Inconel 718 is the most popular nickel-based superalloy and is extensively used in aerospace,automotive,and energy indus-tries owing to its extraordinary thermomechanical properties.The effects of different two-step s...Inconel 718 is the most popular nickel-based superalloy and is extensively used in aerospace,automotive,and energy indus-tries owing to its extraordinary thermomechanical properties.The effects of different two-step solid solution treatments on microstructure andδphase precipitation of Inconel 718 alloy were studied,and the transformation mechanism fromγ″metastable phase toδphase was clarified.The precipitates were statistically analyzed by X-ray diffractometry.The results show that theδphase content firstly increased,and then decreased with the temperature of the second-step solid solution.The changes in microstructure andδphase were studied by scanning electron microscopy and transmission electron microscopy.An intragranularδphase formed in Inconel 718 alloy at the second-[100]_(δ)[011]γ step solid solution temperature of 925℃,and its orientation relationship withγmatrix was determined as//and(010)_(δ)//(111)γ.Furthermore,the Vickers hardness of different heat treatment samples was measured,and the sample treated by second-step solid solution at 1010℃ reached the maximum hardness of HV 446.84.展开更多
A good joint of Ti Bw/Ti6Al4V composites and Inconel 718 alloys was obtained by Gas Tungsten Arc Welding(GTAW) heat transmission. The interfacial reaction mechanism of joint was investigated and analyzed in details. O...A good joint of Ti Bw/Ti6Al4V composites and Inconel 718 alloys was obtained by Gas Tungsten Arc Welding(GTAW) heat transmission. The interfacial reaction mechanism of joint was investigated and analyzed in details. Owing to the heat input applied on the surface of Ti Bw/Ti6Al4V composites, a solid-state reaction layer appeared at the interface of Ti Bw/Ti6Al4 V composites to Inconel 718 alloys. The thickness of the reaction layer was obviously increased with increasing heat input.Developing of reaction layer mainly depended on the diffusion of elements of Ti and Ni through the interface during welding to form solid solutions and intermetallic compounds(IMCs). The reaction layer can be divided into Ti-rich zone(layer 2) and Nirich zone(layer 1). In Ni-rich zone, relatively coarse dendrites were the predominant, however, more brittle IMCs like Ti2Ni were found in the Ti-rich zone. Micro hardness of reaction layer was much higher than that of base metal. While a slight decrease of hardness was found between Ti-rich zone and Ni-rich zone due to the formation of TiNi.展开更多
The anisotropy of the structure and properties caused by the strong epitaxial growth of grains during laser powder bed fusion(L-PBF)significantly affects the mechanical performance of Inconel 718 alloy components such...The anisotropy of the structure and properties caused by the strong epitaxial growth of grains during laser powder bed fusion(L-PBF)significantly affects the mechanical performance of Inconel 718 alloy components such as turbine disks.The defects(lack-of-fusion Lo F)in components processed via L-PBF are detrimental to the strength of the alloy.The purpose of this study is to investigate the effect of laser scanning parameters on the epitaxial grain growth and LoF formation in order to obtain the parameter space in which the microstructure is refined and LoF defect is suppressed.The temperature field of the molten pool and the epitaxial grain growth are simulated using a multiscale model combining the finite element method with the phase-field method.The LoF model is proposed to predict the formation of LoF defects resulting from insufficient melting during L-PBF.Defect mitigation and grain-structure control during L-PBF can be realized simultaneously in the model.The simulation shows the input laser energy density for the as-deposited structure with fine grains and without LoF defects varied from 55.0–62.5 J·mm^(-3)when the interlayer rotation angle was 0°–90°.The optimized process parameters(laser power of 280 W,scanning speed of 1160 mm·s^(-1),and rotation angle of 67°)were computationally screened.In these conditions,the average grain size was 7.0μm,and the ultimate tensile strength and yield strength at room temperature were(1111±3)MPa and(820±7)MPa,respectively,which is 8.8%and10.5%higher than those of reported.The results indicating the proposed multiscale computational approach for predicting grain growth and Lo F defects could allow simultaneous grain-structure control and defect mitigation during L-PBF.展开更多
High entropy alloy(HEA) of Fe Co Ni Ti Al and Inconel 718 superalloy were firstly transient liquid phase(TLP) bonded by BNi2 filler due to the diffusion of Si and B in the filler to the base metals. The effects of bon...High entropy alloy(HEA) of Fe Co Ni Ti Al and Inconel 718 superalloy were firstly transient liquid phase(TLP) bonded by BNi2 filler due to the diffusion of Si and B in the filler to the base metals. The effects of bonding time on microstructure evolution and mechanical properties of the TLP joints were investigated.Owing to the complete isothermal solidification of the joints bonded for 30 min 120 min at 1100°C,no athermally solidified zones(ASZs) formed by eutectic phases were observed in the welded zone. Thus the TLP joints were only composed by the isothermally solidified zone(ISZ) and two diffusion affected zone(DAZ) adjacent to the dissimilar base metals and the negative effect of the ASZ on joint properties can be avoided. In addition, the increase of the bonding time can also make the Ti B2 borides precipitated in the DAZ near HEA and the brittle borides or carbides in the DAZ near IN718 alloy decrease and reduce the possibility of the stress concentration happened in the joints under loading. Therefore, the highest shear strength(632.1 MPa) of the TLP joints was obtained at 1100°C for 120 min, which was higher than that of the joint bonded for 30 min, 404.2 MPa. Furthermore, the extension of the bonding time made the fracture mechanism of the joint be transformed from the intergranular fracture to the transgranular fracture. However, as the brittle borides in the DAZ near IN718 can not be eliminated completely and refining of grains also happened in such region, all the TLP joints fractured inner the DAZ near IN718 alloy.展开更多
For successfully forming multi-sheet cylinder sandwich structure of Inconel 718 superalloy, high temperature tensile properties of laser butt-welded plate of Inconel 718 superalloy were studied. The experiment results...For successfully forming multi-sheet cylinder sandwich structure of Inconel 718 superalloy, high temperature tensile properties of laser butt-welded plate of Inconel 718 superalloy were studied. The experiment results show that tensile direction has great effect on elongation of the laser butt-welded plate. Under conditions of transverse direction tension, the maximum elongation reaches 458.56% at 950 °C with strain rate of 3.1-10-4 s-1, in which the strain rate sensitivity value m is 0.352 and the welding seam is not deformed. Under conditions of longitudinal direction tension, the maximum elongation is 178.96% at 965 °C with strain rate of 6.2-10-4 s-1, in which m-value is 0.261, and the welding seam contributes to the deformation with the matrix. The microstructure in as-welded fusion zone is constituted of austenite dendrites and Laves phase precipitated in interdendrites. After longitudinal direction tension, a mixed microstructure with dendrite and equiaxed crystal appears in the welding seam due to dynamic recrystallization. After high temperature deforming, many δ-phase grains are transformed from Laves phase grains but a small part of residual Laves phase grains still exist in the welding seam. The deformation result of multi-sheet cylinder sandwich structure verifies that high temperature plasticity of the laser butt-welded plate can meet the requirement of superplastic forming.展开更多
