The estimation of oil spill coverage is an important part of monitoring of oil spills at sea.The spatial resolution of images collected by airborne hyper-spectral remote sensing limits both the detection of oil spills...The estimation of oil spill coverage is an important part of monitoring of oil spills at sea.The spatial resolution of images collected by airborne hyper-spectral remote sensing limits both the detection of oil spills and the accuracy of estimates of their size.We consider at-sea oil spills with zonal distribution in this paper and improve the traditional independent component analysis algorithm.For each independent component we added two constraint conditions:non-negativity and constant sum.We use priority weighting by higher-order statistics,and then the spectral angle match method to overcome the order nondeterminacy.By these steps,endmembers can be extracted and abundance quantified simultaneously.To examine the coverage of a real oil spill and correct our estimate,a simulation experiment and a real experiment were designed using the algorithm described above.The result indicated that,for the simulation data,the abundance estimation error is 2.52% and minimum root mean square error of the reconstructed image is 0.030 6.We estimated the oil spill rate and area based on eight hyper-spectral remote sensing images collected by an airborne survey of Shandong Changdao in 2011.The total oil spill area was 0.224 km^2,and the oil spill rate was 22.89%.The method we demonstrate in this paper can be used for the automatic monitoring of oil spill coverage rates.It also allows the accurate estimation of the oil spill area.展开更多
Vibration signals from diesel engine contain many different components mainly caused by combustion and mechanism operations,several blind source separation techniques are available for decomposing the signal into its ...Vibration signals from diesel engine contain many different components mainly caused by combustion and mechanism operations,several blind source separation techniques are available for decomposing the signal into its components in the case of multichannel measurements,such as independent component analysis(ICA).However,the source separation of vibration signal from single-channel is impossible.In order to study the source separation from single-channel signal for the purpose of source extraction,the combination method of empirical mode decomposition(EMD) and ICA is proposed in diesel engine signal processing.The performance of the described methods of EMD-wavelet and EMD-ICA in vibration signal application is compared,and the results show that EMD-ICA method outperforms the other,and overcomes the drawback of ICA in the case of single-channel measurement.The independent source signal components can be separated and identified effectively from one-channel measurement by EMD-ICA.Hence,EMD-ICA improves the extraction and identification abilities of source signals from diesel engine vibration measurements.展开更多
A statistical signal processing technique was proposed and verified as independent component analysis(ICA) for fault detection and diagnosis of industrial systems without exact and detailed model.Actually,the aim is t...A statistical signal processing technique was proposed and verified as independent component analysis(ICA) for fault detection and diagnosis of industrial systems without exact and detailed model.Actually,the aim is to utilize system as a black box.The system studied is condenser system of one of MAPNA's power plants.At first,principal component analysis(PCA) approach was applied to reduce the dimensionality of the real acquired data set and to identify the essential and useful ones.Then,the fault sources were diagnosed by ICA technique.The results show that ICA approach is valid and effective for faults detection and diagnosis even in noisy states,and it can distinguish main factors of abnormality among many diverse parts of a power plant's condenser system.This selectivity problem is left unsolved in many plants,because the main factors often become unnoticed by fault expansion through other parts of the plants.展开更多
Independent component analysis was applied to analyze the acoustic signals from diesel engine. First the basic prin-ciple of independent component analysis (ICA) was reviewed. Diesel engine acoustic signal was decompo...Independent component analysis was applied to analyze the acoustic signals from diesel engine. First the basic prin-ciple of independent component analysis (ICA) was reviewed. Diesel engine acoustic signal was decomposed into several inde-pendent components (ICs); Fourier transform and continuous wavelet transform (CWT) were applied to analyze the independent components. Different noise sources of the diesel engine were separated, based on the characteristics of different component in time-frequency domain.展开更多
In this paper, a new method to reduce noises within chaotic signals based on ICA (independent component analysis) and EMD (empirical mode decomposition) is proposed. The basic idea is decomposing chaotic signals a...In this paper, a new method to reduce noises within chaotic signals based on ICA (independent component analysis) and EMD (empirical mode decomposition) is proposed. The basic idea is decomposing chaotic signals and constructing multidimensional input vectors, firstly, on the base of EMD and its translation invariance. Secondly, it makes the indepen- dent component analysis on the input vectors, which means that a self adapting denoising is carried out for the intrinsic mode functions (IMFs) of chaotic signals. Finally, all IMFs compose the new denoised chaotic signal. Experiments on the Lorenz chaotic signal composed of different Gaussian noises and the monthly observed chaotic sequence on sunspots were put into practice. The results proved that the method proposed in this paper is effective in denoising of chaotic signals. Moreover, it can correct the center point in the phase space effectively, which makes it approach the real track of the chaotic attractor.展开更多
