Surrounding rocks at different locations are generally subjected to different stress paths during the process of deep hard rock excavation.In this study,to reveal the mechanical parameters of deep surrounding rock und...Surrounding rocks at different locations are generally subjected to different stress paths during the process of deep hard rock excavation.In this study,to reveal the mechanical parameters of deep surrounding rock under different stress paths,a new cyclic loading and unloading test method for controlled true triaxial loading and unloading and principal stress direction interchange was proposed,and the evolution of mechanical parameters of Shuangjiangkou granite under different stress paths was studied,including the deformation modulus,elastic deformation increment ratios,fracture degree,cohesion and internal friction angle.Additionally,stress path coefficient was defined to characterize different stress paths,and the functional relationships among the stress path coefficient,rock fracture degree difference coefficient,cohesion and internal friction angle were obtained.The results show that during the true triaxial cyclic loading and unloading process,the deformation modulus and cohesion gradually decrease,while the internal friction angle gradually increases with increasing equivalent crack strain.The stress path coefficient is exponentially related to the rock fracture degree difference coefficient.As the stress path coefficient increases,the degrees of cohesion weakening and internal friction angle strengthening decrease linearly.During cyclic loading and unloading under true triaxial principal stress direction interchange,the direction of crack development changes,and the deformation modulus increases,while the cohesion and internal friction angle decrease slightly,indicating that the principal stress direction interchange has a strengthening effect on the surrounding rocks.Finally,the influences of the principal stress interchange direction on the stabilities of deep engineering excavation projects are discussed.展开更多
Three groups of dynamic triaxial tests were performed for saturated Nanjing fine sand subjected to uniform cyclic loading. The tested curves of the excess pore water pressure (EPWP) ratio variation with the ratio of...Three groups of dynamic triaxial tests were performed for saturated Nanjing fine sand subjected to uniform cyclic loading. The tested curves of the excess pore water pressure (EPWP) ratio variation with the ratio of the number of cycles are provided. The concept of the EPWP increment ratio is introduced and two new concepts of the effective dynamic shear stress ratio and the log decrement of effective stress are defined. It is found that the development of the EPWP increment ratio can be divided into three stages: descending, stable and ascending. Furthermore, at the stable and ascending stages, a satisfactory linear relationship is obtained between the accumulative EPWP increment ratio and natural logarithm of the effective dynamic shear stress ratio. Accordingly, the EPWP increment ratio at the number of cycles N has been deduced that is proportional to the log decrement of effective stress at the cycle number N-l, but is independent of the cyclic stress amplitude. Based on the analysis, a new EPWP increment model for saturated Nanjing fine sand is developed from tested data fitting, which provides a better prediction of the curves of EPWP generation, the number of cycles required for initial liquefaction and the liquefaction resistance.展开更多
The dynamic shear modulus (DSM) is the most basic soil parameter in earthquake or other dynamic loading conditions and can be obtained through testing in the field or in the laboratory. The effect of consolidation rat...The dynamic shear modulus (DSM) is the most basic soil parameter in earthquake or other dynamic loading conditions and can be obtained through testing in the field or in the laboratory. The effect of consolidation ratios on the maximum DSM for two types of sand is investigated by using resonant column tests. And, an increment formula to obtain the maximum DSM for cases of consolidation ratio κc>1 is presented. The results indicate that the maximum DSM rises rapidly when κc is near 1 and then slows down, which means that the power function of the consolidation ratio increment κc-1 can be used to describe the variation of the maximum DSM due to κc>1. The results also indicate that the increase in the maximum DSM due to κc>1 is significantly larger than that predicted by Hardin and Black's formula.展开更多
