A robust control for uncertain nonlinear systems based on T-S fuzzy model is discussed in this paper. First, a T-S fuzzy system is adopted to model the uncertain nonlinear systems. Then, for the system with input vari...A robust control for uncertain nonlinear systems based on T-S fuzzy model is discussed in this paper. First, a T-S fuzzy system is adopted to model the uncertain nonlinear systems. Then, for the system with input variables adopting standard fuzzy partitions, the efficient maximal overlapped-rules group (EMORG) is presented, and a new sufficient condition to check the stability of T-S fuzzy system with uncertainty is derived, which is expressed in terms of Linear Matrix Inequalities. The derived stability condition, which only requires a local common positive definite matrix in each EMORG, can reduce the conservatism and difficulty in existing stability conditions. Finally, a simulation example shows the proposed approach is effective.展开更多
In this paper,a new fuzzy approach is applied to optimal design of the anti-skid control for electric vehicles.The anti-skid control is used to maintain the wheel speed when there are uncertainties.The control is able...In this paper,a new fuzzy approach is applied to optimal design of the anti-skid control for electric vehicles.The anti-skid control is used to maintain the wheel speed when there are uncertainties.The control is able to provide an appropriate torque for wheels when the vehicle is about to skid.The friction coefficient and the moments of inertia of wheels and motor are considered as uncertain parameters.These nonlinear,bounded and time-varying uncertainties are described by fuzzy set theory.The control is deterministic and is not based on IF-THEN fuzzy rules.Then,the optimal design for this fuzzy system and control cost is proposed by fuzzy information.In this way,the uniform boundedness and uniform ultimate boundedness are guaranteed and the average fuzzy performance is minimized.Numerical simulations show that the control can prevent vehicle skidding with the minimum control cost under uncertainties.展开更多
μ-synthesis is a practical design approach and has been applied successfully to achieve a nominal and robust performance objectives. However, this design method suffers from the complexity of its practical implementa...μ-synthesis is a practical design approach and has been applied successfully to achieve a nominal and robust performance objectives. However, this design method suffers from the complexity of its practical implementation and high computational demand due to its high order dynamics. To overcome this problem, the interaction between fuzzy logic control which is a part of intelligence control theory and p-synthesis controller is carried out. This is called integrated fuzzy robust controller in this paper. It is obtained by coupling fuzzy pd with p-synthesis controller through the outer loop. Using this design strategy, we can keep the system performance and robustness even a high order p-synthesis controller is reduced into second order model. In order to test the effectiveness of this design method, the linear simulation results for a launch vehicle's attitude control motion are presented at the end of this paper.展开更多
The mathematical model of quadcopter-unmanned aerial vehicle (UAV) is derived by using two approaches: One is the Newton-Euler approach which is formulated using classical meehanics; and other is the Euler-Lagrange...The mathematical model of quadcopter-unmanned aerial vehicle (UAV) is derived by using two approaches: One is the Newton-Euler approach which is formulated using classical meehanics; and other is the Euler-Lagrange approach which describes the model in terms of kinetic (translational and rotational) and potential energy. The proposed quadcopter's non-linear model is incorporated with aero-dynamical forces generated by air resistance, which helps aircraft to exhibits more realistic behavior while hovering. Based on the obtained model, the suitable control strategy is developed, under which two effective flight control systems are developed. Each control system is created by cascading the proportional-derivative (PD) and T-S fuzzy controllers that are equipped with six and twelve feedback signals individually respectively to ensure better tracking, stabilization, and response. Both pro- posed flight control designs are then implemented with the quadcopter model respectively and multitudinous simulations are conducted using MATLAB/Simulink to analyze the tracking performance of the quadcopter model at various reference inputs and trajectories.展开更多
The five degree freedom magnetic bearing is researched and its structure and working principles are introduced also. Based on the fuzzy control technology, combining fuzzy algorithm and PID control method, identifying...The five degree freedom magnetic bearing is researched and its structure and working principles are introduced also. Based on the fuzzy control technology, combining fuzzy algorithm and PID control method, identifying the transition process mode of the online system to get the PID parameters' self-adjusting, the magnetic beating system's Fuzzy-PID nonlinear controller is designed by analyzing the system control demands. The Fuzzy-PID nonlinear controller can deal with the magnetic bearing system' s open loop instability and strong nonlinearity, and the approach could improve the system's rapidity, adaptability, stability and dynamic characteristics. Comparative analysis and experiments are conducted between linear PID and nonlinear fuzzy- PID control methods, the results show that the fuzzy-PID controller is better, and the five-freedom magnetic bearing' s rotary precision experiments are conducted by the fuzzy-PID controller, it satisfies the control rotary precision demands and realizes the hearing's steady floating and rotating.展开更多