Dissolved organic matter (DOM) can be originated from autochthonous or allochthonous sources, where allochthonous DOM can be from pedogenic sources (humic substances—HSs) or anthropogenicsources (wastewater). The ana...Dissolved organic matter (DOM) can be originated from autochthonous or allochthonous sources, where allochthonous DOM can be from pedogenic sources (humic substances—HSs) or anthropogenicsources (wastewater). The analysis of fluorescence emission, excitation, synchronous or excitation-emission matrix (EEM) have been used to identify the main source or probable contribution of dissolved compounds, such as humic acids (HA), fulvic acids (FA) and dissolved organic carbon (DOC) from sewage, but does not quantify. Fluorescence emission is a powerful technique to detect and qualify organic dissolved compounds but fails in quantitative aspects. In this work, we propose an in situ method for direct determination of DOC using synchronous fluorescence spectra with independent component analysis (ICA). Well known standard solutions were used for method development and validation. In this work, we show that it is possible to predict the number of independent contributions using an unsupervised method based on iterative Principal Component Analysis and Independent Component Analysis (PCA-ICA) approach over combined matrix results. Within these results it’s also possible to see that with a very small amount of independent components it is possible to describe environmental samples of HA, FA and primary productivity (PP).展开更多
To overcome the inter-carrier interference (ICI) of orthogonal frequency division multiplexing (OFDM) systems subject to unknown carrier frequency offset (CFO) and multipath, this paper develops a blind adaptive...To overcome the inter-carrier interference (ICI) of orthogonal frequency division multiplexing (OFDM) systems subject to unknown carrier frequency offset (CFO) and multipath, this paper develops a blind adaptive interference suppression scheme based on independent component analysis (ICA). Taking into account statistical independence of subcarriers' signals of OFDM, the signal recovery mechanism is investigated to achieve the goal of blind equalization. The received OFDM signals can be considered as the mixed observation signals. The effect of CFO and multipath corresponds to the mixing matrix in the problem of blind source separation (BSS) framework. In this paper, the ICA- based OFDM system model is built, and the proposed ICA-based detector is exploited to extract source signals from the observation of a received mixture based on the assumption of statistical independence between the sources. The blind separation technique can increase spectral efficiency and provide robustness performance against erroneous parameter estimation problem. Theoretical analysis and simulation results show that compared with the conventional pilot-based scheme, the improved performance of OFDM systems is obtained by the proposed ICA-based detection technique.展开更多
Functional magnetic resonance imaging (fMRI) has been used to lateralize and localize lan-guage areas for pre-operative planning pur-poses. To identify the essential language areas from this kind of observation method...Functional magnetic resonance imaging (fMRI) has been used to lateralize and localize lan-guage areas for pre-operative planning pur-poses. To identify the essential language areas from this kind of observation method, we pro-pose an analysis strategy to combine fMRI data from two different tasks using probabilistic in-dependent component analysis (PICA). The assumption is that the independent compo-nents separated by PICA identify the networks activated by both tasks. The results from a study of twelve normal subjects showed that a language-specific component was consistently identified, with the participating networks sepa-rated into different components. Compared with a model-based method, PICA’s ability to capture the neural networks whose temporal activity may deviate from the task timing suggests that PICA may be more appropriate for analyzing language fMRI data with complex event-related paradigms, and may be particularly helpful for patient studies. This proposed strategy has the potential to improve the correlation between fMRI and invasive techniques which can dem-onstrate essential areas and which remain the clinical gold standard.展开更多
The vibration signals of an aeroengine are a very important information source for fault diagnosis and condition monitoring. Considering the nonstationarity and low repeatability of the vibration signals, it is necess...The vibration signals of an aeroengine are a very important information source for fault diagnosis and condition monitoring. Considering the nonstationarity and low repeatability of the vibration signals, it is necessary to find a corresponding method for feature extraction and fault recognition. In this paper, based on Independent Component Analysis (ICA) and the Discrete Hidden Markov Model (DHMM), a new fault diagnosis approach named ICA-DHMM is proposed. In this method, ICA separates the source signals from the mixed vibration signals and then extracts features from them, DHMM works as a classifier to recognize the conditions of the aeroengine. Compared with the DHMM, which use the amplitude spectrum of mixed signals as feature parameters, experimental results show this method has higher diagnosis accuracy.展开更多
A novel nonlinear combination process monitoring method was proposed based on techniques with memo- ry effect (multivariate exponentially weighted moving average (MEWMA)) and kernel independent component analysis ...A novel nonlinear combination process monitoring method was proposed based on techniques with memo- ry effect (multivariate exponentially weighted moving average (MEWMA)) and kernel independent component analysis (KICA). The method was developed for dealing with nonlinear issues and detecting small or moderate drifts in one or more process variables with autocorrelation. MEWMA charts use additional information from the past history of the process for keeping the memory effect of the process behavior trend. KICA is a recently devel- oped statistical technique for revealing hidden, nonlinear statistically independent factors that underlie sets of mea- surements and it is a two-phase algorithm., whitened kernel principal component analysis (KPCA) plus indepen- dent component analysis (ICA). The application to the fluid catalytic cracking unit (FCCU) simulated process in- dicates that the proposed combined method based on MEWMA and KICA can effectively capture the nonlinear rela- tionship and detect small drifts in process variables. Its performance significantly outperforms monitoring method based on ICA, MEWMA-ICA and KICA, especially for lonu-term performance deterioration.展开更多
