltratio...Geographic Information System (GIS) software was used to create a watershed vulnerability model for Bernalillo County, New Mexico. Watershed vulnerability was investigated as a function of soil erosion and infiltration criteria: precipitation, land slope, soil erodibility (K-factor), vegetation cover (NDVI), land use, drainage density, saturated hydraulic conductivity, and hydrologic soil group. Respective criteria weights were derived using a Fuzzy Analytic Hierarchy Process (FAHP) supported by expert opinion. A survey of 10 experts, representing New Mexico Institute of Mining and Technology (NMT), the New Mexico Bureau of Geology and Mineral Resources (NMBGMR), and the United States Geologic Survey (USGS), provided model input data for an integrated pair-wise comparison matrix for soil erosion and for infiltration. Individual criteria weights were determined by decomposing the respective fuzzy synthetic extent matrix using the centroid method. GIS layers were then combined based on criteria weights to produce maps of soil erosion potential and infiltration potential. A composite watershed vulnerability map was generated by equal weighting of each input map. Model results were categorized into five vulnerability categories: not vulnerable (N), slightly vulnerable (SV), moderately vulnerable (MV), highly vulnerable (HV), and extremely vulnerable (EV). The resulting FAHP/GIS model was used to generate a watershed vulnerability map of discrete areas in Bernalillo County, which may be vulnerable to stormwater run-off events and soil erosion. Such high volume run-off events can cause erosion damage to property and infrastructure. Alternatively, in areas near urban development, stormwater run-off may contribute non-point-source pollutant contamination of New Mexico’s surface water resources. The most problematic areas in Bernalillo County are present in the Eastern and Northwestern portions. However, less than 1% of the total area lies within the lowest and highest vulnerability categories with the majority centered around moderate vulnerability. The results of the model were compared with a previously published crisp AHP method. Both methods showed similar regional vulnerability trends. This MCDS/GIS approach is intended to provide support to local governments and decision makers in selection of suitable structural or nonstructural stormwater control measures.展开更多
The development of new wind energy project requires studying of many parameters to achieve maximum benefits at the cost of minimum environmental impacts. Using Geographic Information System (GIS), an analytical framew...The development of new wind energy project requires studying of many parameters to achieve maximum benefits at the cost of minimum environmental impacts. Using Geographic Information System (GIS), an analytical framework has been developed in this paper with fuzzy logic to evaluate the suitable site for turbines for optimum energy output. The criteria for suitable site for energy optimization are environmental, physical and human factors. The present study helps to assess the appropriate sites for the wind turbines in Gujarat. The result obtained from the study conveys the suitability of the development of wind turbines along the western parts of Gujarat. The suggested model could be used for the future site selection of the wind turbine which in turn could be of orientation for energy planners and decision makers.展开更多
为同时应对不确定信息表示与风险信息融合对群决策带来的挑战,构建一种三角模糊不完备三支群决策方法,并将其应用于糖尿病诊断决策。首先,针对信息不确定性蕴含的模糊性和不完备性,分别引入三角模糊集和不完备信息系统的概念。通过与多...为同时应对不确定信息表示与风险信息融合对群决策带来的挑战,构建一种三角模糊不完备三支群决策方法,并将其应用于糖尿病诊断决策。首先,针对信息不确定性蕴含的模糊性和不完备性,分别引入三角模糊集和不完备信息系统的概念。通过与多粒度三支决策结合,构建了可调多粒度三角模糊概率粗糙集模型。然后,根据离差最大化法计算属性权重与专家权重,结合ELECTRE(elimination et choice translating reality)方法建立了三角模糊多属性群决策方法。最后,通过对糖尿病患者数据的案例分析和评估,验证了所提方法的可行性和有效性。该方法不仅从不确定信息表示、风险信息融合和最优粒度选择的视角丰富了多粒度三支群决策理论,而且推动了糖尿病智能诊断方面的应用。展开更多
基金Anhui Province Natural Science Research Project of Colleges and Universities(2023AH040321)Excellent Scientific Research and Innovation Team of Anhui Colleges(2022AH010098).
