Iron(Fe)toxicity,generated from excess reduced ferrous Fe(Fe^(2+))ion formation within the soil under submerged condition,is a potent environmental stress that limits lowland rice production.Total 11 diverse Thai rice...Iron(Fe)toxicity,generated from excess reduced ferrous Fe(Fe^(2+))ion formation within the soil under submerged condition,is a potent environmental stress that limits lowland rice production.Total 11 diverse Thai rice genotypes,including a recognized tolerant genotype Azucena and a susceptible genotype IR64,were evaluated against 5 Fe^(2+)levels[0(control),150,300,600 and 900 mg/L]to screen the tested genotypes for their Fe-toxicity tolerance and to classify them as a sensitive/tolerant category.The evaluation was conducted by a germination study,followed by a polyhouse study on growth,yield and physiochemical performances.Results showed significant variations in Fe^(2+)-tolerance across genotypes.Increasing Fe^(2+)level beyond 300 mg/L was detrimental for germination and growth of all the tested genotypes,although germination responses were negatively affected at Fe^(2+)≥300 mg/L.Physiochemical responses in the form of leaf greenness,net photosynthetic rate,membrane stability index and Fe contents in leaf and root were the most representative of Fe^(2+)-toxicity-mediated impairments on overall growth and yield.Difference in physiochemical responses was effectively correlated with the contrasting ability of the genotypes on lowering excess Fe^(2+)in tissues.Analysis of average tolerance and stress tolerance index unveiled that the genotypes RD85 and RD31 were the closest to the tolerant check Azucena and the sensitive check IR64,respectively.The unweighted pair group method with arithmetic means clustering revealed three major clusters,with cluster Ⅱ(four genotypes)being Fe^(2+)tolerant and cluster Ⅰ(four genotypes)being Fe^(2+)sensitive.Principal component(PC)analysis and genotype by trait-biplot analysis showed that the first two components explained 90.5%of the total variation,with PC1 accounting for 56.6%and PC2 for 33.9%of the total variation.The identified tolerant rice genotypes show potentials for cultivation in Fe^(2+)-toxic lowlands for increased productivity.The findings contribute to the present understanding on Fe^(2+)-toxicity response and provide a basis for future genotype selection or rice crop improvement programs against Fe^(2+)-toxicity.展开更多
Cowpea [(Vigna unguiculata (L.)] is one of the most important arid legumes cultivated for pulse and forage production. However, in cowpea, not much is known about the base index selection method in breeding for drough...Cowpea [(Vigna unguiculata (L.)] is one of the most important arid legumes cultivated for pulse and forage production. However, in cowpea, not much is known about the base index selection method in breeding for drought tolerance. Consequently, the present study has been conducted to: 1) evaluate the yield performance of cowpea genotypes under artificial drought and well-watered condition;2) develop a base index using multiple traits for ranking genotype performance. The experiment was a 25 × 2 factorial laid out in a Randomized Complete Block Design (RCBD) with three replications. The experiment was carried out in the screen house at the Department of Horticulture at KNUST. The result showed that KPR1-96-73, Simbo, CZ06-4-16, Wilibaly and Agyenkwa were high yielding in well-water condition while Ghana Shoba, Sangaraka, NKetewade, Ghana-Shoni and Korobalen were high yielding genotypes in water stress condition. The average yield reduction was 60.6% for grain respectively. The biplot displays revealed four groups among the genotypes tested which was based on their yielding capacity and drought tolerance. In cluster B high yielding and drought tolerant genotypes were identified, high yielding and drought susceptible have been identified in cluster A, low yielding and drought tolerant in cluster D, and lastly low yielding and drought susceptible in cluster C. Genotypes in cluster B, were the best due to the fact that it combines high yield and tolerance to drought. They were Ghana Shoni, Nketewade, Sangaraka and Ghana shoba. These genotypes might be suitably employed in further drought tolerance breeding program of cowpea.展开更多