The effects of phosphorus and boron addition on the as-cast microstructure and homogenization parameters of Inconel 718 were studied. The results indicate that the addition of phosphorus and boron promotes the formati...The effects of phosphorus and boron addition on the as-cast microstructure and homogenization parameters of Inconel 718 were studied. The results indicate that the addition of phosphorus and boron promotes the formation of blocky Laves phase. Due to the strong segregation behavior of boron in the final residual liquid, a low melting B-bearing phase enriched in Nb, Mo and Cr is observed. According to the differential scanning calorimeter results and electron probe micro-analysis characterization, the solidification sequence of Inconel 718 with phosphorus and boron addition in best combination is determined as L→L+γ→L+γ+MC→L+γ+MC+Laves→γ+MC+Laves+MC+Laves+B-bearing phase. Accordingly, the homogenization temperature is recommended to be adjusted at least 40°C lower than that of standard Inconel 718 due to the existence of low melting B-bearing phase.展开更多
The optimization of micro milling electrical discharge machining(EDM) process parameters of Inconel 718 alloy to achieve multiple performance characteristics such as low electrode wear,high material removal rate and...The optimization of micro milling electrical discharge machining(EDM) process parameters of Inconel 718 alloy to achieve multiple performance characteristics such as low electrode wear,high material removal rate and low working gap was investigated by the Grey-Taguchi method.The influences of peak current,pulse on-time,pulse off-time and spark gap on electrode wear(EW),material removal rate(MRR) and working gap(WG) in the micro milling electrical discharge machining of Inconel 718 were analyzed.The experimental results show that the electrode wear decreases from 5.6×10-9 to 5.2×10-9 mm3/min,the material removal rate increases from 0.47×10-8 to 1.68×10-8 mm3/min,and the working gap decreases from 1.27 to 1.19 μm under optimal micro milling electrical discharge machining process parameters.Hence,it is clearly shown that multiple performance characteristics can be improved by using the Grey-Taguchi method.展开更多
An annealed Inconel 718 alloy was surface-treated by pulsed laser at three different powers(100, 50 and 25 W). Microstructural changes induced by the laser treatments were characterized by use of electron backscatte...An annealed Inconel 718 alloy was surface-treated by pulsed laser at three different powers(100, 50 and 25 W). Microstructural changes induced by the laser treatments were characterized by use of electron backscatter diffraction and electron channeling contrast imaging techniques. Results show that both annealing twins and strengthening precipitates profusely existing in the as-received specimen are dissolved at elevated temperatures during the laser irradiation. Meanwhile, in the melting zone(MZ), densities of low angle boundaries(LABs) are greatly increased with a large number of Laves phases preferentially distributed along such LABs. For different specimens, widths and depths of their MZs are found to be gradually reduced with decreasing the laser powers. Orientation analyses reveal that the columnar grains in the MZ of the 100 W specimen could inherit orientations existing in the matrix while lower laser powers promote the formation of more nuclei with scattered orientations to grow to be granular grains in the MZ. Hardness tests reveal that the MZs of all laser-treated specimens are softer than the matrix probably due to both precipitate dissolution and grain coarsening.展开更多
The magnetically constricted arc technique was implemented to mitigate the heat input related metallurgical problems in Gas Tungsten Arc Welding(GTAW)of Inconel 718 alloy particularly Nb segregation and subsequent lav...The magnetically constricted arc technique was implemented to mitigate the heat input related metallurgical problems in Gas Tungsten Arc Welding(GTAW)of Inconel 718 alloy particularly Nb segregation and subsequent laves phase evolution in fusion zone.This paper reports the direct effect of magnetically constricted arc traverse speed(MCATS)on bead profile,tensile properties and microstructural evolution of Inconel 718 alloy sheets joined by Gas Tungsten Constricted Arc Welding(GTCAW)process.The mechanism amenable for the microstructural modification and corresponding influence on the tensile properties of joints is investigated both in qualitative and quantitative manner related to the mechanics of arc constriction and pulsing.It is correlated to the solidification conditions during welding.The relationship between MCATS and Arc Constriction Current(ACC)was derived.Its interaction effect on the magnetic arc constriction and joint performance was analysed.Results showed that the joints fabricated using CATS of 70 mm/min exhibited superior tensile properties(98.39% of base metal strength with 31.50% elongation).It is attributed to the grain refinement in fusion zone microstructure leading to the evolution of finer,discrete laves phase in interdendritic areas.展开更多
A transient three-dimensional powder-scale model was established for understanding the flow field and mass transfer within the molten pool during the selective laser melting(SLM)of Inconel 718 alloy by considering som...A transient three-dimensional powder-scale model was established for understanding the flow field and mass transfer within the molten pool during the selective laser melting(SLM)of Inconel 718 alloy by considering some important physical phenomena,such as,a transition from powder to solid,nonlinearities produced by temperature-dependent materials’properties,and fluid flow in the calculation.The influence of laser power or scanning speed on the flow field and cooling rate was discussed in detail.The simulation results reveal that the motion of molten pool and higher cooling rate promote the mass transfer and benefit the solute distribution by increasing laser power.However,with increasing the scanning speed,the melt flow speed and cooling rate are elevated,resulting in an agglomeration of the solute elements,which is ascribed to the shorter dwelling time of liquid.Therefore,the segregation of Nb can be effectively suppressed by increasing laser power or decreasing scanning speed,which can decrease the dwelling time of liquid.展开更多