文摘The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attribute importance,Skowron discernibility matrix,and information entropy,struggle to effectively manages multiple uncertainties simultaneously in HDISs like the precise measurement of disparities between nominal attribute values,and attributes with fuzzy boundaries and abnormal values.In order to address the aforementioned issues,this paper delves into the study of attribute reduction withinHDISs.First of all,a novel metric based on the decision attribute is introduced to solve the problem of accurately measuring the differences between nominal attribute values.The newly introduced distance metric has been christened the supervised distance that can effectively quantify the differences between the nominal attribute values.Then,based on the newly developed metric,a novel fuzzy relationship is defined from the perspective of“feedback on parity of attribute values to attribute sets”.This new fuzzy relationship serves as a valuable tool in addressing the challenges posed by abnormal attribute values.Furthermore,leveraging the newly introduced fuzzy relationship,the fuzzy conditional information entropy is defined as a solution to the challenges posed by fuzzy attributes.It effectively quantifies the uncertainty associated with fuzzy attribute values,thereby providing a robust framework for handling fuzzy information in hybrid information systems.Finally,an algorithm for attribute reduction utilizing the fuzzy conditional information entropy is presented.The experimental results on 12 datasets show that the average reduction rate of our algorithm reaches 84.04%,and the classification accuracy is improved by 3.91%compared to the original dataset,and by an average of 11.25%compared to the other 9 state-of-the-art reduction algorithms.The comprehensive analysis of these research results clearly indicates that our algorithm is highly effective in managing the intricate uncertainties inherent in hybrid data.
基金supported by the National Natural Science Foundation of China(7077111570921001)and Key Project of National Natural Science Foundation of China(70631004)
文摘The weights of criteria are incompletely known and the criteria values are incomplete and uncertain or even default in some fuzzy multi-criteria decision-making problems.For those problems,an approach based on evidential reasoning is proposed,in which the criteria values are integrated on the basis of analytical algorithm of evidential reasoning,and then nonlinear programming models of each alternative are developed with the incomplete information on weights.The genetic algorithm is employed to solve the models,producing the weights and the utility interval of each alternative,and the ranking of the whole set of alternatives can be attained.Finally,an example shows the effectiveness of the method.
文摘For the moment, the representative and hot research is decision-theoretic rough set (DTRS) which provides a new viewpoint to deal with decision-making problems under risk and uncertainty, and has been applied in many fields. Based on rough set theory, Yao proposed the three-way decision theory which is a prolongation of the classical two-way decision approach. This paper investigates the probabilistic DTRS in the framework of intuitionistic fuzzy information system (IFIS). Firstly, based on IFIS, this paper constructs fuzzy approximate spaces and intuitionistic fuzzy (IF) approximate spaces by defining fuzzy equivalence relation and IF equivalence relation, respectively. And the fuzzy probabilistic spaces and IF probabilistic spaces are based on fuzzy approximate spaces and IF approximate spaces, respectively. Thus, the fuzzy probabilistic approximate spaces and the IF probabilistic approximate spaces are constructed, respectively. Then, based on the three-way decision theory, this paper structures DTRS approach model on fuzzy probabilistic approximate spaces and IF probabilistic approximate spaces, respectively. So, the fuzzy decision-theoretic rough set (FDTRS) model and the intuitionistic fuzzy decision-theoretic rough set (IFDTRS) model are constructed on fuzzy probabilistic approximate spaces and IF probabilistic approximate spaces, respectively. Finally, based on the above DTRS model, some illustrative examples about the risk investment of projects are introduced to make decision analysis. Furthermore, the effectiveness of this method is verified.
基金Acknowledgments: The work was supported in part by the National Science Foundation of China (No. 70571032) and the Scientific Research Foundation of Hunan Provincial Education Department (No. 06C367).
文摘Attribute reduction is one of the most important problems in rough set theory. This paper introduces the concept of lower approximation reduction in ordered information systems with fuzzy decision. Moreover, the judgment theorem and discernable matrix are obtained, in which case an approach to attribute reduction in ordered information system with fuzzy decision is constructed. As an application of lower approximation reduction, some examples are applied to examine the validity of works obtained in our works..
文摘In many practical situation, some of the attribute values for an object may be interval and set-valued. This paper introduces the interval and set-valued information systems and decision systems. According to the semantic relation of attribute values, interval and set-valued information systems can be classified into two categories: disjunctive (Type 1) and conjunctive (Type 2) systems. In this paper, we mainly focus on semantic interpretation of Type 1. Then, we define a new fuzzy preference relation and construct a fuzzy rough set model for interval and set-valued information systems. Moreover, based on the new fuzzy preference relation, the concepts of the significance measure of condition attributes and the relative significance measure of condition attributes are given in interval and set-valued decision information systems by the introduction of fuzzy positive region and the dependency degree. And on this basis, a heuristic algorithm for calculating fuzzy positive region reduction in interval and set-valued decision information systems is given. Finally, we give an illustrative example to substantiate the theoretical arguments. The results will help us to gain much more insights into the meaning of fuzzy rough set theory. Furthermore, it has provided a new perspective to study the attribute reduction problem in decision systems.
基金Supported by the National Natural Science Foundation of China (60573119, 604973098) and IBM joint project
文摘A context-aware privacy protection framework was designed for context-aware services and privacy control methods about access personal information in pervasive environment. In the process of user's privacy decision, it can produce fuzzy privacy decision as the change of personal information sensitivity and personal information receiver trust. The uncertain privacy decision model was proposed about personal information disclosure based on the change of personal information receiver trust and personal information sensitivity. A fuzzy privacy decision information system was designed according to this model. Personal privacy control policies can be extracted from this information system by using rough set theory. It also solves the problem about learning privacy control policies of personal information disclosure.