Aluminum (Al) toxicity often takes place in acidic soils with a pH of 5.5 or lower. Breeding and cultivation of Al tolerance wheat can partially protect wheat escaping from Al toxicity. The scarcity of the tolerant ...Aluminum (Al) toxicity often takes place in acidic soils with a pH of 5.5 or lower. Breeding and cultivation of Al tolerance wheat can partially protect wheat escaping from Al toxicity. The scarcity of the tolerant sources impedes the wheat breeding. In order to find new Al tolerance sources, we screened 173 bread wheat landraces from Tibet of China using hydroponic screening. It was indicated that: (1) There were diversities on the root regenerate length (RRL). The RRL of a large of landraces were longer than 7.00 cm in pH 7 (58.38%) and pH 4.5 (66.47%), but shorter than 5.00 cm in pH 4.5 +50μM Al^3+ (80.93%). The low pH showed either promotion or restraining effects depend on landraces, but Al toxicity under low pH only showed restraining effects on the root elongation. (2) There were also diversities on root tolerance index of low pH (RTI 1) or root aluminum tolerance index (RTI2) among cultivars. The RTI1 varied from a narrow range but with relatively high value (0.8722-1.2953) in comparison with that of RTI2 (0.3829-1.0058), and the RTI1 of approximately 60% landraces was higher than 1.0000, the RTI2 of only 19.07% landraces was higher than 0.7000, suggesting that Al toxicity acted as an important factor for the reduction of the root elongation under acidic soils. (3) The RTI 1 of many wheats was higher than 1.0000, and As2256 and As2295 were the most tolerant for low pH, with RTI1 1.2953 and 1.2925, respectively. (4) Based on RTI2, seven wheats showed similar or higher tolerance to Al toxicity than Chinese Spring (CS), a known tolerance wheat. Much better tolerance existed in landraces of As1543 and As1242, which can be used as the new parents for Al tolerant breeding.展开更多
AIM:To minimize the complications and mortality and improve the survival in primary liver cancer (PLC) patients undergoing hepatic resection. METHODS: We conducted a retrospective analysis of 2143 PLC patients treated...AIM:To minimize the complications and mortality and improve the survival in primary liver cancer (PLC) patients undergoing hepatic resection. METHODS: We conducted a retrospective analysis of 2143 PLC patients treated from January 1990 to January 2004. The patients were divided into two groups using January 1997 as a cut-off. Small tumor size (< 5 cm), preoperative redox tolerance index (RTI), vascular control method, and postoperative arterial ketone body ratio (AKBR) were used as indicators of surgical outcome. RESULTS: Small tumors had less complications and lower mortality and higher overall survival rate. Use of RTI for selecting patients and types of hepatectomy, reduced complications (21.1% vs 11.0%) and mortality (1.6% vs 0.3%). The half liver vascular occlusion protocol (n = 523) versus the Pringle method (n = 476) showed that the former significantly reduced the postoperative complications (25.8% vs 11.9%) and mortality (2.3% vs 0.6%) respectively, and cut mean hospital stay was 3.5 d. Postoperative AKBR was a reliable indicator of the energy status in survivors. CONCLUSION: RTI is of value in predicting hepatic functional reserve, half liver occlusion could protect the residual liver function, and AKBR measurement is a simple and accurate means of assessing the state of postoperative metabolism. Optimal perioperative management is an important factor for minimizing complications and mortality in patients undergoing hepatic resection.展开更多
The use of tolerant crop varieties is a strategy that mitigates the water deficit effect in a sustainable way.The generation of these varieties is more efficient when variables associated with this tolerance have been...The use of tolerant crop varieties is a strategy that mitigates the water deficit effect in a sustainable way.The generation of these varieties is more efficient when variables associated with this tolerance have been identified,since they can facilitate the breeding processes.This study aimed to establish the relationships between water deficit tolerance of four cotton varieties(Nevada-123,Oasis-129,Guatapuri,and Festivalle)and morphological variables(monopodial branches,boll weight,root/shoot ratio,and leaf and root dry matter),physiological variables(relative water content,net photosynthesis,stomatal conductance,electron transport rate,photochemical quenching,photochemical efficiency of PSII,chlorophyll a/b ratio(Chl a/b),C^(12)/C^(13)isotope ratio,and electrolyte leakage),and biochemical variables(contents of sugars,proline,carotenoids,and malondialdehyde).Furthermore,calibrated predictive models of the drought tolerance indices were developed based on the key