One important application of independent component analysis (ICA) is in image processing. A two dimensional (2-D) composite ICA algorithm framework for 2-D image independent component analysis (2-D ICA) is propo...One important application of independent component analysis (ICA) is in image processing. A two dimensional (2-D) composite ICA algorithm framework for 2-D image independent component analysis (2-D ICA) is proposed. The 2-D nature of the algorithm provides it an advantage of circumventing the roundabout transforming procedures between two dimensional (2-D) image deta and one-dimensional (l-D) signal. Moreover the combination of the Newton (fixed-point algorithm) and natural gradient algorithms in this composite algorithm increases its efficiency and robustness. The convincing results of a successful example in functional magnetic resonance imaging (fMRI) show the potential application of composite 2-D ICA in the brain activity detection.展开更多
It is an important precondition for machine fault diagnosis that vibrationsignal can be extracted effectively. Based on the characteristic of noise interfused during thecourse of sampling vibration signal, independent...It is an important precondition for machine fault diagnosis that vibrationsignal can be extracted effectively. Based on the characteristic of noise interfused during thecourse of sampling vibration signal, independent component analysis (ICA) method is combined withwavelet to de-noise. Firstly, The sampled signal can be separated with ICA, then the function offrequency band chosen with multi-resolution wavelet transform can be used to judge whether thestochastic disturbance singular signal is interfused. By these ways, the vibration signals can beextracted effectively, which provides favorable condition for subsequent feature detection ofvibration signal and fault diagnosis.展开更多
A small target detection approach based on independent component analysis for hyperspectral data is put forward. In this algorithm, firstly the fast independent component analysis(FICA) is used to collect target infor...A small target detection approach based on independent component analysis for hyperspectral data is put forward. In this algorithm, firstly the fast independent component analysis(FICA) is used to collect target information hided in high-dimensional data and projects them into low-dimensional space.Secondly, the feature images are selected with kurtosis .At last, small targets are extracted with histogram image segmentation which has been labeled by skewness.展开更多
Speech signals in frequency domain were separated based on discrete wavelet transform (DWT) and independent component analysis (ICA). First, mixed speech signals were decomposed into different frequency domains by DWT...Speech signals in frequency domain were separated based on discrete wavelet transform (DWT) and independent component analysis (ICA). First, mixed speech signals were decomposed into different frequency domains by DWT and the subbands of speech signals were separated using ICA in each wavelet domain; then, the permutation and scaling problems of frequency domain blind source separation (BSS) were solved by utilizing the correlation between adjacent bins in speech signals; at last, source signals were reconstructed from single branches. Experiments were carried out with 2 sources and 6 microphones using speech signals at sampling rate of 40 kHz. The microphones were aligned with 2 sources in front of them, on the left and right. The separation of one male and one female speeches lasted 2.5 s. It is proved that the new method is better than single ICA method and the signal to noise ratio is improved by 1 dB approximately.展开更多
Conventional process monitoring method based on fast independent component analysis(Fast ICA) cannot take the ubiquitous measurement noises into account and may exhibit degraded monitoring performance under the advers...Conventional process monitoring method based on fast independent component analysis(Fast ICA) cannot take the ubiquitous measurement noises into account and may exhibit degraded monitoring performance under the adverse effects of the measurement noises. In this paper, a new process monitoring approach based on noisy time structure ICA(Noisy TSICA) is proposed to solve such problem. A Noisy TSICA algorithm which can consider the measurement noises explicitly is firstly developed to estimate the mixing matrix and extract the independent components(ICs). Subsequently, a monitoring statistic is built to detect process faults on the basis of the recursive kurtosis estimations of the dominant ICs. Lastly, a contribution plot for the monitoring statistic is constructed to identify the fault variables based on the sensitivity analysis. Simulation studies on the continuous stirred tank reactor system demonstrate that the proposed Noisy TSICA-based monitoring method outperforms the conventional Fast ICA-based monitoring method.展开更多
