The spherical indentation test has been successfully applied to inversely derive the tensile properties of small regions in a non-destructive way.Current inverse methods mainly rely on extensive iterative calculations...The spherical indentation test has been successfully applied to inversely derive the tensile properties of small regions in a non-destructive way.Current inverse methods mainly rely on extensive iterative calculations,which yield a considerable computational costs.In this paper,a database method is proposed to determine tensile flow properties from a single indentation force-depth curves to avoid iterative simulations.Firstly,a database that contain numerous indentation force-depth curves is established by inputting varied Ludwic material parameters into the indentation finite elements model.Secondly,for a given experimental indentation curve,a mean square error(MSE)is designated to evaluate the deviation between the experimental curve and each curve in the database.Finally,the true stresses at a series of plastic strain can be acquired by analyzing these deviations.To validate this new method,three different steels,i.e.A508,2.25Cr1 Mo and 316L are selected.Both simulated indentation curves and experimental indentation curves are used as inputs of the database to inversely acquire the flow properties.The result indicates that the pro-posed approach provides impressive accuracy when simulated indentation curves are used,but is less accurate when experimental curves are used.This new method can derive tensile properties in a much higher efficiency compared with traditional inverse method and are therefore more adaptive to engineering application.展开更多
Three directions of development of kinetic indentation methods.Physical-energetic analysis of the indentation force diagram according to ISO 14577.Physical theory and universal criterion for the macrohardness of a mat...Three directions of development of kinetic indentation methods.Physical-energetic analysis of the indentation force diagram according to ISO 14577.Physical theory and universal criterion for the macrohardness of a material.Model of the physical process,thermomechanical potential,function of the state of the kinetic macroindentation process.Method for determining the physical function and unit of measurement of the kinetic macrohardness of a material.The ratio of the values of the empirical(standard)and physical macrohardness of the material.Physical reason for the appearance of the size effect in empirical indentation methods.The principle of determining the standard value of physical macrohardness.展开更多
In this work, a recently developed method based on the change of distance between collinear indents is used to evaluate different states of residual stress, which were generated in samples of AA 6082-T6 and AA 7075-T6...In this work, a recently developed method based on the change of distance between collinear indents is used to evaluate different states of residual stress, which were generated in samples of AA 6082-T6 and AA 7075-T6 aluminium alloys milled at high speed. One of the advantages of this method, which needs a universal measuring machine, is not requiring neither the use of specific equipment nor highly skilled operators. Also, by integrating an indentation device to the mentioned machine, the absolute error of measurement can be reduced. In results obtained in samples subjected to different cutting conditions it is observed a correlation between the stress values and the depth of cut, showing the AA 6082-T6 alloy higher susceptibility to be stressed. Furthermore, the high sensitivity of the method allowed detecting very small differences in the values reached by different normal components in the zones corresponding to climb and conventional cutting. It is important to note that these differences were similar for both evaluated alloys. Finally, the directions associated with the principal components of residual stress, where maximum local plastic stretching occurs, were found to be strongly dependent on the rolling direction prior to machining.展开更多
A new experimental measurement of residual stresses around Vickers′ indentations on the surface of the SiC/Al 2O 3 nanocomposites is proposed with the aid of a Raman microprobe. Results s how that the shifts of R...A new experimental measurement of residual stresses around Vickers′ indentations on the surface of the SiC/Al 2O 3 nanocomposites is proposed with the aid of a Raman microprobe. Results s how that the shifts of R lines in the fluorescence spectra va ry with the distance from the centre of indentation. The magnitude of load appli ed on the surface of the materials through the indenter influences the shifts of R lines to great extent. The luminescence of R lines of the materials before indenting is used to determine the residual stresses around the indentation in the materials, assuming that the stress tensor is transversely isotropic. Final ly, the term of hydrostatic stress is adopted to explain and compare different residual stresses around indentations with the increase of the indenting load an d the distance from the centre of indentations. <展开更多