In this paper, a robust adaptive fuzzy dynamic surface control for a class of uncertain nonlinear systems is proposed. A novel adaptive fuzzy dynamic surface model is built to approximate the uncertain nonlinear funct...In this paper, a robust adaptive fuzzy dynamic surface control for a class of uncertain nonlinear systems is proposed. A novel adaptive fuzzy dynamic surface model is built to approximate the uncertain nonlinear functions by only one fuzzy logic system. The approximation capability of this model is proved and the model is implemented to solve the problem that too many approximators are used in the controller design of uncertain nonlinear systems. The shortage of "explosion of complexity" in backstepping design procedure is overcome by using the proposed dynamic surface control method. It is proved by constructing appropriate Lyapunov candidates that all signals of closed-loop systems are semi-globally uniformly ultimate bounded. Also, this novel controller stabilizes the states of uncertain nonlinear systems faster than the adaptive sliding mode controller (SMC). Two simulation examples are provided to illustrate the effectiveness of the control approach proposed in this paper.展开更多
In this paper, a direct adaptive fuzzy tracking control is proposed for a class of uncertain single-input single-output nonlinear semi-strict feedback systems. Based on Takagi-Sugeno type fuzzy systems, a direct adapt...In this paper, a direct adaptive fuzzy tracking control is proposed for a class of uncertain single-input single-output nonlinear semi-strict feedback systems. Based on Takagi-Sugeno type fuzzy systems, a direct adaptive fuzzy tracking controller is developed by using the backstepping approach. The main advantage of the developed method is that for an n-th order system, only one parameter is needed to be adjusted online. It is proven that, under the appropriate assumptions, the developed scheme can achieve that the output system converges to a small neighborhood of the reference signal and all the signals in the closed-loop system remain bounded. The efficacy of the proposed algorithm is investigated by an illustrative simulation example of one link robot.展开更多
In this paper,an adaptive fuzzy state feedback control method is proposed for the single-link robotic manipulator system.The considered system contains unknown nonlinearfunction and actuator saturation.Fuzzy logic sys...In this paper,an adaptive fuzzy state feedback control method is proposed for the single-link robotic manipulator system.The considered system contains unknown nonlinearfunction and actuator saturation.Fuzzy logic systems(FLSs)and a smooth function are used to approximate the unknownnonlinearities and the actuator saturation,respectively.By com-bining the command-filter technique with the backsteppingdesign algorithm,a novel adaptive fuuzy tracking backsteppingcontrol method is developed.It is proved that the adaptive fuuzycontrol scheme can guarantee that all the variables in the closed-loop system are bounded,and the system output can track thegiven reference signal as close as possible.Simulation results areprovided to illustrate the effectiveness of the proposed approach.展开更多
This paper proposes a novel robust design method for the sense mode of a MEMS vibratory gyroscope based on fuzzy reliability and Taguchi design. The principles of fuzzy reliability and Taguchi design are both introduc...This paper proposes a novel robust design method for the sense mode of a MEMS vibratory gyroscope based on fuzzy reliability and Taguchi design. The principles of fuzzy reliability and Taguchi design are both introduced and described in detail. Experimental results demonstrate that the signal to noise ratio of the robust design scheme is better than those of the other experimental schemes.Over the full temperature range from -40 to 80°C, the temperature sensitivities of phase margin, gain margin, sensitivity margin,the maximum amplitude of open loop system, bandwidth of closed loop system, and the performance function of the robust design system are all smaller than those of the original design system. Meanwhile, the temperature sensitivity of the bandwidth of the robust design system is improved to 126 from 1075 ppm/°C. Moreover, the bias drift over the full temperature range of the robust design system is improved to 61°/h from 179°/h.展开更多
基金supported by the National Natural Science Foundation of China (No.70471087)China Postdoctoral Science Foundation Funded Project(No.20080430929)Liaoning Province Education Bureau Foundation (No.20060106)
文摘A robust control for uncertain nonlinear systems based on T-S fuzzy model is discussed in this paper. First, a T-S fuzzy system is adopted to model the uncertain nonlinear systems. Then, for the system with input variables adopting standard fuzzy partitions, the efficient maximal overlapped-rules group (EMORG) is presented, and a new sufficient condition to check the stability of T-S fuzzy system with uncertainty is derived, which is expressed in terms of Linear Matrix Inequalities. The derived stability condition, which only requires a local common positive definite matrix in each EMORG, can reduce the conservatism and difficulty in existing stability conditions. Finally, a simulation example shows the proposed approach is effective.