The morphology,size,and distribution of Laves phases have important influences on the mechanical properties of laser-repaired Inconel 718(IN718)superalloy.Due to the deterioration of the substrate zone,the Laves phase...The morphology,size,and distribution of Laves phases have important influences on the mechanical properties of laser-repaired Inconel 718(IN718)superalloy.Due to the deterioration of the substrate zone,the Laves phase in the laser cladding zone of IN718 superalloy cannot be optimized by a hightemperature solution treatment.In this study,an in situ laser heat-treatment method was proposed to regulate the morphology and size of the Laves phase in the laser cladding zone of IN718 superalloy without impacting the substrate zone.In the in situ laser heat-treatment process,a laser was used to heat previously deposited layers with optimized manufacturing parameters.A thermocouple and an infrared camera were used to analyze thermal cycles and real-time temperature fields,respectively.Microstructures and micro-segregations were observed by optical microscopy,scanning electron microscopy,and electron probe microanalysis.It was found that the in situ laser heat treatment effectively changed the morphology and size of the Laves phase,which was transformed from a continuous striplike shape to a discrete granular shape.The effective temperature range and duration were the two main factors influencing the Laves phase during the in situ laser heat-treatment process.The effective temperature range was determined by the laser linear energy density,and the peak temperature increased with the increase of the linear energy density.In addition,the temperature amplitude could be reduced by simultaneously increasing the laser power and the scanning velocity.Finally,a flow diagram was developed based on the in situ laser heat-treatment process,and the deposition of a single-walled sample with fine and granular Laves phases was detected.展开更多
The volume fraction of δ phase in cold rolled Inconel 718 alloy aged at 910℃ for different times is measured by X ray diffraction techniques, and the influence of cold rolling on the kinetics of δ phase precipitat...The volume fraction of δ phase in cold rolled Inconel 718 alloy aged at 910℃ for different times is measured by X ray diffraction techniques, and the influence of cold rolling on the kinetics of δ phase precipitation is investigated. It has been found that the relation between the volume fraction of δ phase and aging time follows the Avrami equation. With increasing cold rolling reduction, the value of n decreases and the value of a increases.展开更多
Due to the important role ofδphase's quantity and morphology in the mechanical and fatigue properties of Inconel 718 alloy and its components,it is necessary to renew insights into the effect of cold deformation ...Due to the important role ofδphase's quantity and morphology in the mechanical and fatigue properties of Inconel 718 alloy and its components,it is necessary to renew insights into the effect of cold deformation on theδphase precipitation,especially on the morphology evolution.Therefore,the nucleation and growth behavior ofδphase in cold-rolled Inconel 718 alloy during aging were investigated.The results show that the precipitation rate and volume fraction ofδphase increase with increasing the cold rolling reduction from 10%to 50%.The volume fraction ofδphase reaches equilibrium after 5 h,remaining at 5.98%,6.52%,and 6.79%under different rolling reductions(10%,30%,and 50%),respectively.The nucleation ofδphase mainly occurs on different sites(grain boundaries,new twin boundaries and old twin boundaries)under 10%rolling reduction,whileδphase mainly nucleates on the new grain boundaries of static recrystallization due to 50%rolling reduction.And the growth ofδphase undergoes a process of alternate orientation growth from spherical(nucleation)→short rod(longitudinal orientation growth)→short rod(radial orientation growth)→dynamic equilib-rium.Under 10%rolling reduction,δphase tends to grow into the matrix,while under 50%rolling reduction,the orientation grows faster and is easily affected by the grain boundary curvature.展开更多
Low thermal expansion superalloys have been used for a number of years in a variety of applications, including gas turbine engines. The low thermal expansion characteristics of the most widely used class of materials ...Low thermal expansion superalloys have been used for a number of years in a variety of applications, including gas turbine engines. The low thermal expansion characteristics of the most widely used class of materials are derived from the ferromagnetic characteristics of Ni, Fe, and Co-based austenitic matrices containing little or no Cr.Alloy developments have been aimed at improving the oxidation resistance and stress accelerated grain boundary oxygen (SAGBO) attack.INCONEL alloy 783 is an oxidation resistant, low coefficient of thermal expansion superalloy developed for gas turbine applications. Alloy 783 represents a culmination in the development, of an alloy system with very high alumtnum content that, in addition to forming γ′,causes βaluminide phase precipitation in the austenitic matrix.This type of structure can be processed to resist both SAGBO and general oxidation,while providing low thermal expansion and useful mechanical properties up to 700℃.Key aspects of the alloy's development are presented.展开更多
Many gas turbine components are made from nickel alloy sheet. Most are used for directing or containing gases at high temperatures and pressures where metal temperatures can be as high as 1090℃ (2000°F). These a...Many gas turbine components are made from nickel alloy sheet. Most are used for directing or containing gases at high temperatures and pressures where metal temperatures can be as high as 1090℃ (2000°F). These applications included combustor systems, casings and liners, transition and exhaust ducting, afterburners, and thrust reversere. Light weight components and sub-assemblies call for alloy sheet with high levels of stength and oxidation resistance. Complex component design calls for excellent ductility and ease of fabrication.The wide range of nickel alloy sheet alloys presently used in aircraft and land-based gas turbines is briefly described and typical properties presented. New sheet alloy developments, involving INCONEL ̄* alloys 625LCF, 718SPF and MA754, are presented including the process routes involved and material properties.展开更多