A new experimental measurement of residual stresses around Vickers′ indentations on the surface of the SiC/Al 2O 3 nanocomposites is proposed with the aid of a Raman microprobe. Results s how that the shifts of R...A new experimental measurement of residual stresses around Vickers′ indentations on the surface of the SiC/Al 2O 3 nanocomposites is proposed with the aid of a Raman microprobe. Results s how that the shifts of R lines in the fluorescence spectra va ry with the distance from the centre of indentation. The magnitude of load appli ed on the surface of the materials through the indenter influences the shifts of R lines to great extent. The luminescence of R lines of the materials before indenting is used to determine the residual stresses around the indentation in the materials, assuming that the stress tensor is transversely isotropic. Final ly, the term of hydrostatic stress is adopted to explain and compare different residual stresses around indentations with the increase of the indenting load an d the distance from the centre of indentations. 【展开更多
Instrumented indentation is a promising technique for estimating surface residual stresses and mechanical properties in engineering components.The relative difference between the indentation loads for unstressed and s...Instrumented indentation is a promising technique for estimating surface residual stresses and mechanical properties in engineering components.The relative difference between the indentation loads for unstressed and stressed specimens was selected as the key parameter for measuring surface residual stresses in flat-ended cylindrical indentations.Based on the equivalent material method and finite element simulations,a dimensionless mapping model with six constants was established between the relative load difference,constitutive model parameters,and normalized residual stress.A novel method for measuring the surface residual stress and constitutive model parameters of metallic material through flat-ended cylindrical indentations was proposed using this model and a mechanical properties determination method.Numerical simulations were conducted using numerous elastoplastic materials with different residual stresses to verify the proposed model;good agreements were observed between the predicted residual stresses and those previously applied in finite element analysis.Flat-ended cylindrical indentation tests were performed on four metallic materials using cruciform specimens subjected to various equibiaxial stresses.The results exhibited good conformance between the stress–strain curves obtained using the proposed method and those from traditional tensile tests,and the absolute differences between the predicted residual stresses and applied stresses were within 40 MPa in most cases.展开更多
The structure of a microlens array( MLA) can be formed on copper by an indentation process which is a new manufacture approach we applied here instead of a traditional method to test the material property,thereby wo...The structure of a microlens array( MLA) can be formed on copper by an indentation process which is a new manufacture approach we applied here instead of a traditional method to test the material property,thereby work time can be saved. Single-indentation and multi-indentation are both conducted to generate a single dimple and dimples array,namely micro lens and MLA. Based on finite element simulation method,factors affecting the form accuracy,such as springback at the compressed area of one single dimple and compressional deformation at the adjacent area of dimples arrays,are determined,and the results are verified by experiments under the same conditions. Meanwhile,indenter compensation method is proposed to improve form accuracy of single dimple,and the relationship between pitch and compressional deformation is investigated by modelling seven sets of multi-indentations at different pitches to identify the critical pitch for the MLA's indentation processing. Loads and cross-sectional profiles are measured and analyzed to reveal the compressional deformation mechanism. Finally,it is found that MLA at pitches higher than 1. 47 times of its diameter can be manufactured precisely by indentation using a compensated indenter.展开更多
Theoretical analysis and finite element (FE) simulation have been carried out for a constant specific load rate (CSLR) indentation creep test. Analytical results indicate that both the representative stress and th...Theoretical analysis and finite element (FE) simulation have been carried out for a constant specific load rate (CSLR) indentation creep test. Analytical results indicate that both the representative stress and the indentation strain rate become constant after a transient period. Moreover, the FE simulation reveals that both the contours of equivalent stress and equivalent plastic strain rate underneath the indenter evolve with geometrical self-similarity. This suggests that pseudo-steady indentation creep occurs in the region beneath the indenter. The representative points in the region are defined as the ones with the equivalent stress equal to the representative stress. In addition, it is revealed that the proportionality between indentation strain rate and equivalent plastic strain rate holds at the representative points during the pseudo-steady indentation creep of a power law material. A control volume (CV) beneath the indenter, which governs the indenter velocity, is identified. The size of the CV at the indented surface is approximately 2.5 times the size of the impression. The stress exponent for creep can be obtained from the pseudosteady indentation creep data. These results demonstrate that the CSLR testing technique can be used to evaluate creep parameters with the same accuracy as conventional uniaxial creep tests.展开更多
