To improve the suspension performance and steering stability of light vehicles, we built a kinematic simulation model of a whole independent double-wishbone suspension system by using ADAMS software, created random ex...To improve the suspension performance and steering stability of light vehicles, we built a kinematic simulation model of a whole independent double-wishbone suspension system by using ADAMS software, created random excitations of the test platforms of respectively the left and the right wheels according to actual running conditions of a vehicle, and explored the changing patterns of the kinematic characteristic parameters in the process of suspension motion. The irrationality of the suspension guiding mechanism design was pointed out through simulation and analysis, and the existent problems of the guiding mechanism were optimized and calculated. The results show that all the front-wheel alignment parameters, including the camber, the toe, the caster and the inclination, only slightly change within corresponding allowable ranges in design before and after optimization. The optimization reduces the variation of the wheel-center distance from 47.01 mm to a change of 8.28 mm within the allowable range of ?10 mm to 10 mm, promising an improvement of the vehicle steering stability. The optimization also confines the front-wheel sideways slippage to a much smaller change of 2.23 mm; this helps to greatly reduce the wear of tires and assure the straight running stability of the vehicle.展开更多
为更好地研究方程式赛车的操纵稳定性,基于机械系统动力学仿真软件ADAMS对某大学的大学生方程式赛车(Formula SAE racing car)的前悬架系统建立仿真模型,并进行运动学仿真分析,得到车轮在跳动时主销内倾角、主销后倾角、车轮外倾角和前...为更好地研究方程式赛车的操纵稳定性,基于机械系统动力学仿真软件ADAMS对某大学的大学生方程式赛车(Formula SAE racing car)的前悬架系统建立仿真模型,并进行运动学仿真分析,得到车轮在跳动时主销内倾角、主销后倾角、车轮外倾角和前轮前束4项参数的变化曲线,分析各参数变化对赛车操纵稳定性的影响,利用ADAMS/Insight模块对悬架的硬点位置进行多目标优化.结果表明,前悬架系统的运动特性得到有效提升,满足设计要求,该研究对于赛车的悬架设计具有一定的指导意义.展开更多
基金the Postdoctoral Science Foundation of China (No. 2004036396)the Foundation of 985- Automotive Engineering of Jilin University
文摘To improve the suspension performance and steering stability of light vehicles, we built a kinematic simulation model of a whole independent double-wishbone suspension system by using ADAMS software, created random excitations of the test platforms of respectively the left and the right wheels according to actual running conditions of a vehicle, and explored the changing patterns of the kinematic characteristic parameters in the process of suspension motion. The irrationality of the suspension guiding mechanism design was pointed out through simulation and analysis, and the existent problems of the guiding mechanism were optimized and calculated. The results show that all the front-wheel alignment parameters, including the camber, the toe, the caster and the inclination, only slightly change within corresponding allowable ranges in design before and after optimization. The optimization reduces the variation of the wheel-center distance from 47.01 mm to a change of 8.28 mm within the allowable range of ?10 mm to 10 mm, promising an improvement of the vehicle steering stability. The optimization also confines the front-wheel sideways slippage to a much smaller change of 2.23 mm; this helps to greatly reduce the wear of tires and assure the straight running stability of the vehicle.
文摘对比常见的4种独立悬架的运动学特性,研究独立悬架的运动学优化目标,设定对比分析的条件.使用Pro/Engineer进行仿真并优化这4种悬架的运动学特性.对比研究表明:双横臂式、四连杆式和五连杆式悬架的运动学特性相近且略优于麦弗逊式.实验表明,车轮行程不大于250 mm的普通轻型汽车悬架应满足车轮外倾角变化量小于1°,车轮前束角变化量小于0.1°,车轮侧滑量小于13 mm.
文摘为更好地研究方程式赛车的操纵稳定性,基于机械系统动力学仿真软件ADAMS对某大学的大学生方程式赛车(Formula SAE racing car)的前悬架系统建立仿真模型,并进行运动学仿真分析,得到车轮在跳动时主销内倾角、主销后倾角、车轮外倾角和前轮前束4项参数的变化曲线,分析各参数变化对赛车操纵稳定性的影响,利用ADAMS/Insight模块对悬架的硬点位置进行多目标优化.结果表明,前悬架系统的运动特性得到有效提升,满足设计要求,该研究对于赛车的悬架设计具有一定的指导意义.