基金Supported by China Scholarship Council(Grant No.201806690019)Fundamental Research Funds for Chinese Central Universities(Grant No.300102258306)Anhui Provincial Natural Science Foundation of China(Grant No.1908085QE194).
文摘In this paper,a new fuzzy approach is applied to optimal design of the anti-skid control for electric vehicles.The anti-skid control is used to maintain the wheel speed when there are uncertainties.The control is able to provide an appropriate torque for wheels when the vehicle is about to skid.The friction coefficient and the moments of inertia of wheels and motor are considered as uncertain parameters.These nonlinear,bounded and time-varying uncertainties are described by fuzzy set theory.The control is deterministic and is not based on IF-THEN fuzzy rules.Then,the optimal design for this fuzzy system and control cost is proposed by fuzzy information.In this way,the uniform boundedness and uniform ultimate boundedness are guaranteed and the average fuzzy performance is minimized.Numerical simulations show that the control can prevent vehicle skidding with the minimum control cost under uncertainties.
文摘μ-synthesis is a practical design approach and has been applied successfully to achieve a nominal and robust performance objectives. However, this design method suffers from the complexity of its practical implementation and high computational demand due to its high order dynamics. To overcome this problem, the interaction between fuzzy logic control which is a part of intelligence control theory and p-synthesis controller is carried out. This is called integrated fuzzy robust controller in this paper. It is obtained by coupling fuzzy pd with p-synthesis controller through the outer loop. Using this design strategy, we can keep the system performance and robustness even a high order p-synthesis controller is reduced into second order model. In order to test the effectiveness of this design method, the linear simulation results for a launch vehicle's attitude control motion are presented at the end of this paper.
基金supported by the National Natural Science Foundation of China(Nos.61673209,61741313,61304223)the Aeronautical Science Foundation(Nos.2016ZA52009)+1 种基金the Jiangsu Six Peak of Talents Program(No.KTHY-027)the Fundamental Research Funds for the Central Universities(Nos.NJ20160026,NS2017015)
文摘The mathematical model of quadcopter-unmanned aerial vehicle (UAV) is derived by using two approaches: One is the Newton-Euler approach which is formulated using classical meehanics; and other is the Euler-Lagrange approach which describes the model in terms of kinetic (translational and rotational) and potential energy. The proposed quadcopter's non-linear model is incorporated with aero-dynamical forces generated by air resistance, which helps aircraft to exhibits more realistic behavior while hovering. Based on the obtained model, the suitable control strategy is developed, under which two effective flight control systems are developed. Each control system is created by cascading the proportional-derivative (PD) and T-S fuzzy controllers that are equipped with six and twelve feedback signals individually respectively to ensure better tracking, stabilization, and response. Both pro- posed flight control designs are then implemented with the quadcopter model respectively and multitudinous simulations are conducted using MATLAB/Simulink to analyze the tracking performance of the quadcopter model at various reference inputs and trajectories.
