In view of incomplete probability information multi-objective question, it used probabilistic perturbation method and Edgeworth series technique to study reliability optimization design. The first four moments of basi...In view of incomplete probability information multi-objective question, it used probabilistic perturbation method and Edgeworth series technique to study reliability optimization design. The first four moments of basic random variables are known under condition. It used the Ant Colony Algorithm to design cutting head roadheader, the optimized result indicated that cutting head load fluctuation and compared energy consumption were reduced obviously at the same time. This result enhanced roadheader operational reliability and energy effectively.展开更多
Based on equivalence relation,the classical rough set theory is unable to deal with incomplete information systems.In this case,an extended rough set model based on valued tolerance relation and prior probability obta...Based on equivalence relation,the classical rough set theory is unable to deal with incomplete information systems.In this case,an extended rough set model based on valued tolerance relation and prior probability obtained from incomplete information systems is firstly founded.As a part of the model,the corresponding discernibility matrix and an attribute reduction of incomplete information system are then proposed.Finally,the extended rough set model and the proposed attribute reduction algorithm are verified under an incomplete information system.展开更多
The original Probability Hypothesis Density (PHD) filter is a tractable algorithm for Multi-Target Tracking (MTT) in Random Finite Set (RFS) frameworks. In this paper,we introduce a novel Evidence PHD (E-PHD) filter w...The original Probability Hypothesis Density (PHD) filter is a tractable algorithm for Multi-Target Tracking (MTT) in Random Finite Set (RFS) frameworks. In this paper,we introduce a novel Evidence PHD (E-PHD) filter which combines the Dempster-Shafer (DS) evidence theory. The proposed filter can deal with the uncertain information,thus it forms target track. We mainly discusses the E-PHD filter under the condition of linear Gaussian. Research shows that the E-PHD filter has an analytic form of Evidence Gaussian Mixture PHD (E-GMPHD). The final experiment shows that the proposed E-GMPHD filter can derive the target identity,state,and number effectively.展开更多
文摘In view of incomplete probability information multi-objective question, it used probabilistic perturbation method and Edgeworth series technique to study reliability optimization design. The first four moments of basic random variables are known under condition. It used the Ant Colony Algorithm to design cutting head roadheader, the optimized result indicated that cutting head load fluctuation and compared energy consumption were reduced obviously at the same time. This result enhanced roadheader operational reliability and energy effectively.
基金supported by the Foundation and Frontier Technologies Research Plan Projects of Henan Province of China under Grant No. 102300410266
文摘Based on equivalence relation,the classical rough set theory is unable to deal with incomplete information systems.In this case,an extended rough set model based on valued tolerance relation and prior probability obtained from incomplete information systems is firstly founded.As a part of the model,the corresponding discernibility matrix and an attribute reduction of incomplete information system are then proposed.Finally,the extended rough set model and the proposed attribute reduction algorithm are verified under an incomplete information system.
基金Supports in part by the NSFC (No. 60772006, 60874105)the ZJNSF(Y1080422, R106745)NCET (08- 0345)
文摘The original Probability Hypothesis Density (PHD) filter is a tractable algorithm for Multi-Target Tracking (MTT) in Random Finite Set (RFS) frameworks. In this paper,we introduce a novel Evidence PHD (E-PHD) filter which combines the Dempster-Shafer (DS) evidence theory. The proposed filter can deal with the uncertain information,thus it forms target track. We mainly discusses the E-PHD filter under the condition of linear Gaussian. Research shows that the E-PHD filter has an analytic form of Evidence Gaussian Mixture PHD (E-GMPHD). The final experiment shows that the proposed E-GMPHD filter can derive the target identity,state,and number effectively.