A test device with rectangular channel is developed to study the combustion performance of solid propellant in high temperature particles erosion.The flowfields in this newdevice and a test device with circular channe...A test device with rectangular channel is developed to study the combustion performance of solid propellant in high temperature particles erosion.The flowfields in this newdevice and a test device with circular channels are simulated numerically.The particle erosion experiments in these two devices are carried out under different particle concentrations.The results showthat the test device with rectangular channel can effectively improve the clarity and precision of combustion diagnosis image and can be used for research on combustion performance of solid propellant under lowconcentration particle erosion;the circular channel device has good particle convergent effect,provides high concentration particle erosion,and can be used for research on the combustion performance of solid propellant under high concentration particle erosion.The experiment data indicates that the propellant burning rate does not change obviously in lower particle concentration;the propellant with lower static burning rate increases remarkably under particle erosion,while the propellant with high static burning rate is not sensitive to the particle erosion.展开更多
Objective:Robotic-assisted spine surgeries(RASS)have been shown to enhance precision,reduce operative time,prevent complications,facilitate minimally invasive spinal surgery,and decrease revision surgery rates,leading...Objective:Robotic-assisted spine surgeries(RASS)have been shown to enhance precision,reduce operative time,prevent complications,facilitate minimally invasive spinal surgery,and decrease revision surgery rates,leading to improved patient outco mes This study aimed to compare the cost-effectiveness of RAs's and non-robotic-assisted surgery for degenerative spine disease at a single center.Me thods:This retrospective study,including 122 patients,was conducted at a single center from March 2015 to February 2022.Patients who underwent ro bot-assisted surgery were assigned to the robotgroup,and patients who underwent non-robotic-assisted surgery were assigned to the non-mmbot group.Various data,indluding demographic information,surgical details,outcomes,and cost-effectiveness,were colected for both groups.The cost-effectiveness was determined using the incremental cost-effectiveness ratio(ICER),and subgroup analysis was conducted for patients with 1 or 2 levels of spi-nal instrumentation.The analysis was performed using STATA SE version 15 and Tree.Age Pro 2020,with Monte Caro simulations for the cost-effectiveness acceptability curve.Results The owerallICER was$22,572,but it decreased to$16,980 when considering cases with only 1or 2 levels of instrumentation.RASS is deemed cost-effective when the willi ingness to pay is$3000-$4000 if less than 2 levels of the spine are instrumented.Conchsions:The cost-effectiveness of robot icassistance be comes apparent whenthere isa reduced need for open surgeries,leading to decreased d revision rates caused by complications such as misplaced screwsor infctions.Therefore,it is advisable to allocate healthcare budget resou Irces to spine robots,as RASS PIDves to be cost-effective,partic cularly when only two or Ewer spinal levels require instrumentation.展开更多
基金the financial support from the National Natural Science Foundation of China(Grant Nos.51839003 and 42207221).
文摘Surrounding rocks at different locations are generally subjected to different stress paths during the process of deep hard rock excavation.In this study,to reveal the mechanical parameters of deep surrounding rock under different stress paths,a new cyclic loading and unloading test method for controlled true triaxial loading and unloading and principal stress direction interchange was proposed,and the evolution of mechanical parameters of Shuangjiangkou granite under different stress paths was studied,including the deformation modulus,elastic deformation increment ratios,fracture degree,cohesion and internal friction angle.Additionally,stress path coefficient was defined to characterize different stress paths,and the functional relationships among the stress path coefficient,rock fracture degree difference coefficient,cohesion and internal friction angle were obtained.The results show that during the true triaxial cyclic loading and unloading process,the deformation modulus and cohesion gradually decrease,while the internal friction angle gradually increases with increasing equivalent crack strain.The stress path coefficient is exponentially related to the rock fracture degree difference coefficient.As the stress path coefficient increases,the degrees of cohesion weakening and internal friction angle strengthening decrease linearly.During cyclic loading and unloading under true triaxial principal stress direction interchange,the direction of crack development changes,and the deformation modulus increases,while the cohesion and internal friction angle decrease slightly,indicating that the principal stress direction interchange has a strengthening effect on the surrounding rocks.Finally,the influences of the principal stress interchange direction on the stabilities of deep engineering excavation projects are discussed.