The indentation method is useful in determining the residual stress according to the elastic-plastic properties of materials.So the effect of the residual stress on the elastic-plastic indentation properties of materi...The indentation method is useful in determining the residual stress according to the elastic-plastic properties of materials.So the effect of the residual stress on the elastic-plastic indentation properties of materials was studied by using the finite element method to find better indentation parameters which are strongly induced by the residual stress.The results show that load-depth curve,plastic pile-up,indentation shape,indentation contact stress and indentation residual stress are affected by different residual stress,and these parameters can be used to deduce the residual stress.Also,a special indentation equipment was developed to analyze the elastic-plastic properties of materials with different residual stress,and the experimental results show a good agreement with the FEM results.For practical application,the elastic-plastic indentation properties of materials with unknown residual stress could be obtained by the developed equipment to deduce the residual stress comprehensively.展开更多
Linear elastic fracture mechanics principles are widely applied for the analysis of crack problems in rock fracture mechanics. Rock indentation is an important and complicated problem among rock engineering issues. In...Linear elastic fracture mechanics principles are widely applied for the analysis of crack problems in rock fracture mechanics. Rock indentation is an important and complicated problem among rock engineering issues. In this paper, in addition to the fracture criterion of maximum tangential stress adjacent to crack tip, the higher order displacement discontinuity method (which is a version of the indirect boundary element method) has been used for modeling the crack propagation mechanism under blunt indenters. In order to achieve more accurate results, higher order boundary elements i.e. quadratic elements, has been used to calculate displacement discontinuities and also to reduce the singularities of stress and displacement fields near the crack tip, the special crack tip elements has been used to calculate the stress intensity factors (SIF) at the crack tips. In this modeling, the effect of crack angle on stress intensity factors has been investigated. The numerical results of stress intensity factors obtained from some example problems were compared to the theoretical and experimental results cited in the literature which always show a percentage error less than one percent. The simulated results may pave the way for increasing the efficiency of mining and drilling by improving the design of tools and indentation equipments.展开更多
The introduction of residual stress during the processing of materials has an important impact on the properties of the materials, so it is important to accurately measure the residual stress of the material. This pap...The introduction of residual stress during the processing of materials has an important impact on the properties of the materials, so it is important to accurately measure the residual stress of the material. This paper established a finite element model of spherical indentation under the action of non-equivalent biaxial residual stress. Then we extracted the full-field accumulation state near the indentation under different stress states from the simulation results and summarized the pile height distribution near the indentation under different stress states. From the simulation, we found that the maximum pile-up height near the indentation point presented a regular trend.展开更多
Quasicontinuum simulations were performed to study the processes of incipient plastic deformation on three FCC metals (Ag,Ni and Pd) under the action of a rigid indenter.Four widths (9.3,18.6,27.9 and 37.2 ) of the in...Quasicontinuum simulations were performed to study the processes of incipient plastic deformation on three FCC metals (Ag,Ni and Pd) under the action of a rigid indenter.Four widths (9.3,18.6,27.9 and 37.2 ) of the indenters were modelled for each metal specimen.A series of load-displacement responses and the strain energy versus displacement responses of the indenter were presented.It is shown that the abrupt drop of the load in the load-displacement response is triggered by the nucleation of dislocations in the metals.The critical load of each metal specimen increases with the increase of the indenter width,while the hardness of the metal specimen decreases as the indenter width increases.Furthermore,the microscopic mechanism of deformation in the films was analyzed.Two dislocations are nucleated respectively beneath the right and left sides of the indenter.Each dislocation successively decomposes into two Shockley partial dislocations after the first nucleation process.The distances between the two partial dislocations are equal for both sides of the indenter,which are in agreement with the theoretical values.展开更多