Kernel independent component analysis(KICA) is a newly emerging nonlinear process monitoring method,which can extract mutually independent latent variables called independent components(ICs) from process variables. Ho...Kernel independent component analysis(KICA) is a newly emerging nonlinear process monitoring method,which can extract mutually independent latent variables called independent components(ICs) from process variables. However, when more than one IC have Gaussian distribution, it cannot extract the IC feature effectively and thus its monitoring performance will be degraded drastically. To solve such a problem, a kernel time structure independent component analysis(KTSICA) method is proposed for monitoring nonlinear process in this paper. The original process data are mapped into a feature space nonlinearly and then the whitened data are calculated in the feature space by the kernel trick. Subsequently, a time structure independent component analysis algorithm, which has no requirement for the distribution of ICs, is proposed to extract the IC feature.Finally, two monitoring statistics are built to detect process faults. When some fault is detected, a nonlinear fault identification method is developed to identify fault variables based on sensitivity analysis. The proposed monitoring method is applied in the Tennessee Eastman benchmark process. Applications demonstrate the superiority of KTSICA over KICA.展开更多
Although cerebral neuroplasticity following amputation has been observed, little is understood about how network-level functional reorganization occurs in the brain following upper-limb amputation. The objective of th...Although cerebral neuroplasticity following amputation has been observed, little is understood about how network-level functional reorganization occurs in the brain following upper-limb amputation. The objective of this study was to analyze alterations in brain network functional connectivity(FC) in upper-limb amputees(ULAs). This observational study included 40 ULAs and 40 healthy control subjects;all participants underwent resting-state functional magnetic resonance imaging. Changes in intra-and inter-network FC in ULAs were quantified using independent component analysis and brain network FC analysis. We also analyzed the correlation between FC and clinical manifestations, such as pain. We identified 11 independent components using independent component analysis from all subjects. In ULAs, intra-network FC was decreased in the left precuneus(precuneus gyrus) within the dorsal attention network and left precentral(precentral gyrus) within the auditory network;but increased in the left Parietal_Inf(inferior parietal, but supramarginal and angular gyri) within the ventral sensorimotor network, right Cerebelum_Crus2(crus Ⅱ of cerebellum) and left Temporal_Mid(middle temporal gyrus) within the ventral attention network, and left Rolandic_Oper(rolandic operculum) within the auditory network. ULAs also showed decreased inter-network FCs between the dorsal sensorimotor network and ventral sensorimotor network, the dorsal sensorimotor network and right frontoparietal network, and the dorsal sensorimotor network and dorsal attention network. Correlation analyses revealed negative correlations between inter-network FC changes and residual limb pain and phantom limb pain scores, but positive correlations between inter-network FC changes and daily activity hours of stump limb. These results show that post-amputation plasticity in ULAs is not restricted to local remapping;rather, it also occurs at a network level across several cortical regions. This observation provides additional insights into the plasticity of brain networks after upper-limb amputation, and could contribute to identification of the mechanisms underlying post-amputation pain.展开更多
Subspace modeling plays an important role in face recognition. Independent Component Analysis (ICA), a multivariable statistical analysis technique, can be seen as an extension of traditional Principal Com- ponent A...Subspace modeling plays an important role in face recognition. Independent Component Analysis (ICA), a multivariable statistical analysis technique, can be seen as an extension of traditional Principal Com- ponent Analysis (PCA) technique, which addresses high order statistics as well as second order statistics. In this paper, a new scheme of subspace-based representation called Discriminant Independent Component Analysis (DICA) is proposed, which combines the strength" of unsupervised learning of ICA and supcrvised learning of Linear Discriminant Analysis (LDA), and efficiently enhances the generalization ability of ICA-based representation method. Based on DICA subspace analysis, a set of optimal vectors called "discriminant independent faces" are learned from face samples. The effectiveness of our method is demonstrated by performance comparisons with some popular methods such as ICA, PCA, and PCA+LDA. On the large scale database of IIS, significant improvements are observed when there are fewer training samples per person available.展开更多
A new method was developed for batch process monitoring in this paper. In the devdopad method, just-in-time learning ( JITL ) and independent component analysis (ICA) were integrated to build JITL-ICA monitoring s...A new method was developed for batch process monitoring in this paper. In the devdopad method, just-in-time learning ( JITL ) and independent component analysis (ICA) were integrated to build JITL-ICA monitoring scheme. JITL was employed to tackle with the characteristics of batch process such as inherent time- varying dynamics, multiple operating phases, and especially the case of uneven length stage. According to new coming test data, the most correlated segmentation was obtained from batch-wise unfolded training data by JITL. Then, ICA served as the principal components extraction approach. Therefore, the non.Gaussian distributed data can also be addressed under this modeling framework. The effectiveness and superiority of JITL-ICA based monitoring method was demonstrated by fed-batch penicillin fermentation.展开更多
Independent component analysis (ICA) is the primary statistical method for solving the problems of blind source separation. The fast ICA is a famous and excellent algorithm and its contrast function is optimized by ...Independent component analysis (ICA) is the primary statistical method for solving the problems of blind source separation. The fast ICA is a famous and excellent algorithm and its contrast function is optimized by the quadratic convergence of Newton iteration method. In order to improve the convergence speed and the separation precision of the fast ICA, an improved fast ICA algorithm is presented. The algorithm introduces an efficient Newton's iterative method with fifth-order convergence for optimizing the contrast function and gives the detail derivation process and the corresponding condition. The experimental results demonstrate that the convergence speed and the separation precision of the improved algorithm are better than that of the fast ICA.展开更多