variables identified.For this purpose,a pot experiment was established where plants were subjected to a moderate or severe water deficit during the blooming stage for 12 days.The stress tolerance index(STI)and mean productivity(MP)were calculated.For the evaluated variables,the differences between well-watered and water deficit plants(Δ)were calculated and ANOVA,partial least squares,Pearson’s correlation,and multiple linear regression analyzes were performed.A model was generated that explained 95% of the STI and was composed of Δmalondialdehyde,Δproline,and Δboll weight.For MP,the model was comprised of Δstomatal conductance,Δroot/shoot ratio,and ΔChl a/b,and explained 89% of the MP.The analysis of the assessed variables allowed the identification of key variables and the development of calibrated predictive models that can be used in screening to obtain cotton varieties with different levels of water deficit tolerance.展开更多
Jerusalem artichoke(Helianthus tuberosus L.) not just can be used for bioethanol production but may be potentially used in phytoremediation for the removal of heavy metal pollutants.Two Jerusalem artichoke cultivars,N...Jerusalem artichoke(Helianthus tuberosus L.) not just can be used for bioethanol production but may be potentially used in phytoremediation for the removal of heavy metal pollutants.Two Jerusalem artichoke cultivars,N2 and N5,were subjected to six cadmium(Cd) concentrations(0,5,25,50,100 and 200 mg L1) to investigate Cd tolerance and accumulation.After 21 days of growth,the effects of Cd on growth,chlorophyll content,net photosynthetic rate,intercellular CO2 concentration and malondialdehyde content were evaluated.Most growth parameters were reduced under Cd stress.The two Jerusalem artichoke cultivars had relatively high Cd tolerance and accumulation capacity(> 100 mg kg1),with N5 being more tolerant and having higher Cd accumulation than N2.Roots accumulated more Cd than stems and leaves.The bioconcentration factors(far higher than 1) and translocation factors(lower than 1) decreased with an increase in Cd applied.The results suggested that Jerusalem artichoke could be grown at relatively high Cd loads,and N5 could be an excellent candidate for phytoremediation of Cd-contaminated soils.展开更多
基金the National Science and Technology Development Agency,Thailand(Grant No.P-18-51456)。
文摘Iron(Fe)toxicity,generated from excess reduced ferrous Fe(Fe^(2+))ion formation within the soil under submerged condition,is a potent environmental stress that limits lowland rice production.Total 11 diverse Thai rice genotypes,including a recognized tolerant genotype Azucena and a susceptible genotype IR64,were evaluated against 5 Fe^(2+)levels[0(control),150,300,600 and 900 mg/L]to screen the tested genotypes for their Fe-toxicity tolerance and to classify them as a sensitive/tolerant category.The evaluation was conducted by a germination study,followed by a polyhouse study on growth,yield and physiochemical performances.Results showed significant variations in Fe^(2+)-tolerance across genotypes.Increasing Fe^(2+)level beyond 300 mg/L was detrimental for germination and growth of all the tested genotypes,although germination responses were negatively affected at Fe^(2+)≥300 mg/L.Physiochemical responses in the form of leaf greenness,net photosynthetic rate,membrane stability index and Fe contents in leaf and root were the most representative of Fe^(2+)-toxicity-mediated impairments on overall growth and yield.Difference in physiochemical responses was effectively correlated with the contrasting ability of the genotypes on lowering excess Fe^(2+)in tissues.Analysis of average tolerance and stress tolerance index unveiled that the genotypes RD85 and RD31 were the closest to the tolerant check Azucena and the sensitive check IR64,respectively.The unweighted pair group method with arithmetic means clustering revealed three major clusters,with cluster Ⅱ(four genotypes)being Fe^(2+)tolerant and cluster Ⅰ(four genotypes)being Fe^(2+)sensitive.Principal component(PC)analysis and genotype by trait-biplot analysis showed that the first two components explained 90.5%of the total variation,with PC1 accounting for 56.6%and PC2 for 33.9%of the total variation.The identified tolerant rice genotypes show potentials for cultivation in Fe^(2+)-toxic lowlands for increased productivity.The findings contribute to the present understanding on Fe^(2+)-toxicity response and provide a basis for future genotype selection or rice crop improvement programs against Fe^(2+)-toxicity.