In the present study, the indentation testing with a flat cylindrical indenter on typical multi-layer material systems was simulated successfully by finite element method. The emphasis was put on the methods of extrac...In the present study, the indentation testing with a flat cylindrical indenter on typical multi-layer material systems was simulated successfully by finite element method. The emphasis was put on the methods of extracting the yield stresses and strain-hardening modulus of upper and middle-layers of three-layer material systems from the indentation testing. The slope of the indentation depth to the applied indentation stress curve was found to have a turning point, which can be used to determine the yield stress of the upper-layer. Then, a different method was also presented to determine the yield stress of the middle-layer. This method was based on a set of assumed applied indentation stresses which were to be intersected by the experimental results in order to meet the requirement of having the experimental indentation depth. At last, a reverse numerical algorithm was explored to determine the yield stresses of upper and middle-layers simultaneously by using the indentation testing with two different size indenters. This method assumed two ranges of yield stresses to simulate the indentation behavior. The experimental depth behavior was used to intersect the simulated indentation behavior. And the intersection corresponded to the values of yield stresses of upper and middle-layers. This method was also used further to determine the strain-hardening modulus of upper and middle-layers simultaneously.展开更多
The contact problem for the elastic sphere indenting a layered half-space is considered. Analytical methods for solving this problem have been developed on the basis of the 3-D fundamental solution of a half space wit...The contact problem for the elastic sphere indenting a layered half-space is considered. Analytical methods for solving this problem have been developed on the basis of the 3-D fundamental solution of a half space with a single coating layer under a normal concentrated force on the surface. The normal pressure distribution within the contact zone is assumed as Hertzian type. The solutions are constructed using superposition principle in the form of infinite series. Through comparing with the numerical results of FEM,it can be verified that the exact solutions have a rapid convergence rate and the stresses and displacements are mainly determined by the first term,which is corresponding to the solution of homogeneous half-space under Hertzian loading. The contact radius can be predicted applying the method.展开更多
A plane mechanical model of rock breaking process by double disc cutter at the center of the cutterhead is established based on contact mechanics to analyze the stress evolution in the rock broken by cutters with diff...A plane mechanical model of rock breaking process by double disc cutter at the center of the cutterhead is established based on contact mechanics to analyze the stress evolution in the rock broken by cutters with different spacings. A continuous-discontinuous coupling numerical method based on zero-thickness cohesive elements is developed to simulate rock breaking using double cutters. The process, mechanism,and characteristics of rock breaking are comprehensively analyzed from five aspects: peak force, breaking form, breaking efficiency, crack mode, and breaking degree. The results show that under the penetrating action of cutters, dense cores are formed due to shear failure under respective cutters. The tensile cracks propagate in the rock, and then rock chips form with increasing penetration depth. When the cutter spacing is increased from 10 to 80 mm, the peak force gradually increases, the rock breaking range increases first and then decreases, the specific energy decreases first and then rises, and the breaking coefficient of intermediate rock decreases from 0.955 to 0.788. The area of rock breaking is positively correlated with the length of the tensile crack. Furthermore, the length of the tensile crack accounts for 14.4%–33.6% of the total crack length.展开更多
基金Supported by China Postdoctoral Science Foundation(Grant No.2019M661406).
文摘The spherical indentation test has been successfully applied to inversely derive the tensile properties of small regions in a non-destructive way.Current inverse methods mainly rely on extensive iterative calculations,which yield a considerable computational costs.In this paper,a database method is proposed to determine tensile flow properties from a single indentation force-depth curves to avoid iterative simulations.Firstly,a database that contain numerous indentation force-depth curves is established by inputting varied Ludwic material parameters into the indentation finite elements model.Secondly,for a given experimental indentation curve,a mean square error(MSE)is designated to evaluate the deviation between the experimental curve and each curve in the database.Finally,the true stresses at a series of plastic strain can be acquired by analyzing these deviations.To validate this new method,three different steels,i.e.A508,2.25Cr1 Mo and 316L are selected.Both simulated indentation curves and experimental indentation curves are used as inputs of the database to inversely acquire the flow properties.The result indicates that the pro-posed approach provides impressive accuracy when simulated indentation curves are used,but is less accurate when experimental curves are used.This new method can derive tensile properties in a much higher efficiency compared with traditional inverse method and are therefore more adaptive to engineering application.