基金Supported by the National Scientific Research Fund of China(No.31201133)
文摘The estimation of oil spill coverage is an important part of monitoring of oil spills at sea.The spatial resolution of images collected by airborne hyper-spectral remote sensing limits both the detection of oil spills and the accuracy of estimates of their size.We consider at-sea oil spills with zonal distribution in this paper and improve the traditional independent component analysis algorithm.For each independent component we added two constraint conditions:non-negativity and constant sum.We use priority weighting by higher-order statistics,and then the spectral angle match method to overcome the order nondeterminacy.By these steps,endmembers can be extracted and abundance quantified simultaneously.To examine the coverage of a real oil spill and correct our estimate,a simulation experiment and a real experiment were designed using the algorithm described above.The result indicated that,for the simulation data,the abundance estimation error is 2.52% and minimum root mean square error of the reconstructed image is 0.030 6.We estimated the oil spill rate and area based on eight hyper-spectral remote sensing images collected by an airborne survey of Shandong Changdao in 2011.The total oil spill area was 0.224 km^2,and the oil spill rate was 22.89%.The method we demonstrate in this paper can be used for the automatic monitoring of oil spill coverage rates.It also allows the accurate estimation of the oil spill area.
基金supported by National Natural Science Foundation of China (Grant No. 50975192)Tianjin Municipal Natural Science Foundation of China (Grant No. 10YFJZJC14100)
文摘Vibration signals from diesel engine contain many different components mainly caused by combustion and mechanism operations,several blind source separation techniques are available for decomposing the signal into its components in the case of multichannel measurements,such as independent component analysis(ICA).However,the source separation of vibration signal from single-channel is impossible.In order to study the source separation from single-channel signal for the purpose of source extraction,the combination method of empirical mode decomposition(EMD) and ICA is proposed in diesel engine signal processing.The performance of the described methods of EMD-wavelet and EMD-ICA in vibration signal application is compared,and the results show that EMD-ICA method outperforms the other,and overcomes the drawback of ICA in the case of single-channel measurement.The independent source signal components can be separated and identified effectively from one-channel measurement by EMD-ICA.Hence,EMD-ICA improves the extraction and identification abilities of source signals from diesel engine vibration measurements.
基金Project(217/s/458)supported by Azarbaijan Shahid Madani University,Iran
文摘A statistical signal processing technique was proposed and verified as independent component analysis(ICA) for fault detection and diagnosis of industrial systems without exact and detailed model.Actually,the aim is to utilize system as a black box.The system studied is condenser system of one of MAPNA's power plants.At first,principal component analysis(PCA) approach was applied to reduce the dimensionality of the real acquired data set and to identify the essential and useful ones.Then,the fault sources were diagnosed by ICA technique.The results show that ICA approach is valid and effective for faults detection and diagnosis even in noisy states,and it can distinguish main factors of abnormality among many diverse parts of a power plant's condenser system.This selectivity problem is left unsolved in many plants,because the main factors often become unnoticed by fault expansion through other parts of the plants.
基金Project (No. 50575203) supported by the National Natural ScienceFoundation of China
文摘Independent component analysis was applied to analyze the acoustic signals from diesel engine. First the basic prin-ciple of independent component analysis (ICA) was reviewed. Diesel engine acoustic signal was decomposed into several inde-pendent components (ICs); Fourier transform and continuous wavelet transform (CWT) were applied to analyze the independent components. Different noise sources of the diesel engine were separated, based on the characteristics of different component in time-frequency domain.
基金supported by the National Science and Technology,China(Grant No.2012BAJ15B04)the National Natural Science Foundation of China(Grant Nos.41071270 and 61473213)+3 种基金the Natural Science Foundation of Hubei Province,China(Grant No.2015CFB424)the State Key Laboratory Foundation of Satellite Ocean Environment Dynamics,China(Grant No.SOED1405)the Hubei Provincial Key Laboratory Foundation of Metallurgical Industry Process System Science,China(Grant No.Z201303)the Hubei Key Laboratory Foundation of Transportation Internet of Things,Wuhan University of Technology,China(Grant No.2015III015-B02)
文摘In this paper, a new method to reduce noises within chaotic signals based on ICA (independent component analysis) and EMD (empirical mode decomposition) is proposed. The basic idea is decomposing chaotic signals and constructing multidimensional input vectors, firstly, on the base of EMD and its translation invariance. Secondly, it makes the indepen- dent component analysis on the input vectors, which means that a self adapting denoising is carried out for the intrinsic mode functions (IMFs) of chaotic signals. Finally, all IMFs compose the new denoised chaotic signal. Experiments on the Lorenz chaotic signal composed of different Gaussian noises and the monthly observed chaotic sequence on sunspots were put into practice. The results proved that the method proposed in this paper is effective in denoising of chaotic signals. Moreover, it can correct the center point in the phase space effectively, which makes it approach the real track of the chaotic attractor.