Rotation angle of the laser scan direction between two adjacent layers is a key controlling parameter during the high-power (≥ 1 kW) laser powder bed fusion (HP-LPBF) process. This study investigates the influen...Rotation angle of the laser scan direction between two adjacent layers is a key controlling parameter during the high-power (≥ 1 kW) laser powder bed fusion (HP-LPBF) process. This study investigates the influences of rotation angles (θ = 0°, 45°, 90°, 105°) on the surface morphology, microstructure, and mechanical properties of Inconel 718 (IN718) alloy produced by HP-LPBF. Results show that adopting low rotation angles (e.g., 0° and 45°) is prone to relatively poor surface finish and lack-of-fusion defects, whereas adopting high rotation angles (e.g., 90° and 105°) induces smaller surface roughness and better relative density. Each case reveals a noticeable edge effect but the maximal heights witness a downward trend with the increase of rotation angle. There are some minor differences in the primary dendrite arm spacing and grain morphology by varying the rotation angles. Moreover, the tensile property is slightly enhanced as the rotation angle increases. The present work suggests that high rotation angles like 90° and 105° would probably be more favorable for the 1 kW HP-LPBF process than rotation angles with relatively low values.展开更多
Multilayer of laser direct metal deposition(DMD)was prepared by depositing a gas atomized pre-alloyed powder with a composition close to Inconel 718 alloy on Inconel 718 high temperature alloy substrate.The effects ...Multilayer of laser direct metal deposition(DMD)was prepared by depositing a gas atomized pre-alloyed powder with a composition close to Inconel 718 alloy on Inconel 718 high temperature alloy substrate.The effects of the DMD parameters on the build-up rate and the structure of the deposited layer were studied.The laser DMD sample was further processed by a solution treatment.The microstructure and property of the laser DMD zone before and after heat treatment were investigated as well.The results show that the laser parameters of actual laser power of 650 W,scanning speed of 5.8 mm/s,beam diameter of 1 mm,powder feed rate of 6.45 g/min,with a corresponding specific energy of 90-130 J/mm2,can be recommended as optimum parameters for high build-up rate of Inconel 718 alloy.Under the condition of optimized parameters,a directional solidification microstructure was obtained and the average distance between the columnar crystals was 5-10 μm.The microcomposition segregation was found between the columnar crystal trunk and columnar crystal.The elements of Nb,Mo,Ti concentrated in the columnar crystal trunk.After the heat treatment,the segregation was greatly minimized,and the segregation ratios were close to 1.The hardness of the laser deposited layer did not show obvious difference along the height of the layer either for the as-deposited layer or for the heat treated layer.However,the microhardness of the laser DMD zone after heat treatment was obviously higher than that after the as-deposited treatment.During the heat treatment process,some Nb-and Mo-rich phases precipitated and strengthened DMD layer.展开更多
The optimization of heat treatment and chemical composition for Inconel 718 alloy has been investigated uninterruptedly because of its excellent mechanical properties and metallurgical workability.The species , chemic...The optimization of heat treatment and chemical composition for Inconel 718 alloy has been investigated uninterruptedly because of its excellent mechanical properties and metallurgical workability.The species , chemical compositions and content of equilibrium phases of Inconel 718alloy in the temperature range of 600-1 100℃ were calculated by using thermodynamic software " Thermo-Calc " and the latest relevant datebase of Ni-base superalloys.A concept of elemental partitioning fraction was used to study the partitioning characteristics of alloying elements in each equilibrium phase at different temperatures , such as Ni , Cr , Fe , Nb , Mo , Al , Ti and C , and some calculation results were confirmed under a scanning transmission electron microscope ( STEM ) .The results showed that the elemental partitioning characteristics with the change of temperature revealed the selective partitioning characteristic of alloying elements in equilibrium phases at different temperatures , such as Nb was mainly distributed in δ and γ′phase , C in carbides , Al and Ti in γ′phase and Cr , Mo in Laves phase.At the same time , the effect of the change of component and quantity for each precipitated phase on matrix phase can be helpfully understood , which provided a theoretic foundation to optimize the chemical composition and heat treatment in different environments for Inconel 718alloy.展开更多
For improving the service performance of Inconel 718 alloy, especially used as a corrosion-resistant alloy for special environment, the microstructure and mechanical property of different carbon-containing Inconel 718...For improving the service performance of Inconel 718 alloy, especially used as a corrosion-resistant alloy for special environment, the microstructure and mechanical property of different carbon-containing Inconel 718 alloys were investigated by the Thermo-Calc software and experiments. The experimental results indicated that the mor- phology, distribution and types of carbides mainly existing in the form of MC'were hardly influenced by solution treatment at 1050 ℃ for 1 h. The precipitation amount and particle size of carbides decreased with the decrease of carbon content, which was the main reason resulting in the increase of ductility and toughness. In addition, moving dislocation could be restrained by the precipitation of carbides. Therefore, the strength could benefit from the precip- itation strengthening of carbides when the precipitation of γ′/γ″ phase was not influenced by the precipitation of carbides.展开更多
Current-conductive mold was recently developed to extend electroslag remelting(ESR)functions to overcome some solidification defects by changing the current path.The macrostructures,microstructures,macrosegregation,an...Current-conductive mold was recently developed to extend electroslag remelting(ESR)functions to overcome some solidification defects by changing the current path.The macrostructures,microstructures,macrosegregation,and microsegregation of the Inconel 718 ingots produced by the custom laboratory-scale ESR furnace under different current paths(the classical ESR and the single power,and two circuits ESR process with current-conductive mold(ESR-STCCM))with the same power input were compared and investigated.The results indicate that when the ingot was produced during ESR and ESR-STCCM processes,at the same power input,the pool depth was 104 and 90 mm,respectively.A flatter and shallower molten pool was obtained during ESR-STCCM process.Moreover,compared with a classical ESR ingot,the cooling rate of the centerline of ESR-STCCM ingot was increased from 12.7 to 16.7 K min^(−1).The increased cooling rates caused by decreased melting rate and thinner slag skin reduced the growth angle of columnar crystal to the vertical axis and the secondary dendrite arm spacing.Furthermore,the macrosegregation and microsegregation of segregation elements for ESR-STCCM process were dramatically reduced compared with ESR process.The average volume fraction of Laves phase was reduced from 7.39%to 6.14%,and the segregation of Nb in Laves phase was significantly reduced.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52201203 and 52171107)the Hebei Provincial Natural Science Foundation,China(No.E2021501026)+1 种基金the National Natural Science Foundation of China-Joint Fund of Iron and Steel Research(No.U1960204)the“333”Talent Project of Hebei Province,China(No.B20221001).