文摘The five degree freedom magnetic bearing is researched and its structure and working principles are introduced also. Based on the fuzzy control technology, combining fuzzy algorithm and PID control method, identifying the transition process mode of the online system to get the PID parameters' self-adjusting, the magnetic beating system's Fuzzy-PID nonlinear controller is designed by analyzing the system control demands. The Fuzzy-PID nonlinear controller can deal with the magnetic bearing system' s open loop instability and strong nonlinearity, and the approach could improve the system's rapidity, adaptability, stability and dynamic characteristics. Comparative analysis and experiments are conducted between linear PID and nonlinear fuzzy- PID control methods, the results show that the fuzzy-PID controller is better, and the five-freedom magnetic bearing' s rotary precision experiments are conducted by the fuzzy-PID controller, it satisfies the control rotary precision demands and realizes the hearing's steady floating and rotating.
基金supported by National Natural Science Foundation of China (No. 60525303 and 60704009)Key Research Program of Hebei Education Department (No. ZD200908)
文摘In this paper, a robust adaptive fuzzy dynamic surface control for a class of uncertain nonlinear systems is proposed. A novel adaptive fuzzy dynamic surface model is built to approximate the uncertain nonlinear functions by only one fuzzy logic system. The approximation capability of this model is proved and the model is implemented to solve the problem that too many approximators are used in the controller design of uncertain nonlinear systems. The shortage of "explosion of complexity" in backstepping design procedure is overcome by using the proposed dynamic surface control method. It is proved by constructing appropriate Lyapunov candidates that all signals of closed-loop systems are semi-globally uniformly ultimate bounded. Also, this novel controller stabilizes the states of uncertain nonlinear systems faster than the adaptive sliding mode controller (SMC). Two simulation examples are provided to illustrate the effectiveness of the control approach proposed in this paper.
文摘In this paper, a direct adaptive fuzzy tracking control is proposed for a class of uncertain single-input single-output nonlinear semi-strict feedback systems. Based on Takagi-Sugeno type fuzzy systems, a direct adaptive fuzzy tracking controller is developed by using the backstepping approach. The main advantage of the developed method is that for an n-th order system, only one parameter is needed to be adjusted online. It is proven that, under the appropriate assumptions, the developed scheme can achieve that the output system converges to a small neighborhood of the reference signal and all the signals in the closed-loop system remain bounded. The efficacy of the proposed algorithm is investigated by an illustrative simulation example of one link robot.
基金This work was supported by the National Natural Science Foundation of China(61573175,61374113)Liaoning BaiQianWan Talents Program.
文摘In this paper,an adaptive fuzzy state feedback control method is proposed for the single-link robotic manipulator system.The considered system contains unknown nonlinearfunction and actuator saturation.Fuzzy logic systems(FLSs)and a smooth function are used to approximate the unknownnonlinearities and the actuator saturation,respectively.By com-bining the command-filter technique with the backsteppingdesign algorithm,a novel adaptive fuuzy tracking backsteppingcontrol method is developed.It is proved that the adaptive fuuzycontrol scheme can guarantee that all the variables in the closed-loop system are bounded,and the system output can track thegiven reference signal as close as possible.Simulation results areprovided to illustrate the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61434003 & 51505089)
文摘This paper proposes a novel robust design method for the sense mode of a MEMS vibratory gyroscope based on fuzzy reliability and Taguchi design. The principles of fuzzy reliability and Taguchi design are both introduced and described in detail. Experimental results demonstrate that the signal to noise ratio of the robust design scheme is better than those of the other experimental schemes.Over the full temperature range from -40 to 80°C, the temperature sensitivities of phase margin, gain margin, sensitivity margin,the maximum amplitude of open loop system, bandwidth of closed loop system, and the performance function of the robust design system are all smaller than those of the original design system. Meanwhile, the temperature sensitivity of the bandwidth of the robust design system is improved to 126 from 1075 ppm/°C. Moreover, the bias drift over the full temperature range of the robust design system is improved to 61°/h from 179°/h.