文摘Cowpea [(Vigna unguiculata (L.)] is one of the most important arid legumes cultivated for pulse and forage production. However, in cowpea, not much is known about the base index selection method in breeding for drought tolerance. Consequently, the present study has been conducted to: 1) evaluate the yield performance of cowpea genotypes under artificial drought and well-watered condition;2) develop a base index using multiple traits for ranking genotype performance. The experiment was a 25 × 2 factorial laid out in a Randomized Complete Block Design (RCBD) with three replications. The experiment was carried out in the screen house at the Department of Horticulture at KNUST. The result showed that KPR1-96-73, Simbo, CZ06-4-16, Wilibaly and Agyenkwa were high yielding in well-water condition while Ghana Shoba, Sangaraka, NKetewade, Ghana-Shoni and Korobalen were high yielding genotypes in water stress condition. The average yield reduction was 60.6% for grain respectively. The biplot displays revealed four groups among the genotypes tested which was based on their yielding capacity and drought tolerance. In cluster B high yielding and drought tolerant genotypes were identified, high yielding and drought susceptible have been identified in cluster A, low yielding and drought tolerant in cluster D, and lastly low yielding and drought susceptible in cluster C. Genotypes in cluster B, were the best due to the fact that it combines high yield and tolerance to drought. They were Ghana Shoni, Nketewade, Sangaraka and Ghana shoba. These genotypes might be suitably employed in further drought tolerance breeding program of cowpea.
基金supported by the program for the New Century Excellent Talents in University of China (NCET-06-0819)the National Natural Science Foundation of China (30671272 & 30370882)+2 种基金the Foundation for the Author of National Excellent Doctoral Dissertation of China (200458)the National High Technology Research and Development Program of China (863 Program,2006AA10Z179, 2006AA10Z1F8)the Scientific Research Fund of Sichuan Provincial Education Department, China.
文摘Aluminum (Al) toxicity often takes place in acidic soils with a pH of 5.5 or lower. Breeding and cultivation of Al tolerance wheat can partially protect wheat escaping from Al toxicity. The scarcity of the tolerant sources impedes the wheat breeding. In order to find new Al tolerance sources, we screened 173 bread wheat landraces from Tibet of China using hydroponic screening. It was indicated that: (1) There were diversities on the root regenerate length (RRL). The RRL of a large of landraces were longer than 7.00 cm in pH 7 (58.38%) and pH 4.5 (66.47%), but shorter than 5.00 cm in pH 4.5 +50μM Al^3+ (80.93%). The low pH showed either promotion or restraining effects depend on landraces, but Al toxicity under low pH only showed restraining effects on the root elongation. (2) There were also diversities on root tolerance index of low pH (RTI 1) or root aluminum tolerance index (RTI2) among cultivars. The RTI1 varied from a narrow range but with relatively high value (0.8722-1.2953) in comparison with that of RTI2 (0.3829-1.0058), and the RTI1 of approximately 60% landraces was higher than 1.0000, the RTI2 of only 19.07% landraces was higher than 0.7000, suggesting that Al toxicity acted as an important factor for the reduction of the root elongation under acidic soils. (3) The RTI 1 of many wheats was higher than 1.0000, and As2256 and As2295 were the most tolerant for low pH, with RTI1 1.2953 and 1.2925, respectively. (4) Based on RTI2, seven wheats showed similar or higher tolerance to Al toxicity than Chinese Spring (CS), a known tolerance wheat. Much better tolerance existed in landraces of As1543 and As1242, which can be used as the new parents for Al tolerant breeding.
