The deformations and stresses of a rotating cylindrical hollow disk made of incompressible functionally-graded hyper-elastic material are theoretically analyzed based on the finite elasticity theory.The hyper-elastic ...The deformations and stresses of a rotating cylindrical hollow disk made of incompressible functionally-graded hyper-elastic material are theoretically analyzed based on the finite elasticity theory.The hyper-elastic material is described by a new micro-macro transition model.Specially,the material shear modulus and density are assumed to be a function with a power law form through the radial direction,while the material inhomogeneity is thus reflected on the power index m.The integral forms of the stretches and stress components are obtained.With the obtained complicated integral forms,the composite trapezoidal rule is utilized to derive the analytical solutions,and the explicit solutions for both the stretches and the stress components are numerically obtained.By comparing the results with two classic models,the superiority of the model in our work is demonstrated.Then,the distributions of the stretches and normalized stress components are discussed in detail under the effects of m.The results indicate that the material inhomogeneity and the rotating angular velocity have significant effects on the distributions of the normalized radial and hoop stress components and the stretches.We believe that by appropriately choosing the material inhomogeneity and configuration parameters,the functionally-graded material(FGM)hyper-elastic hollow cylindrical disk can be designed to meet some unique requirements in the application fields,e.g.,soft robotics,medical devices,and conventional aerospace and mechanical industries.展开更多
Dynamical responses, such as motion and destruction of hyper-elastic cylindrical shells subject to periodic or suddenly applied constant load on the inner surface, are studied within a framework of finite elasto-dynam...Dynamical responses, such as motion and destruction of hyper-elastic cylindrical shells subject to periodic or suddenly applied constant load on the inner surface, are studied within a framework of finite elasto-dynamics. By numerical computation and dynamic qualitative analysis of the nonlinear differential equation, it is shown that there exists a certain critical value for the internal load describing motion of the inner surface of the shell. Motion of the shell is nonlinear periodic or quasi-periodic oscillation when the average load of the periodic load or the constant load is less than its critical value. However, the shell will be destroyed when the load exceeds the critical value. Solution to the static equilibrium problem is a fixed point for the dynamical response of the corresponding system under a suddenly applied constant load. The property of fixed point is related to the property of the dynamical solution and motion of the shell. The effects of thickness and load parameters on the critical value and oscillation of the shell are discussed.展开更多
The nonlinear vibration problem is studied for a thin-walled rubber cylindrical shell composed of the classical incompressible Mooney-Rivlin material and subjected to a radial harmonic excitation. With the KirchhofF-L...The nonlinear vibration problem is studied for a thin-walled rubber cylindrical shell composed of the classical incompressible Mooney-Rivlin material and subjected to a radial harmonic excitation. With the KirchhofF-Love hypothesis, DonnelFs nonlinear shallow shell theory, hyperelastic constitutive relation, Lagrange equations and small strain hypothesis, a system of nonlinear differential equations describing the large-deflection vibration of the shell is derived. First, the natural frequencies of radial, circumferential and axial vibrations axe studied. Then, based on the bifurcation diagrams and the Poincare sections, the nonlinear behaviors describing the radial vibration of the shell are illustrated. Examining the influences of structural and material parameters on radial vibration of the shell shows that the vibration modes are highly sensitive to the thickness-radius ratio when the ratio is less than a certain critical value. Moreover, in terms of the results of multimodal expansion, it is found that the response of the shell to radial motion is more regular than that without considering the coupling between modes, while there are more phenomena for the uncoupled case.展开更多
Nonlinear vibration with axisymmetric 3:1 internal resonance is investigated for an incompressible neo-Hookean hyperelastic cylindrical shell under both axial and radial harmonic excitations.A full nonlinear strain-di...Nonlinear vibration with axisymmetric 3:1 internal resonance is investigated for an incompressible neo-Hookean hyperelastic cylindrical shell under both axial and radial harmonic excitations.A full nonlinear strain-displacement relation is derived from the large deflection theory of thin-walled shells.A set of nonlinear differential equations describing the large deflection vibration are formulated by the Lagrange equation and the assumption of small strains.Steady-state responses of the system are predicted via the harmonic balance method with the arc length continuation,and their stabilities are determined via the modified sorting method.The effects of excitations on the steady-state responses are analyzed.The results reveal a crucial role played by the phase difference in the structural response,and the phase difference can effectively control the amplitude of vibration.展开更多