基金Key Research Project of National Natural Science Foundation of China Under Grant No.90715018National Basic Research Program of China Under Grant No.2007CB714200the Special Fund for the Commonweal Industry of China Under Grant No.200808022
文摘Three groups of dynamic triaxial tests were performed for saturated Nanjing fine sand subjected to uniform cyclic loading. The tested curves of the excess pore water pressure (EPWP) ratio variation with the ratio of the number of cycles are provided. The concept of the EPWP increment ratio is introduced and two new concepts of the effective dynamic shear stress ratio and the log decrement of effective stress are defined. It is found that the development of the EPWP increment ratio can be divided into three stages: descending, stable and ascending. Furthermore, at the stable and ascending stages, a satisfactory linear relationship is obtained between the accumulative EPWP increment ratio and natural logarithm of the effective dynamic shear stress ratio. Accordingly, the EPWP increment ratio at the number of cycles N has been deduced that is proportional to the log decrement of effective stress at the cycle number N-l, but is independent of the cyclic stress amplitude. Based on the analysis, a new EPWP increment model for saturated Nanjing fine sand is developed from tested data fitting, which provides a better prediction of the curves of EPWP generation, the number of cycles required for initial liquefaction and the liquefaction resistance.
基金The Science and Technology Ministration of China and the Earthquake Science Foundation of China (Grand No. 102033)
文摘The dynamic shear modulus (DSM) is the most basic soil parameter in earthquake or other dynamic loading conditions and can be obtained through testing in the field or in the laboratory. The effect of consolidation ratios on the maximum DSM for two types of sand is investigated by using resonant column tests. And, an increment formula to obtain the maximum DSM for cases of consolidation ratio κc>1 is presented. The results indicate that the maximum DSM rises rapidly when κc is near 1 and then slows down, which means that the power function of the consolidation ratio increment κc-1 can be used to describe the variation of the maximum DSM due to κc>1. The results also indicate that the increase in the maximum DSM due to κc>1 is significantly larger than that predicted by Hardin and Black's formula.
基金Sponsored by the National Nature Science Foundation of China(50976095)
文摘A test device with rectangular channel is developed to study the combustion performance of solid propellant in high temperature particles erosion.The flowfields in this newdevice and a test device with circular channels are simulated numerically.The particle erosion experiments in these two devices are carried out under different particle concentrations.The results showthat the test device with rectangular channel can effectively improve the clarity and precision of combustion diagnosis image and can be used for research on combustion performance of solid propellant under lowconcentration particle erosion;the circular channel device has good particle convergent effect,provides high concentration particle erosion,and can be used for research on the combustion performance of solid propellant under high concentration particle erosion.The experiment data indicates that the propellant burning rate does not change obviously in lower particle concentration;the propellant with lower static burning rate increases remarkably under particle erosion,while the propellant with high static burning rate is not sensitive to the particle erosion.
文摘Objective:Robotic-assisted spine surgeries(RASS)have been shown to enhance precision,reduce operative time,prevent complications,facilitate minimally invasive spinal surgery,and decrease revision surgery rates,leading to improved patient outco mes This study aimed to compare the cost-effectiveness of RAs's and non-robotic-assisted surgery for degenerative spine disease at a single center.Me thods:This retrospective study,including 122 patients,was conducted at a single center from March 2015 to February 2022.Patients who underwent ro bot-assisted surgery were assigned to the robotgroup,and patients who underwent non-robotic-assisted surgery were assigned to the non-mmbot group.Various data,indluding demographic information,surgical details,outcomes,and cost-effectiveness,were colected for both groups.The cost-effectiveness was determined using the incremental cost-effectiveness ratio(ICER),and subgroup analysis was conducted for patients with 1 or 2 levels of spi-nal instrumentation.The analysis was performed using STATA SE version 15 and Tree.Age Pro 2020,with Monte Caro simulations for the cost-effectiveness acceptability curve.Results The owerallICER was$22,572,but it decreased to$16,980 when considering cases with only 1or 2 levels of instrumentation.RASS is deemed cost-effective when the willi ingness to pay is$3000-$4000 if less than 2 levels of the spine are instrumented.Conchsions:The cost-effectiveness of robot icassistance be comes apparent whenthere isa reduced need for open surgeries,leading to decreased d revision rates caused by complications such as misplaced screwsor infctions.Therefore,it is advisable to allocate healthcare budget resou Irces to spine robots,as RASS PIDves to be cost-effective,partic cularly when only two or Ewer spinal levels require instrumentation.