The use of symbol attributes on the side of symbolic social networks to analyze,understand,and predict the topology,function,and dynamic behaviour of complex networks,and has important theoretical significance for per...The use of symbol attributes on the side of symbolic social networks to analyze,understand,and predict the topology,function,and dynamic behaviour of complex networks,and has important theoretical significance for personalized recommendations,attitude prediction,user feature analysis,and clustering and application value.However,due to the huge scale of online social networks,this poses a challenge to traditional symbolic social network analysis methods.Based on the theory of structural equilibrium,this paper studies the evolutionary dynamics of symbolic social networks,proposes the energy function of weak structural equilibrium theory,and uses the evolution of evolutionary algorithms to obtain the weak imbalance of the network.The simulation experiment results show that the calculation method in this paper can get the optimal solution faster.It provides an idea for the study of real and complex social networks.展开更多
Drag anchor is one of the most commonly used anchorage foundation types. The prediction of embedded trajectory in the process of drag anchor installation is of great importance to the safety design of mooring system. ...Drag anchor is one of the most commonly used anchorage foundation types. The prediction of embedded trajectory in the process of drag anchor installation is of great importance to the safety design of mooring system. In this paper, the ultimate anchor holding capacity in the seabed soil is calculated through the established finite element model, and then the embedded motion trajectory is predicted applying the incremental calculation method. Firstly, the drag anchor initial embedded depth and inclination angle are assumed, which are regarded as the start embedded point. Secondly, in each incremental step, the incremental displacement of drag anchor is added along the parallel direction of anchor plate, so the displacement increment of drag anchor in the horizontal and vertical directions can be calculated. Thirdly, the finite element model of anchor is established considering the seabed soil and anchor interaction, and the ultimate drag anchor holding capacity at new position can be obtained. Fourthly, the angle between inverse catenary mooring line and horizontal plane at the attachment point at this increment step can be calculated through the inverse catenary equation. Finally, the incremental step is ended until the angle of drag anchor and seabed soil is zero as the ultimate embedded state condition, thus, the whole embedded trajectory of drag anchor is obtained. Meanwhile, the influences of initial parameter changes on the embedded trajectory are considered. Based on the proposed method, the prediction of drag anchor trajectory and the holding capacity of mooring position system can be provided.展开更多
基金National Natural Science Foundation of China(61772196,61472136)Hunan Provincial Focus Natural Science Fund(2020JJ4249)+4 种基金Key Project of Hunan Provincial Social Science Achievement Review Committee(XSP 19ZD1005)Postgraduate Scientific Research Innovation Project of Hunan Province(CX20201074)Hunan Technology and Business University’s 2019 school-level degree and postgraduate education and teaching reform project(YJG2019YB13)The 2020 school-level teaching reform project of Hunan Technology and Business University(School Teaching Word[2020]No.15)Research Project of Degree and Postgraduate Education Reform in Hunan Province(2020JGYB234).
文摘The use of symbol attributes on the side of symbolic social networks to analyze,understand,and predict the topology,function,and dynamic behaviour of complex networks,and has important theoretical significance for personalized recommendations,attitude prediction,user feature analysis,and clustering and application value.However,due to the huge scale of online social networks,this poses a challenge to traditional symbolic social network analysis methods.Based on the theory of structural equilibrium,this paper studies the evolutionary dynamics of symbolic social networks,proposes the energy function of weak structural equilibrium theory,and uses the evolution of evolutionary algorithms to obtain the weak imbalance of the network.The simulation experiment results show that the calculation method in this paper can get the optimal solution faster.It provides an idea for the study of real and complex social networks.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51890915,51490672,and51761135011)the Fundamental Research Funds for the Central Universities
文摘Drag anchor is one of the most commonly used anchorage foundation types. The prediction of embedded trajectory in the process of drag anchor installation is of great importance to the safety design of mooring system. In this paper, the ultimate anchor holding capacity in the seabed soil is calculated through the established finite element model, and then the embedded motion trajectory is predicted applying the incremental calculation method. Firstly, the drag anchor initial embedded depth and inclination angle are assumed, which are regarded as the start embedded point. Secondly, in each incremental step, the incremental displacement of drag anchor is added along the parallel direction of anchor plate, so the displacement increment of drag anchor in the horizontal and vertical directions can be calculated. Thirdly, the finite element model of anchor is established considering the seabed soil and anchor interaction, and the ultimate drag anchor holding capacity at new position can be obtained. Fourthly, the angle between inverse catenary mooring line and horizontal plane at the attachment point at this increment step can be calculated through the inverse catenary equation. Finally, the incremental step is ended until the angle of drag anchor and seabed soil is zero as the ultimate embedded state condition, thus, the whole embedded trajectory of drag anchor is obtained. Meanwhile, the influences of initial parameter changes on the embedded trajectory are considered. Based on the proposed method, the prediction of drag anchor trajectory and the holding capacity of mooring position system can be provided.