期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Effect of Individualized Exercise Therapy on Cancer-related Fatigue and Negative Emotion in Patients with Gastrointestinal Tumor during Perioperative Period
1
作者 Danyang HU Xian DU Yan YANG 《Medicinal Plant》 2024年第4期83-85,91,共4页
[Objectives]To investigate the effect of exercise therapy in gastric cancer patients during perioperative period.[Methods]100 patients with gastric cancer who underwent elective operation in the Department of Gastroin... [Objectives]To investigate the effect of exercise therapy in gastric cancer patients during perioperative period.[Methods]100 patients with gastric cancer who underwent elective operation in the Department of Gastrointestinal Surgery of Taihe Hospital Affiliated to Hubei University of Medicine were divided into observation group and control group by convenience sampling.The control group received routine nursing measures,and the experimental group received exercise therapy intervention measures on the basis of the control group.The patients were evaluated by the General Information Questionnaire,Self-Rating Anxiety Scale,Self-Rating Depression Scale and Cancer-related Fatigue Scale at the time of admission,the second week and the sixth week after operation.[Results]The time effect,intervention effect and interaction effect of anxiety score,depression score and cancer-related fatigue score were significant(all P<0.05)and the index of enhanced recovery after surgery was significant(P<0.05)in the two groups at the second and sixth week after operation.[Conclusions]Exercise therapy is beneficial to promoting the enhanced recovery after surgery in advance,reduce cancer-related fatigue,negative emotion and accelerate rehabilitation in patients with gastrointestinal tumors. 展开更多
关键词 Gastrointestinal tumor Exercise therapy ANXIETY DEPRESSION index of enhanced recovery after surgery Cancer-related fatigue
下载PDF
Resilience indices from a family of recovery functions 被引量:1
2
作者 Loon Ching Tang Lijuan Shen 《Fundamental Research》 CAS CSCD 2024年第1期13-20,共8页
Defining and measuring resilience using a unified framework has been a topic of intense research.This article presents a perspective on how resilience could be quantitatively assessed through a set of indices.It start... Defining and measuring resilience using a unified framework has been a topic of intense research.This article presents a perspective on how resilience could be quantitatively assessed through a set of indices.It starts with a brief explanation of resilience in the context of supply chain and a quick summary of existing quantitative measures of resilience.It then discusses how resilience could be quantified in a constructive manner so that the resulting metrics are representative of the performance throughout the system's life cycle.In particular,it is proposed that resilience should be evaluated according to different time periods,i.e.before,during and after a disruption has occurred.Four dimensions of resilience,namely reliability,robustness,recovery and reconfigurability,can then be used to make up a set of indices for resilience.For numerical illustration,these indices are computed based on recovery data arising from Hurricane Sandy in October 2012.Finally,it is postulated that resilience will be the performance metric that complements productivity and sustainability as the third pillar for measuring success of organizations,and in turn,that of sovereign countries in their quests for developing smart cities. 展开更多
关键词 Systems resilience recovery function recovery index Robustness index RECONFIGURABILITY
原文传递
Dynamic reactive power planning method for CSP-PV hybrid power generation system
3
作者 ZHANG Hong DONG Hai-ying +2 位作者 CHEN Zhao HUANG Rong DING Kun 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2020年第3期258-266,共9页
Aiming at the faults of some weak nodes in the concentrated solar power-photovoltaic(CSP-PV)hybrid power generation system,it is impossible to restore the transient voltage only relying on the reactive power regulatio... Aiming at the faults of some weak nodes in the concentrated solar power-photovoltaic(CSP-PV)hybrid power generation system,it is impossible to restore the transient voltage only relying on the reactive power regulation capability of the system itself.We propose a dynamic reactive power planning method suitable for CSP-PV hybrid power generation system.The method determines the installation node of the dynamic reactive power compensation device and its compensation capacity based on the reactive power adjustment capability of the system itself.The critical fault node is determined by the transient voltage stability recovery index,and the weak node of the system is initially determined.Based on this,the sensitivity index is used to determine the installation node of the dynamic reactive power compensation device.Dynamic reactive power planning optimization model is established with the lowest investment cost of dynamic reactive power compensation device and the improvement of system transient voltage stability.Furthermore,the component of the reactive power compensation node is optimized by particle swarm optimization based on differential evolution(DE-PSO).The simulation results of the example system show that compared with the dynamic position compensation device installation location optimization method,the proposed method can improve the transient voltage stability of the system under the same reactive power compensation cost. 展开更多
关键词 transient voltage recovery index sensitivity index dynamic reactive power planning optimization particle swarm optimization based on differential evolution(DE-PSO)
下载PDF
Integration system research and development for three-dimensional laser scanning information visualization in goaf 被引量:1
4
作者 罗周全 黄俊杰 +2 位作者 罗贞焱 汪伟 秦亚光 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第7期1985-1994,共10页
An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, clo... An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, cloud data de-noising optimization, construction, display and operation of three-dimensional model, model editing, profile generation, calculation of goaf volume and roof area, Boolean calculation among models and interaction with the third party soft ware. Concerning this system with a concise interface, plentiful data input/output interfaces, it is featured with high integration, simple and convenient operations of applications. According to practice, in addition to being well-adapted, this system is favorably reliable and stable. 展开更多
关键词 GOAF laser scanning visualization integration system 1 Introduction The goaf formed through underground mining of mineral resources is one of the main disaster sources threatening mine safety production [1 2]. Effective implementation of goaf detection and accurate acquisition of its spatial characteristics including the three-dimensional morphology the spatial position as well as the actual boundary and volume are important basis to analyze predict and control disasters caused by goaf. In recent years three-dimensional laser scanning technology has been effectively applied in goaf detection [3 4]. Large quantities of point cloud data that are acquired for goaf by means of the three-dimensional laser scanning system are processed relying on relevant engineering software to generate a three-dimensional model for goaf. Then a general modeling analysis and processing instrument are introduced to perform subsequent three-dimensional analysis and calculation [5 6]. Moreover related development is also carried out in fields such as three-dimensional detection and visualization of hazardous goaf detection and analysis of unstable failures in goaf extraction boundary acquisition in stope visualized computation of damage index aided design for pillar recovery and three-dimensional detection
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部