文摘Watershed vulnerability was assessed for Bernalillo County, New Mexico using a multi-criteria Fuzzy Inference System (FIS) implemented in a Geographic Information System (GIS). A vulnerability map was produced by means of a weighted overlay analysis that combined soil erosion and infiltration maps derived from the FIS methodology. Five vulnerability classes were stipulated in the model: not vulnerable (N), slightly vulnerable (SV), moderately vulnerable (MV), highly vulnerable (HV), and extremely vulnerable (EV). The results indicate that about 88% of the study area is susceptible to slight (SV) to moderate vulnerability (MV), with 11% of the area subject to experience high or extreme vulnerability (HV/EV). For land use and land cover (LULC) classifications, shrub land was identified to experience the most vulnerability. Weighted overlay output compared similarly with the results predicted by Revised Universal Soil Loss Equation (RUSLE) model with the exception of the not vulnerable (N) class. The eastern portion of the county was identified as most vulnerable due to its high slope and high precipitation. Herein, structural stormwater control measures (SCMs) may be viable for managing runoff and sediment transport offsite. This multi-criteria FIS/GIS approach can provide useful information to guide decision makers in selection of suitable structural and non-structural SCMs for the arid Southwest.
文摘Geographic Information System (GIS) software was used to create a watershed vulnerability model for Bernalillo County, New Mexico. Watershed vulnerability was investigated as a function of soil erosion and infiltration criteria: precipitation, land slope, soil erodibility (K-factor), vegetation cover (NDVI), land use, drainage density, saturated hydraulic conductivity, and hydrologic soil group. Respective criteria weights were derived using a Fuzzy Analytic Hierarchy Process (FAHP) supported by expert opinion. A survey of 10 experts, representing New Mexico Institute of Mining and Technology (NMT), the New Mexico Bureau of Geology and Mineral Resources (NMBGMR), and the United States Geologic Survey (USGS), provided model input data for an integrated pair-wise comparison matrix for soil erosion and for infiltration. Individual criteria weights were determined by decomposing the respective fuzzy synthetic extent matrix using the centroid method. GIS layers were then combined based on criteria weights to produce maps of soil erosion potential and infiltration potential. A composite watershed vulnerability map was generated by equal weighting of each input map. Model results were categorized into five vulnerability categories: not vulnerable (N), slightly vulnerable (SV), moderately vulnerable (MV), highly vulnerable (HV), and extremely vulnerable (EV). The resulting FAHP/GIS model was used to generate a watershed vulnerability map of discrete areas in Bernalillo County, which may be vulnerable to stormwater run-off events and soil erosion. Such high volume run-off events can cause erosion damage to property and infrastructure. Alternatively, in areas near urban development, stormwater run-off may contribute non-point-source pollutant contamination of New Mexico’s surface water resources. The most problematic areas in Bernalillo County are present in the Eastern and Northwestern portions. However, less than 1% of the total area lies within the lowest and highest vulnerability categories with the majority centered around moderate vulnerability. The results of the model were compared with a previously published crisp AHP method. Both methods showed similar regional vulnerability trends. This MCDS/GIS approach is intended to provide support to local governments and decision makers in selection of suitable structural or nonstructural stormwater control measures.
文摘The development of new wind energy project requires studying of many parameters to achieve maximum benefits at the cost of minimum environmental impacts. Using Geographic Information System (GIS), an analytical framework has been developed in this paper with fuzzy logic to evaluate the suitable site for turbines for optimum energy output. The criteria for suitable site for energy optimization are environmental, physical and human factors. The present study helps to assess the appropriate sites for the wind turbines in Gujarat. The result obtained from the study conveys the suitability of the development of wind turbines along the western parts of Gujarat. The suggested model could be used for the future site selection of the wind turbine which in turn could be of orientation for energy planners and decision makers.
文摘为同时应对不确定信息表示与风险信息融合对群决策带来的挑战,构建一种三角模糊不完备三支群决策方法,并将其应用于糖尿病诊断决策。首先,针对信息不确定性蕴含的模糊性和不完备性,分别引入三角模糊集和不完备信息系统的概念。通过与多粒度三支决策结合,构建了可调多粒度三角模糊概率粗糙集模型。然后,根据离差最大化法计算属性权重与专家权重,结合ELECTRE(elimination et choice translating reality)方法建立了三角模糊多属性群决策方法。最后,通过对糖尿病患者数据的案例分析和评估,验证了所提方法的可行性和有效性。该方法不仅从不确定信息表示、风险信息融合和最优粒度选择的视角丰富了多粒度三支群决策理论,而且推动了糖尿病智能诊断方面的应用。