文摘Inconel 718 is the most popular nickel-based superalloy and is extensively used in aerospace,automotive,and energy indus-tries owing to its extraordinary thermomechanical properties.The effects of different two-step solid solution treatments on microstructure andδphase precipitation of Inconel 718 alloy were studied,and the transformation mechanism fromγ″metastable phase toδphase was clarified.The precipitates were statistically analyzed by X-ray diffractometry.The results show that theδphase content firstly increased,and then decreased with the temperature of the second-step solid solution.The changes in microstructure andδphase were studied by scanning electron microscopy and transmission electron microscopy.An intragranularδphase formed in Inconel 718 alloy at the second-[100]_(δ)[011]γ step solid solution temperature of 925℃,and its orientation relationship withγmatrix was determined as//and(010)_(δ)//(111)γ.Furthermore,the Vickers hardness of different heat treatment samples was measured,and the sample treated by second-step solid solution at 1010℃ reached the maximum hardness of HV 446.84.
基金supported by the National Key R&D Program of China(Grant No.2017YFB0703100)the National Natural Science Foundation of China(Grant Nos.51822103,51801206,and 51731009)the Fundamental Research Funds for the Central Universities(Grant No.HIT.BRETIV.201902)
文摘A good joint of Ti Bw/Ti6Al4V composites and Inconel 718 alloys was obtained by Gas Tungsten Arc Welding(GTAW) heat transmission. The interfacial reaction mechanism of joint was investigated and analyzed in details. Owing to the heat input applied on the surface of Ti Bw/Ti6Al4V composites, a solid-state reaction layer appeared at the interface of Ti Bw/Ti6Al4 V composites to Inconel 718 alloys. The thickness of the reaction layer was obviously increased with increasing heat input.Developing of reaction layer mainly depended on the diffusion of elements of Ti and Ni through the interface during welding to form solid solutions and intermetallic compounds(IMCs). The reaction layer can be divided into Ti-rich zone(layer 2) and Nirich zone(layer 1). In Ni-rich zone, relatively coarse dendrites were the predominant, however, more brittle IMCs like Ti2Ni were found in the Ti-rich zone. Micro hardness of reaction layer was much higher than that of base metal. While a slight decrease of hardness was found between Ti-rich zone and Ni-rich zone due to the formation of TiNi.
基金supported by the National Key Research and Development Program of China(No.2021YFB 3700701)the National Natural Science Foundation of China(Nos.52090041,52022011)+1 种基金the National Major Science and Technology Projects of China(No.J2019-VI-00090123)the Key-area Research and Development Program of Guangdong Province(No.2019b010943001)。
文摘The anisotropy of the structure and properties caused by the strong epitaxial growth of grains during laser powder bed fusion(L-PBF)significantly affects the mechanical performance of Inconel 718 alloy components such as turbine disks.The defects(lack-of-fusion Lo F)in components processed via L-PBF are detrimental to the strength of the alloy.The purpose of this study is to investigate the effect of laser scanning parameters on the epitaxial grain growth and LoF formation in order to obtain the parameter space in which the microstructure is refined and LoF defect is suppressed.The temperature field of the molten pool and the epitaxial grain growth are simulated using a multiscale model combining the finite element method with the phase-field method.The LoF model is proposed to predict the formation of LoF defects resulting from insufficient melting during L-PBF.Defect mitigation and grain-structure control during L-PBF can be realized simultaneously in the model.The simulation shows the input laser energy density for the as-deposited structure with fine grains and without LoF defects varied from 55.0–62.5 J·mm^(-3)when the interlayer rotation angle was 0°–90°.The optimized process parameters(laser power of 280 W,scanning speed of 1160 mm·s^(-1),and rotation angle of 67°)were computationally screened.In these conditions,the average grain size was 7.0μm,and the ultimate tensile strength and yield strength at room temperature were(1111±3)MPa and(820±7)MPa,respectively,which is 8.8%and10.5%higher than those of reported.The results indicating the proposed multiscale computational approach for predicting grain growth and Lo F defects could allow simultaneous grain-structure control and defect mitigation during L-PBF.
基金supported by the research fund of the State Key Laboratory of Solidification Processing(NWPU,China)(Grant No.2019-TS-09)the National Natural Science Foundations of China(Grant Nos.51975480,51575451,51475376 and U1737205)。
文摘High entropy alloy(HEA) of Fe Co Ni Ti Al and Inconel 718 superalloy were firstly transient liquid phase(TLP) bonded by BNi2 filler due to the diffusion of Si and B in the filler to the base metals. The effects of bonding time on microstructure evolution and mechanical properties of the TLP joints were investigated.Owing to the complete isothermal solidification of the joints bonded for 30 min 120 min at 1100°C,no athermally solidified zones(ASZs) formed by eutectic phases were observed in the welded zone. Thus the TLP joints were only composed by the isothermally solidified zone(ISZ) and two diffusion affected zone(DAZ) adjacent to the dissimilar base metals and the negative effect of the ASZ on joint properties can be avoided. In addition, the increase of the bonding time can also make the Ti B2 borides precipitated in the DAZ near HEA and the brittle borides or carbides in the DAZ near IN718 alloy decrease and reduce the possibility of the stress concentration happened in the joints under loading. Therefore, the highest shear strength(632.1 MPa) of the TLP joints was obtained at 1100°C for 120 min, which was higher than that of the joint bonded for 30 min, 404.2 MPa. Furthermore, the extension of the bonding time made the fracture mechanism of the joint be transformed from the intergranular fracture to the transgranular fracture. However, as the brittle borides in the DAZ near IN718 can not be eliminated completely and refining of grains also happened in such region, all the TLP joints fractured inner the DAZ near IN718 alloy.