文摘Dissolved organic matter (DOM) can be originated from autochthonous or allochthonous sources, where allochthonous DOM can be from pedogenic sources (humic substances—HSs) or anthropogenicsources (wastewater). The analysis of fluorescence emission, excitation, synchronous or excitation-emission matrix (EEM) have been used to identify the main source or probable contribution of dissolved compounds, such as humic acids (HA), fulvic acids (FA) and dissolved organic carbon (DOC) from sewage, but does not quantify. Fluorescence emission is a powerful technique to detect and qualify organic dissolved compounds but fails in quantitative aspects. In this work, we propose an in situ method for direct determination of DOC using synchronous fluorescence spectra with independent component analysis (ICA). Well known standard solutions were used for method development and validation. In this work, we show that it is possible to predict the number of independent contributions using an unsupervised method based on iterative Principal Component Analysis and Independent Component Analysis (PCA-ICA) approach over combined matrix results. Within these results it’s also possible to see that with a very small amount of independent components it is possible to describe environmental samples of HA, FA and primary productivity (PP).
基金supported by a grant from the national High Technology Research and development Program of China(863 Program)(No.2012AA01A502)National Natural Science Foundation of China(No.61179006)Science and Technology Support Program of Sichuan Province(No.2014GZX0004)
文摘To overcome the inter-carrier interference (ICI) of orthogonal frequency division multiplexing (OFDM) systems subject to unknown carrier frequency offset (CFO) and multipath, this paper develops a blind adaptive interference suppression scheme based on independent component analysis (ICA). Taking into account statistical independence of subcarriers' signals of OFDM, the signal recovery mechanism is investigated to achieve the goal of blind equalization. The received OFDM signals can be considered as the mixed observation signals. The effect of CFO and multipath corresponds to the mixing matrix in the problem of blind source separation (BSS) framework. In this paper, the ICA- based OFDM system model is built, and the proposed ICA-based detector is exploited to extract source signals from the observation of a received mixture based on the assumption of statistical independence between the sources. The blind separation technique can increase spectral efficiency and provide robustness performance against erroneous parameter estimation problem. Theoretical analysis and simulation results show that compared with the conventional pilot-based scheme, the improved performance of OFDM systems is obtained by the proposed ICA-based detection technique.
文摘Functional magnetic resonance imaging (fMRI) has been used to lateralize and localize lan-guage areas for pre-operative planning pur-poses. To identify the essential language areas from this kind of observation method, we pro-pose an analysis strategy to combine fMRI data from two different tasks using probabilistic in-dependent component analysis (PICA). The assumption is that the independent compo-nents separated by PICA identify the networks activated by both tasks. The results from a study of twelve normal subjects showed that a language-specific component was consistently identified, with the participating networks sepa-rated into different components. Compared with a model-based method, PICA’s ability to capture the neural networks whose temporal activity may deviate from the task timing suggests that PICA may be more appropriate for analyzing language fMRI data with complex event-related paradigms, and may be particularly helpful for patient studies. This proposed strategy has the potential to improve the correlation between fMRI and invasive techniques which can dem-onstrate essential areas and which remain the clinical gold standard.
基金supported by the National Natural Science Foundation of China under Grant No.60672184
文摘The vibration signals of an aeroengine are a very important information source for fault diagnosis and condition monitoring. Considering the nonstationarity and low repeatability of the vibration signals, it is necessary to find a corresponding method for feature extraction and fault recognition. In this paper, based on Independent Component Analysis (ICA) and the Discrete Hidden Markov Model (DHMM), a new fault diagnosis approach named ICA-DHMM is proposed. In this method, ICA separates the source signals from the mixed vibration signals and then extracts features from them, DHMM works as a classifier to recognize the conditions of the aeroengine. Compared with the DHMM, which use the amplitude spectrum of mixed signals as feature parameters, experimental results show this method has higher diagnosis accuracy.
基金The National Natural Science Foundation ofChina(No60504033)
文摘A novel nonlinear combination process monitoring method was proposed based on techniques with memo- ry effect (multivariate exponentially weighted moving average (MEWMA)) and kernel independent component analysis (KICA). The method was developed for dealing with nonlinear issues and detecting small or moderate drifts in one or more process variables with autocorrelation. MEWMA charts use additional information from the past history of the process for keeping the memory effect of the process behavior trend. KICA is a recently devel- oped statistical technique for revealing hidden, nonlinear statistically independent factors that underlie sets of mea- surements and it is a two-phase algorithm., whitened kernel principal component analysis (KPCA) plus indepen- dent component analysis (ICA). The application to the fluid catalytic cracking unit (FCCU) simulated process in- dicates that the proposed combined method based on MEWMA and KICA can effectively capture the nonlinear rela- tionship and detect small drifts in process variables. Its performance significantly outperforms monitoring method based on ICA, MEWMA-ICA and KICA, especially for lonu-term performance deterioration.