文摘Three directions of development of kinetic indentation methods.Physical-energetic analysis of the indentation force diagram according to ISO 14577.Physical theory and universal criterion for the macrohardness of a material.Model of the physical process,thermomechanical potential,function of the state of the kinetic macroindentation process.Method for determining the physical function and unit of measurement of the kinetic macrohardness of a material.The ratio of the values of the empirical(standard)and physical macrohardness of the material.Physical reason for the appearance of the size effect in empirical indentation methods.The principle of determining the standard value of physical macrohardness.
文摘In this work, a recently developed method based on the change of distance between collinear indents is used to evaluate different states of residual stress, which were generated in samples of AA 6082-T6 and AA 7075-T6 aluminium alloys milled at high speed. One of the advantages of this method, which needs a universal measuring machine, is not requiring neither the use of specific equipment nor highly skilled operators. Also, by integrating an indentation device to the mentioned machine, the absolute error of measurement can be reduced. In results obtained in samples subjected to different cutting conditions it is observed a correlation between the stress values and the depth of cut, showing the AA 6082-T6 alloy higher susceptibility to be stressed. Furthermore, the high sensitivity of the method allowed detecting very small differences in the values reached by different normal components in the zones corresponding to climb and conventional cutting. It is important to note that these differences were similar for both evaluated alloys. Finally, the directions associated with the principal components of residual stress, where maximum local plastic stretching occurs, were found to be strongly dependent on the rolling direction prior to machining.
文摘A new experimental measurement of residual stresses around Vickers′ indentations on the surface of the SiC/Al 2O 3 nanocomposites is proposed with the aid of a Raman microprobe. Results s how that the shifts of R lines in the fluorescence spectra va ry with the distance from the centre of indentation. The magnitude of load appli ed on the surface of the materials through the indenter influences the shifts of R lines to great extent. The luminescence of R lines of the materials before indenting is used to determine the residual stresses around the indentation in the materials, assuming that the stress tensor is transversely isotropic. Final ly, the term of hydrostatic stress is adopted to explain and compare different residual stresses around indentations with the increase of the indenting load an d the distance from the centre of indentations. <
文摘A new experimental measurement of residual stresses around Vickers′ indentations on the surface of the SiC/Al 2O 3 nanocomposites is proposed with the aid of a Raman microprobe. Results s how that the shifts of R lines in the fluorescence spectra va ry with the distance from the centre of indentation. The magnitude of load appli ed on the surface of the materials through the indenter influences the shifts of R lines to great extent. The luminescence of R lines of the materials before indenting is used to determine the residual stresses around the indentation in the materials, assuming that the stress tensor is transversely isotropic. Final ly, the term of hydrostatic stress is adopted to explain and compare different residual stresses around indentations with the increase of the indenting load an d the distance from the centre of indentations. 【
基金supported by the National Natural Science Foundation of China(Nos.11872320 and 12072294).
文摘Instrumented indentation is a promising technique for estimating surface residual stresses and mechanical properties in engineering components.The relative difference between the indentation loads for unstressed and stressed specimens was selected as the key parameter for measuring surface residual stresses in flat-ended cylindrical indentations.Based on the equivalent material method and finite element simulations,a dimensionless mapping model with six constants was established between the relative load difference,constitutive model parameters,and normalized residual stress.A novel method for measuring the surface residual stress and constitutive model parameters of metallic material through flat-ended cylindrical indentations was proposed using this model and a mechanical properties determination method.Numerical simulations were conducted using numerous elastoplastic materials with different residual stresses to verify the proposed model;good agreements were observed between the predicted residual stresses and those previously applied in finite element analysis.Flat-ended cylindrical indentation tests were performed on four metallic materials using cruciform specimens subjected to various equibiaxial stresses.The results exhibited good conformance between the stress–strain curves obtained using the proposed method and those from traditional tensile tests,and the absolute differences between the predicted residual stresses and applied stresses were within 40 MPa in most cases.