基金Project(20102302120002)supported by the Research Fund for the Doctoral Program of Higher Education of China
文摘For successfully forming multi-sheet cylinder sandwich structure of Inconel 718 superalloy, high temperature tensile properties of laser butt-welded plate of Inconel 718 superalloy were studied. The experiment results show that tensile direction has great effect on elongation of the laser butt-welded plate. Under conditions of transverse direction tension, the maximum elongation reaches 458.56% at 950 °C with strain rate of 3.1-10-4 s-1, in which the strain rate sensitivity value m is 0.352 and the welding seam is not deformed. Under conditions of longitudinal direction tension, the maximum elongation is 178.96% at 965 °C with strain rate of 6.2-10-4 s-1, in which m-value is 0.261, and the welding seam contributes to the deformation with the matrix. The microstructure in as-welded fusion zone is constituted of austenite dendrites and Laves phase precipitated in interdendrites. After longitudinal direction tension, a mixed microstructure with dendrite and equiaxed crystal appears in the welding seam due to dynamic recrystallization. After high temperature deforming, many δ-phase grains are transformed from Laves phase grains but a small part of residual Laves phase grains still exist in the welding seam. The deformation result of multi-sheet cylinder sandwich structure verifies that high temperature plasticity of the laser butt-welded plate can meet the requirement of superplastic forming.
基金Project (08dj1400402) supported by the Major Program for the Fundamental Research of Shanghai Committee of Science and Technology,China
文摘The effects of phosphorus and boron addition on the as-cast microstructure and homogenization parameters of Inconel 718 were studied. The results indicate that the addition of phosphorus and boron promotes the formation of blocky Laves phase. Due to the strong segregation behavior of boron in the final residual liquid, a low melting B-bearing phase enriched in Nb, Mo and Cr is observed. According to the differential scanning calorimeter results and electron probe micro-analysis characterization, the solidification sequence of Inconel 718 with phosphorus and boron addition in best combination is determined as L→L+γ→L+γ+MC→L+γ+MC+Laves→γ+MC+Laves+MC+Laves+B-bearing phase. Accordingly, the homogenization temperature is recommended to be adjusted at least 40°C lower than that of standard Inconel 718 due to the existence of low melting B-bearing phase.
文摘The optimization of micro milling electrical discharge machining(EDM) process parameters of Inconel 718 alloy to achieve multiple performance characteristics such as low electrode wear,high material removal rate and low working gap was investigated by the Grey-Taguchi method.The influences of peak current,pulse on-time,pulse off-time and spark gap on electrode wear(EW),material removal rate(MRR) and working gap(WG) in the micro milling electrical discharge machining of Inconel 718 were analyzed.The experimental results show that the electrode wear decreases from 5.6×10-9 to 5.2×10-9 mm3/min,the material removal rate increases from 0.47×10-8 to 1.68×10-8 mm3/min,and the working gap decreases from 1.27 to 1.19 μm under optimal micro milling electrical discharge machining process parameters.Hence,it is clearly shown that multiple performance characteristics can be improved by using the Grey-Taguchi method.
基金Project(CSTC2015ZDCY-ZTZX50002) supported by the Innovation Program of Common and Key Technologies in Major Industries of Chongqing,China
文摘An annealed Inconel 718 alloy was surface-treated by pulsed laser at three different powers(100, 50 and 25 W). Microstructural changes induced by the laser treatments were characterized by use of electron backscatter diffraction and electron channeling contrast imaging techniques. Results show that both annealing twins and strengthening precipitates profusely existing in the as-received specimen are dissolved at elevated temperatures during the laser irradiation. Meanwhile, in the melting zone(MZ), densities of low angle boundaries(LABs) are greatly increased with a large number of Laves phases preferentially distributed along such LABs. For different specimens, widths and depths of their MZs are found to be gradually reduced with decreasing the laser powers. Orientation analyses reveal that the columnar grains in the MZ of the 100 W specimen could inherit orientations existing in the matrix while lower laser powers promote the formation of more nuclei with scattered orientations to grow to be granular grains in the MZ. Hardness tests reveal that the MZs of all laser-treated specimens are softer than the matrix probably due to both precipitate dissolution and grain coarsening.
基金funded by Indian Space Research Organization (ISRO) India. Project No. ISRO/RES/3/728/16e17
文摘The magnetically constricted arc technique was implemented to mitigate the heat input related metallurgical problems in Gas Tungsten Arc Welding(GTAW)of Inconel 718 alloy particularly Nb segregation and subsequent laves phase evolution in fusion zone.This paper reports the direct effect of magnetically constricted arc traverse speed(MCATS)on bead profile,tensile properties and microstructural evolution of Inconel 718 alloy sheets joined by Gas Tungsten Constricted Arc Welding(GTCAW)process.The mechanism amenable for the microstructural modification and corresponding influence on the tensile properties of joints is investigated both in qualitative and quantitative manner related to the mechanics of arc constriction and pulsing.It is correlated to the solidification conditions during welding.The relationship between MCATS and Arc Constriction Current(ACC)was derived.Its interaction effect on the magnetic arc constriction and joint performance was analysed.Results showed that the joints fabricated using CATS of 70 mm/min exhibited superior tensile properties(98.39% of base metal strength with 31.50% elongation).It is attributed to the grain refinement in fusion zone microstructure leading to the evolution of finer,discrete laves phase in interdendritic areas.