基金Supported by the 973 Project (No.2003CB716106), NSFC (No.90208003, 30200059), TRAPOYT, Doctor Training Fund of MOE, PRC, Key Research Project of Science and Technology of MOE, Fok Ying Tong Education Foundation (No.91041)
文摘One important application of independent component analysis (ICA) is in image processing. A two dimensional (2-D) composite ICA algorithm framework for 2-D image independent component analysis (2-D ICA) is proposed. The 2-D nature of the algorithm provides it an advantage of circumventing the roundabout transforming procedures between two dimensional (2-D) image deta and one-dimensional (l-D) signal. Moreover the combination of the Newton (fixed-point algorithm) and natural gradient algorithms in this composite algorithm increases its efficiency and robustness. The convincing results of a successful example in functional magnetic resonance imaging (fMRI) show the potential application of composite 2-D ICA in the brain activity detection.
基金This project is supported by National Natural Science Foundation of China (No.50275154) Municipal Natural Science Foundation of Chongqing, China (No.8773).
文摘It is an important precondition for machine fault diagnosis that vibrationsignal can be extracted effectively. Based on the characteristic of noise interfused during thecourse of sampling vibration signal, independent component analysis (ICA) method is combined withwavelet to de-noise. Firstly, The sampled signal can be separated with ICA, then the function offrequency band chosen with multi-resolution wavelet transform can be used to judge whether thestochastic disturbance singular signal is interfused. By these ways, the vibration signals can beextracted effectively, which provides favorable condition for subsequent feature detection ofvibration signal and fault diagnosis.
基金Funded by the National 863 Program of China (No.2002AA783050)
文摘A small target detection approach based on independent component analysis for hyperspectral data is put forward. In this algorithm, firstly the fast independent component analysis(FICA) is used to collect target information hided in high-dimensional data and projects them into low-dimensional space.Secondly, the feature images are selected with kurtosis .At last, small targets are extracted with histogram image segmentation which has been labeled by skewness.
基金Supported by Tianjin Municipal Science and Technology Commission (No.09JCYBJC02200)
文摘Speech signals in frequency domain were separated based on discrete wavelet transform (DWT) and independent component analysis (ICA). First, mixed speech signals were decomposed into different frequency domains by DWT and the subbands of speech signals were separated using ICA in each wavelet domain; then, the permutation and scaling problems of frequency domain blind source separation (BSS) were solved by utilizing the correlation between adjacent bins in speech signals; at last, source signals were reconstructed from single branches. Experiments were carried out with 2 sources and 6 microphones using speech signals at sampling rate of 40 kHz. The microphones were aligned with 2 sources in front of them, on the left and right. The separation of one male and one female speeches lasted 2.5 s. It is proved that the new method is better than single ICA method and the signal to noise ratio is improved by 1 dB approximately.
基金Supported by the National Natural Science Foundation of China(61273160)the Natural Science Foundation of Shandong Province(ZR2011FM014)+1 种基金the Fundamental Research Funds for the Central Universities(12CX06071A)the Postgraduate Innovation Funds of China University of Petroleum(CX2013060)
文摘Conventional process monitoring method based on fast independent component analysis(Fast ICA) cannot take the ubiquitous measurement noises into account and may exhibit degraded monitoring performance under the adverse effects of the measurement noises. In this paper, a new process monitoring approach based on noisy time structure ICA(Noisy TSICA) is proposed to solve such problem. A Noisy TSICA algorithm which can consider the measurement noises explicitly is firstly developed to estimate the mixing matrix and extract the independent components(ICs). Subsequently, a monitoring statistic is built to detect process faults on the basis of the recursive kurtosis estimations of the dominant ICs. Lastly, a contribution plot for the monitoring statistic is constructed to identify the fault variables based on the sensitivity analysis. Simulation studies on the continuous stirred tank reactor system demonstrate that the proposed Noisy TSICA-based monitoring method outperforms the conventional Fast ICA-based monitoring method.
基金Supported by the National Natural Science Foundation of China(61273160)the Natural Science Foundation of Shandong Province of China(ZR2011FM014)+1 种基金the Doctoral Fund of Shandong Province(BS2012ZZ011)the Postgraduate Innovation Funds of China University of Petroleum(CX2013060)
文摘Kernel independent component analysis(KICA) is a newly emerging nonlinear process monitoring method,which can extract mutually independent latent variables called independent components(ICs) from process variables. However, when more than one IC have Gaussian distribution, it cannot extract the IC feature effectively and thus its monitoring performance will be degraded drastically. To solve such a problem, a kernel time structure independent component analysis(KTSICA) method is proposed for monitoring nonlinear process in this paper. The original process data are mapped into a feature space nonlinearly and then the whitened data are calculated in the feature space by the kernel trick. Subsequently, a time structure independent component analysis algorithm, which has no requirement for the distribution of ICs, is proposed to extract the IC feature.Finally, two monitoring statistics are built to detect process faults. When some fault is detected, a nonlinear fault identification method is developed to identify fault variables based on sensitivity analysis. The proposed monitoring method is applied in the Tennessee Eastman benchmark process. Applications demonstrate the superiority of KTSICA over KICA.