基金Supported by the National Natural Science Foundation of China(51375050)
文摘The structure of a microlens array( MLA) can be formed on copper by an indentation process which is a new manufacture approach we applied here instead of a traditional method to test the material property,thereby work time can be saved. Single-indentation and multi-indentation are both conducted to generate a single dimple and dimples array,namely micro lens and MLA. Based on finite element simulation method,factors affecting the form accuracy,such as springback at the compressed area of one single dimple and compressional deformation at the adjacent area of dimples arrays,are determined,and the results are verified by experiments under the same conditions. Meanwhile,indenter compensation method is proposed to improve form accuracy of single dimple,and the relationship between pitch and compressional deformation is investigated by modelling seven sets of multi-indentations at different pitches to identify the critical pitch for the MLA's indentation processing. Loads and cross-sectional profiles are measured and analyzed to reveal the compressional deformation mechanism. Finally,it is found that MLA at pitches higher than 1. 47 times of its diameter can be manufactured precisely by indentation using a compensated indenter.
文摘Theoretical analysis and finite element (FE) simulation have been carried out for a constant specific load rate (CSLR) indentation creep test. Analytical results indicate that both the representative stress and the indentation strain rate become constant after a transient period. Moreover, the FE simulation reveals that both the contours of equivalent stress and equivalent plastic strain rate underneath the indenter evolve with geometrical self-similarity. This suggests that pseudo-steady indentation creep occurs in the region beneath the indenter. The representative points in the region are defined as the ones with the equivalent stress equal to the representative stress. In addition, it is revealed that the proportionality between indentation strain rate and equivalent plastic strain rate holds at the representative points during the pseudo-steady indentation creep of a power law material. A control volume (CV) beneath the indenter, which governs the indenter velocity, is identified. The size of the CV at the indented surface is approximately 2.5 times the size of the impression. The stress exponent for creep can be obtained from the pseudosteady indentation creep data. These results demonstrate that the CSLR testing technique can be used to evaluate creep parameters with the same accuracy as conventional uniaxial creep tests.
基金Supported by the Science Research Fund of Shanghai Education Council(No.06VZ004)
文摘The indentation method is useful in determining the residual stress according to the elastic-plastic properties of materials.So the effect of the residual stress on the elastic-plastic indentation properties of materials was studied by using the finite element method to find better indentation parameters which are strongly induced by the residual stress.The results show that load-depth curve,plastic pile-up,indentation shape,indentation contact stress and indentation residual stress are affected by different residual stress,and these parameters can be used to deduce the residual stress.Also,a special indentation equipment was developed to analyze the elastic-plastic properties of materials with different residual stress,and the experimental results show a good agreement with the FEM results.For practical application,the elastic-plastic indentation properties of materials with unknown residual stress could be obtained by the developed equipment to deduce the residual stress comprehensively.
文摘Linear elastic fracture mechanics principles are widely applied for the analysis of crack problems in rock fracture mechanics. Rock indentation is an important and complicated problem among rock engineering issues. In this paper, in addition to the fracture criterion of maximum tangential stress adjacent to crack tip, the higher order displacement discontinuity method (which is a version of the indirect boundary element method) has been used for modeling the crack propagation mechanism under blunt indenters. In order to achieve more accurate results, higher order boundary elements i.e. quadratic elements, has been used to calculate displacement discontinuities and also to reduce the singularities of stress and displacement fields near the crack tip, the special crack tip elements has been used to calculate the stress intensity factors (SIF) at the crack tips. In this modeling, the effect of crack angle on stress intensity factors has been investigated. The numerical results of stress intensity factors obtained from some example problems were compared to the theoretical and experimental results cited in the literature which always show a percentage error less than one percent. The simulated results may pave the way for increasing the efficiency of mining and drilling by improving the design of tools and indentation equipments.
文摘The introduction of residual stress during the processing of materials has an important impact on the properties of the materials, so it is important to accurately measure the residual stress of the material. This paper established a finite element model of spherical indentation under the action of non-equivalent biaxial residual stress. Then we extracted the full-field accumulation state near the indentation under different stress states from the simulation results and summarized the pile height distribution near the indentation under different stress states. From the simulation, we found that the maximum pile-up height near the indentation point presented a regular trend.