基金the financial support from the National Natural Science Foundation of China(Nos.51425402 and 51501048)。
文摘A transient three-dimensional powder-scale model was established for understanding the flow field and mass transfer within the molten pool during the selective laser melting(SLM)of Inconel 718 alloy by considering some important physical phenomena,such as,a transition from powder to solid,nonlinearities produced by temperature-dependent materials’properties,and fluid flow in the calculation.The influence of laser power or scanning speed on the flow field and cooling rate was discussed in detail.The simulation results reveal that the motion of molten pool and higher cooling rate promote the mass transfer and benefit the solute distribution by increasing laser power.However,with increasing the scanning speed,the melt flow speed and cooling rate are elevated,resulting in an agglomeration of the solute elements,which is ascribed to the shorter dwelling time of liquid.Therefore,the segregation of Nb can be effectively suppressed by increasing laser power or decreasing scanning speed,which can decrease the dwelling time of liquid.
基金supported by Aero Engine Corporation of China Xi’an Aero-Engine Ltd.(N2018KD040252)the fund of the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University(2020-TS-03)。
文摘The morphology,size,and distribution of Laves phases have important influences on the mechanical properties of laser-repaired Inconel 718(IN718)superalloy.Due to the deterioration of the substrate zone,the Laves phase in the laser cladding zone of IN718 superalloy cannot be optimized by a hightemperature solution treatment.In this study,an in situ laser heat-treatment method was proposed to regulate the morphology and size of the Laves phase in the laser cladding zone of IN718 superalloy without impacting the substrate zone.In the in situ laser heat-treatment process,a laser was used to heat previously deposited layers with optimized manufacturing parameters.A thermocouple and an infrared camera were used to analyze thermal cycles and real-time temperature fields,respectively.Microstructures and micro-segregations were observed by optical microscopy,scanning electron microscopy,and electron probe microanalysis.It was found that the in situ laser heat treatment effectively changed the morphology and size of the Laves phase,which was transformed from a continuous striplike shape to a discrete granular shape.The effective temperature range and duration were the two main factors influencing the Laves phase during the in situ laser heat-treatment process.The effective temperature range was determined by the laser linear energy density,and the peak temperature increased with the increase of the linear energy density.In addition,the temperature amplitude could be reduced by simultaneously increasing the laser power and the scanning velocity.Finally,a flow diagram was developed based on the in situ laser heat-treatment process,and the deposition of a single-walled sample with fine and granular Laves phases was detected.
文摘The volume fraction of δ phase in cold rolled Inconel 718 alloy aged at 910℃ for different times is measured by X ray diffraction techniques, and the influence of cold rolling on the kinetics of δ phase precipitation is investigated. It has been found that the relation between the volume fraction of δ phase and aging time follows the Avrami equation. With increasing cold rolling reduction, the value of n decreases and the value of a increases.
基金The authors are grateful to the Province Natural Science Foundation of Zhejiang(Grant No.LQ19E050004)for financial support.The authors also graciously thank China Airlines Shenyang Liming Aeroengine Co.,Ltd.for aiding in providing the experimental Inconel 718 alloys.
文摘Due to the important role ofδphase's quantity and morphology in the mechanical and fatigue properties of Inconel 718 alloy and its components,it is necessary to renew insights into the effect of cold deformation on theδphase precipitation,especially on the morphology evolution.Therefore,the nucleation and growth behavior ofδphase in cold-rolled Inconel 718 alloy during aging were investigated.The results show that the precipitation rate and volume fraction ofδphase increase with increasing the cold rolling reduction from 10%to 50%.The volume fraction ofδphase reaches equilibrium after 5 h,remaining at 5.98%,6.52%,and 6.79%under different rolling reductions(10%,30%,and 50%),respectively.The nucleation ofδphase mainly occurs on different sites(grain boundaries,new twin boundaries and old twin boundaries)under 10%rolling reduction,whileδphase mainly nucleates on the new grain boundaries of static recrystallization due to 50%rolling reduction.And the growth ofδphase undergoes a process of alternate orientation growth from spherical(nucleation)→short rod(longitudinal orientation growth)→short rod(radial orientation growth)→dynamic equilib-rium.Under 10%rolling reduction,δphase tends to grow into the matrix,while under 50%rolling reduction,the orientation grows faster and is easily affected by the grain boundary curvature.
文摘Low thermal expansion superalloys have been used for a number of years in a variety of applications, including gas turbine engines. The low thermal expansion characteristics of the most widely used class of materials are derived from the ferromagnetic characteristics of Ni, Fe, and Co-based austenitic matrices containing little or no Cr.Alloy developments have been aimed at improving the oxidation resistance and stress accelerated grain boundary oxygen (SAGBO) attack.INCONEL alloy 783 is an oxidation resistant, low coefficient of thermal expansion superalloy developed for gas turbine applications. Alloy 783 represents a culmination in the development, of an alloy system with very high alumtnum content that, in addition to forming γ′,causes βaluminide phase precipitation in the austenitic matrix.This type of structure can be processed to resist both SAGBO and general oxidation,while providing low thermal expansion and useful mechanical properties up to 700℃.Key aspects of the alloy's development are presented.
文摘Many gas turbine components are made from nickel alloy sheet. Most are used for directing or containing gases at high temperatures and pressures where metal temperatures can be as high as 1090℃ (2000°F). These applications included combustor systems, casings and liners, transition and exhaust ducting, afterburners, and thrust reversere. Light weight components and sub-assemblies call for alloy sheet with high levels of stength and oxidation resistance. Complex component design calls for excellent ductility and ease of fabrication.The wide range of nickel alloy sheet alloys presently used in aircraft and land-based gas turbines is briefly described and typical properties presented. New sheet alloy developments, involving INCONEL ̄* alloys 625LCF, 718SPF and MA754, are presented including the process routes involved and material properties.