基金supported by the National Natural Science Foundation of China, No.81974331(to XYZ)Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant, No.20161429(to XYZ)
文摘Although cerebral neuroplasticity following amputation has been observed, little is understood about how network-level functional reorganization occurs in the brain following upper-limb amputation. The objective of this study was to analyze alterations in brain network functional connectivity(FC) in upper-limb amputees(ULAs). This observational study included 40 ULAs and 40 healthy control subjects;all participants underwent resting-state functional magnetic resonance imaging. Changes in intra-and inter-network FC in ULAs were quantified using independent component analysis and brain network FC analysis. We also analyzed the correlation between FC and clinical manifestations, such as pain. We identified 11 independent components using independent component analysis from all subjects. In ULAs, intra-network FC was decreased in the left precuneus(precuneus gyrus) within the dorsal attention network and left precentral(precentral gyrus) within the auditory network;but increased in the left Parietal_Inf(inferior parietal, but supramarginal and angular gyri) within the ventral sensorimotor network, right Cerebelum_Crus2(crus Ⅱ of cerebellum) and left Temporal_Mid(middle temporal gyrus) within the ventral attention network, and left Rolandic_Oper(rolandic operculum) within the auditory network. ULAs also showed decreased inter-network FCs between the dorsal sensorimotor network and ventral sensorimotor network, the dorsal sensorimotor network and right frontoparietal network, and the dorsal sensorimotor network and dorsal attention network. Correlation analyses revealed negative correlations between inter-network FC changes and residual limb pain and phantom limb pain scores, but positive correlations between inter-network FC changes and daily activity hours of stump limb. These results show that post-amputation plasticity in ULAs is not restricted to local remapping;rather, it also occurs at a network level across several cortical regions. This observation provides additional insights into the plasticity of brain networks after upper-limb amputation, and could contribute to identification of the mechanisms underlying post-amputation pain.
基金Supported by the Key Project of the National Natural Science Foundation of China(No.90104030)the National Natural Science Foundation of China(No.60401015)
文摘Subspace modeling plays an important role in face recognition. Independent Component Analysis (ICA), a multivariable statistical analysis technique, can be seen as an extension of traditional Principal Com- ponent Analysis (PCA) technique, which addresses high order statistics as well as second order statistics. In this paper, a new scheme of subspace-based representation called Discriminant Independent Component Analysis (DICA) is proposed, which combines the strength" of unsupervised learning of ICA and supcrvised learning of Linear Discriminant Analysis (LDA), and efficiently enhances the generalization ability of ICA-based representation method. Based on DICA subspace analysis, a set of optimal vectors called "discriminant independent faces" are learned from face samples. The effectiveness of our method is demonstrated by performance comparisons with some popular methods such as ICA, PCA, and PCA+LDA. On the large scale database of IIS, significant improvements are observed when there are fewer training samples per person available.
基金National Natural Science Foundations of China(Nos.61403256,61374132)Special Scientific Research of Selection and Cultivation of Excellent Young Teachers in Shanghai Universities,China(No.YYY11076)
文摘A new method was developed for batch process monitoring in this paper. In the devdopad method, just-in-time learning ( JITL ) and independent component analysis (ICA) were integrated to build JITL-ICA monitoring scheme. JITL was employed to tackle with the characteristics of batch process such as inherent time- varying dynamics, multiple operating phases, and especially the case of uneven length stage. According to new coming test data, the most correlated segmentation was obtained from batch-wise unfolded training data by JITL. Then, ICA served as the principal components extraction approach. Therefore, the non.Gaussian distributed data can also be addressed under this modeling framework. The effectiveness and superiority of JITL-ICA based monitoring method was demonstrated by fed-batch penicillin fermentation.
文摘Independent component analysis (ICA) is the primary statistical method for solving the problems of blind source separation. The fast ICA is a famous and excellent algorithm and its contrast function is optimized by the quadratic convergence of Newton iteration method. In order to improve the convergence speed and the separation precision of the fast ICA, an improved fast ICA algorithm is presented. The algorithm introduces an efficient Newton's iterative method with fifth-order convergence for optimizing the contrast function and gives the detail derivation process and the corresponding condition. The experimental results demonstrate that the convergence speed and the separation precision of the improved algorithm are better than that of the fast ICA.