基金Project(10576010) supported by the National Natural Science Foundation of China and NSAF Foundation of China
文摘Quasicontinuum simulations were performed to study the processes of incipient plastic deformation on three FCC metals (Ag,Ni and Pd) under the action of a rigid indenter.Four widths (9.3,18.6,27.9 and 37.2 ) of the indenters were modelled for each metal specimen.A series of load-displacement responses and the strain energy versus displacement responses of the indenter were presented.It is shown that the abrupt drop of the load in the load-displacement response is triggered by the nucleation of dislocations in the metals.The critical load of each metal specimen increases with the increase of the indenter width,while the hardness of the metal specimen decreases as the indenter width increases.Furthermore,the microscopic mechanism of deformation in the films was analyzed.Two dislocations are nucleated respectively beneath the right and left sides of the indenter.Each dislocation successively decomposes into two Shockley partial dislocations after the first nucleation process.The distances between the two partial dislocations are equal for both sides of the indenter,which are in agreement with the theoretical values.
基金the National Natural Science Foundation of China (No. 10472094) the Research Fund for the Doctoral Program of Higher Education (N6CJ0001) Doctorate Fund of Northwestern Polytechnical University.
文摘In the present study, the indentation testing with a flat cylindrical indenter on typical multi-layer material systems was simulated successfully by finite element method. The emphasis was put on the methods of extracting the yield stresses and strain-hardening modulus of upper and middle-layers of three-layer material systems from the indentation testing. The slope of the indentation depth to the applied indentation stress curve was found to have a turning point, which can be used to determine the yield stress of the upper-layer. Then, a different method was also presented to determine the yield stress of the middle-layer. This method was based on a set of assumed applied indentation stresses which were to be intersected by the experimental results in order to meet the requirement of having the experimental indentation depth. At last, a reverse numerical algorithm was explored to determine the yield stresses of upper and middle-layers simultaneously by using the indentation testing with two different size indenters. This method assumed two ranges of yield stresses to simulate the indentation behavior. The experimental depth behavior was used to intersect the simulated indentation behavior. And the intersection corresponded to the values of yield stresses of upper and middle-layers. This method was also used further to determine the strain-hardening modulus of upper and middle-layers simultaneously.
文摘The contact problem for the elastic sphere indenting a layered half-space is considered. Analytical methods for solving this problem have been developed on the basis of the 3-D fundamental solution of a half space with a single coating layer under a normal concentrated force on the surface. The normal pressure distribution within the contact zone is assumed as Hertzian type. The solutions are constructed using superposition principle in the form of infinite series. Through comparing with the numerical results of FEM,it can be verified that the exact solutions have a rapid convergence rate and the stresses and displacements are mainly determined by the first term,which is corresponding to the solution of homogeneous half-space under Hertzian loading. The contact radius can be predicted applying the method.
基金funded by the National Key Research and Development Program of China (No. 2021YFB3401501)the Fundamental Research Funds for the Central Universities (No2022JCCXLJ01)。
文摘A plane mechanical model of rock breaking process by double disc cutter at the center of the cutterhead is established based on contact mechanics to analyze the stress evolution in the rock broken by cutters with different spacings. A continuous-discontinuous coupling numerical method based on zero-thickness cohesive elements is developed to simulate rock breaking using double cutters. The process, mechanism,and characteristics of rock breaking are comprehensively analyzed from five aspects: peak force, breaking form, breaking efficiency, crack mode, and breaking degree. The results show that under the penetrating action of cutters, dense cores are formed due to shear failure under respective cutters. The tensile cracks propagate in the rock, and then rock chips form with increasing penetration depth. When the cutter spacing is increased from 10 to 80 mm, the peak force gradually increases, the rock breaking range increases first and then decreases, the specific energy decreases first and then rises, and the breaking coefficient of intermediate rock decreases from 0.955 to 0.788. The area of rock breaking is positively correlated with the length of the tensile crack. Furthermore, the length of the tensile crack accounts for 14.4%–33.6% of the total crack length.