基金supported by the National Natural Science Foundation of China(No.11972144)the Shanxi Province Specialized Research and Development Breakthrough in Key Core and Generic Technologies(Key Research and Development Program)(No.2020XXX017)the Fundamental Research Program of Shanxi Province of China(No.202203021211134)。
文摘The deformations and stresses of a rotating cylindrical hollow disk made of incompressible functionally-graded hyper-elastic material are theoretically analyzed based on the finite elasticity theory.The hyper-elastic material is described by a new micro-macro transition model.Specially,the material shear modulus and density are assumed to be a function with a power law form through the radial direction,while the material inhomogeneity is thus reflected on the power index m.The integral forms of the stretches and stress components are obtained.With the obtained complicated integral forms,the composite trapezoidal rule is utilized to derive the analytical solutions,and the explicit solutions for both the stretches and the stress components are numerically obtained.By comparing the results with two classic models,the superiority of the model in our work is demonstrated.Then,the distributions of the stretches and normalized stress components are discussed in detail under the effects of m.The results indicate that the material inhomogeneity and the rotating angular velocity have significant effects on the distributions of the normalized radial and hoop stress components and the stretches.We believe that by appropriately choosing the material inhomogeneity and configuration parameters,the functionally-graded material(FGM)hyper-elastic hollow cylindrical disk can be designed to meet some unique requirements in the application fields,e.g.,soft robotics,medical devices,and conventional aerospace and mechanical industries.
基金the National Natural Science Foundation of China(Nos.10772104 and10402018)the Shanghai Leading Academic Discipline Project(No.Y0103)
文摘Dynamical responses, such as motion and destruction of hyper-elastic cylindrical shells subject to periodic or suddenly applied constant load on the inner surface, are studied within a framework of finite elasto-dynamics. By numerical computation and dynamic qualitative analysis of the nonlinear differential equation, it is shown that there exists a certain critical value for the internal load describing motion of the inner surface of the shell. Motion of the shell is nonlinear periodic or quasi-periodic oscillation when the average load of the periodic load or the constant load is less than its critical value. However, the shell will be destroyed when the load exceeds the critical value. Solution to the static equilibrium problem is a fixed point for the dynamical response of the corresponding system under a suddenly applied constant load. The property of fixed point is related to the property of the dynamical solution and motion of the shell. The effects of thickness and load parameters on the critical value and oscillation of the shell are discussed.
基金supported by the National Natural Science Foundation of China (Nos.11672069,11702059,11872145).
文摘The nonlinear vibration problem is studied for a thin-walled rubber cylindrical shell composed of the classical incompressible Mooney-Rivlin material and subjected to a radial harmonic excitation. With the KirchhofF-Love hypothesis, DonnelFs nonlinear shallow shell theory, hyperelastic constitutive relation, Lagrange equations and small strain hypothesis, a system of nonlinear differential equations describing the large-deflection vibration of the shell is derived. First, the natural frequencies of radial, circumferential and axial vibrations axe studied. Then, based on the bifurcation diagrams and the Poincare sections, the nonlinear behaviors describing the radial vibration of the shell are illustrated. Examining the influences of structural and material parameters on radial vibration of the shell shows that the vibration modes are highly sensitive to the thickness-radius ratio when the ratio is less than a certain critical value. Moreover, in terms of the results of multimodal expansion, it is found that the response of the shell to radial motion is more regular than that without considering the coupling between modes, while there are more phenomena for the uncoupled case.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.11672069,11872145,11872159,12172086,and 12101106).
文摘Nonlinear vibration with axisymmetric 3:1 internal resonance is investigated for an incompressible neo-Hookean hyperelastic cylindrical shell under both axial and radial harmonic excitations.A full nonlinear strain-displacement relation is derived from the large deflection theory of thin-walled shells.A set of nonlinear differential equations describing the large deflection vibration are formulated by the Lagrange equation and the assumption of small strains.Steady-state responses of the system are predicted via the harmonic balance method with the arc length continuation,and their stabilities are determined via the modified sorting method.The effects of excitations on the steady-state responses are analyzed.The results reveal a crucial role played by the phase difference in the structural response,and the phase difference can effectively control the amplitude of vibration.