文摘Rotation angle of the laser scan direction between two adjacent layers is a key controlling parameter during the high-power (≥ 1 kW) laser powder bed fusion (HP-LPBF) process. This study investigates the influences of rotation angles (θ = 0°, 45°, 90°, 105°) on the surface morphology, microstructure, and mechanical properties of Inconel 718 (IN718) alloy produced by HP-LPBF. Results show that adopting low rotation angles (e.g., 0° and 45°) is prone to relatively poor surface finish and lack-of-fusion defects, whereas adopting high rotation angles (e.g., 90° and 105°) induces smaller surface roughness and better relative density. Each case reveals a noticeable edge effect but the maximal heights witness a downward trend with the increase of rotation angle. There are some minor differences in the primary dendrite arm spacing and grain morphology by varying the rotation angles. Moreover, the tensile property is slightly enhanced as the rotation angle increases. The present work suggests that high rotation angles like 90° and 105° would probably be more favorable for the 1 kW HP-LPBF process than rotation angles with relatively low values.
文摘Multilayer of laser direct metal deposition(DMD)was prepared by depositing a gas atomized pre-alloyed powder with a composition close to Inconel 718 alloy on Inconel 718 high temperature alloy substrate.The effects of the DMD parameters on the build-up rate and the structure of the deposited layer were studied.The laser DMD sample was further processed by a solution treatment.The microstructure and property of the laser DMD zone before and after heat treatment were investigated as well.The results show that the laser parameters of actual laser power of 650 W,scanning speed of 5.8 mm/s,beam diameter of 1 mm,powder feed rate of 6.45 g/min,with a corresponding specific energy of 90-130 J/mm2,can be recommended as optimum parameters for high build-up rate of Inconel 718 alloy.Under the condition of optimized parameters,a directional solidification microstructure was obtained and the average distance between the columnar crystals was 5-10 μm.The microcomposition segregation was found between the columnar crystal trunk and columnar crystal.The elements of Nb,Mo,Ti concentrated in the columnar crystal trunk.After the heat treatment,the segregation was greatly minimized,and the segregation ratios were close to 1.The hardness of the laser deposited layer did not show obvious difference along the height of the layer either for the as-deposited layer or for the heat treated layer.However,the microhardness of the laser DMD zone after heat treatment was obviously higher than that after the as-deposited treatment.During the heat treatment process,some Nb-and Mo-rich phases precipitated and strengthened DMD layer.
文摘The optimization of heat treatment and chemical composition for Inconel 718 alloy has been investigated uninterruptedly because of its excellent mechanical properties and metallurgical workability.The species , chemical compositions and content of equilibrium phases of Inconel 718alloy in the temperature range of 600-1 100℃ were calculated by using thermodynamic software " Thermo-Calc " and the latest relevant datebase of Ni-base superalloys.A concept of elemental partitioning fraction was used to study the partitioning characteristics of alloying elements in each equilibrium phase at different temperatures , such as Ni , Cr , Fe , Nb , Mo , Al , Ti and C , and some calculation results were confirmed under a scanning transmission electron microscope ( STEM ) .The results showed that the elemental partitioning characteristics with the change of temperature revealed the selective partitioning characteristic of alloying elements in equilibrium phases at different temperatures , such as Nb was mainly distributed in δ and γ′phase , C in carbides , Al and Ti in γ′phase and Cr , Mo in Laves phase.At the same time , the effect of the change of component and quantity for each precipitated phase on matrix phase can be helpfully understood , which provided a theoretic foundation to optimize the chemical composition and heat treatment in different environments for Inconel 718alloy.
文摘For improving the service performance of Inconel 718 alloy, especially used as a corrosion-resistant alloy for special environment, the microstructure and mechanical property of different carbon-containing Inconel 718 alloys were investigated by the Thermo-Calc software and experiments. The experimental results indicated that the mor- phology, distribution and types of carbides mainly existing in the form of MC'were hardly influenced by solution treatment at 1050 ℃ for 1 h. The precipitation amount and particle size of carbides decreased with the decrease of carbon content, which was the main reason resulting in the increase of ductility and toughness. In addition, moving dislocation could be restrained by the precipitation of carbides. Therefore, the strength could benefit from the precip- itation strengthening of carbides when the precipitation of γ′/γ″ phase was not influenced by the precipitation of carbides.
基金This project was supported by the National Natural Science Foundation of China(Grant Nos.51674070,51874085,and U1435205)Also,this project was supported by the Transformation Project of Major Scientific and Technological Achievements in Shenyang(Grant No.Z17-5-003)and the"Innovation&Entrepreneurship Talents”Introduction Plan of Jiangsu Province in 2018.
文摘Current-conductive mold was recently developed to extend electroslag remelting(ESR)functions to overcome some solidification defects by changing the current path.The macrostructures,microstructures,macrosegregation,and microsegregation of the Inconel 718 ingots produced by the custom laboratory-scale ESR furnace under different current paths(the classical ESR and the single power,and two circuits ESR process with current-conductive mold(ESR-STCCM))with the same power input were compared and investigated.The results indicate that when the ingot was produced during ESR and ESR-STCCM processes,at the same power input,the pool depth was 104 and 90 mm,respectively.A flatter and shallower molten pool was obtained during ESR-STCCM process.Moreover,compared with a classical ESR ingot,the cooling rate of the centerline of ESR-STCCM ingot was increased from 12.7 to 16.7 K min^(−1).The increased cooling rates caused by decreased melting rate and thinner slag skin reduced the growth angle of columnar crystal to the vertical axis and the secondary dendrite arm spacing.Furthermore,the macrosegregation and microsegregation of segregation elements for ESR-STCCM process were dramatically reduced compared with ESR process.The average volume fraction of Laves phase was reduced from 7.39%to 6.14%,and the segregation of Nb in Laves phase was significantly reduced.