文摘AIM:To minimize the complications and mortality and improve the survival in primary liver cancer (PLC) patients undergoing hepatic resection. METHODS: We conducted a retrospective analysis of 2143 PLC patients treated from January 1990 to January 2004. The patients were divided into two groups using January 1997 as a cut-off. Small tumor size (< 5 cm), preoperative redox tolerance index (RTI), vascular control method, and postoperative arterial ketone body ratio (AKBR) were used as indicators of surgical outcome. RESULTS: Small tumors had less complications and lower mortality and higher overall survival rate. Use of RTI for selecting patients and types of hepatectomy, reduced complications (21.1% vs 11.0%) and mortality (1.6% vs 0.3%). The half liver vascular occlusion protocol (n = 523) versus the Pringle method (n = 476) showed that the former significantly reduced the postoperative complications (25.8% vs 11.9%) and mortality (2.3% vs 0.6%) respectively, and cut mean hospital stay was 3.5 d. Postoperative AKBR was a reliable indicator of the energy status in survivors. CONCLUSION: RTI is of value in predicting hepatic functional reserve, half liver occlusion could protect the residual liver function, and AKBR measurement is a simple and accurate means of assessing the state of postoperative metabolism. Optimal perioperative management is an important factor for minimizing complications and mortality in patients undergoing hepatic resection.
基金Corporación Colombiana de Investigación Agropecuaria-AGROSAVIA,Universidad Nacional de Colombia–Bogotá,and Agriculture and Rural Development Ministry of Colombia(MADR)who funded this researchderived from the research project“New Cotton Varieties with Agroindustrial Characteristics Adapted to Different Agroclimatic Conditions in Colombia”。
文摘The use of tolerant crop varieties is a strategy that mitigates the water deficit effect in a sustainable way.The generation of these varieties is more efficient when variables associated with this tolerance have been identified,since they can facilitate the breeding processes.This study aimed to establish the relationships between water deficit tolerance of four cotton varieties(Nevada-123,Oasis-129,Guatapuri,and Festivalle)and morphological variables(monopodial branches,boll weight,root/shoot ratio,and leaf and root dry matter),physiological variables(relative water content,net photosynthesis,stomatal conductance,electron transport rate,photochemical quenching,photochemical efficiency of PSII,chlorophyll a/b ratio(Chl a/b),C^(12)/C^(13)isotope ratio,and electrolyte leakage),and biochemical variables(contents of sugars,proline,carotenoids,and malondialdehyde).Furthermore,calibrated predictive models of the drought tolerance indices were developed based on the key variables identified.For this purpose,a pot experiment was established where plants were subjected to a moderate or severe water deficit during the blooming stage for 12 days.The stress tolerance index(STI)and mean productivity(MP)were calculated.For the evaluated variables,the differences between well-watered and water deficit plants(Δ)were calculated and ANOVA,partial least squares,Pearson’s correlation,and multiple linear regression analyzes were performed.A model was generated that explained 95% of the STI and was composed of Δmalondialdehyde,Δproline,and Δboll weight.For MP,the model was comprised of Δstomatal conductance,Δroot/shoot ratio,and ΔChl a/b,and explained 89% of the MP.The analysis of the assessed variables allowed the identification of key variables and the development of calibrated predictive models that can be used in screening to obtain cotton varieties with different levels of water deficit tolerance.
基金Supported by the Program of Introducing International Advanced Agricultural Science and Technologies(948 Program) of Ministry of Agriculture of China(No.2009-Z9)the National Key Technology R&D Program of China(Nos.2009BADA3B048 and 2011BAD13B09)+3 种基金the Jiangsu Provincial Key Technology R&D Program of China(No.BE2010305)the Ph.D.Programs Foundation of Ministry of Education of China(No.20100097120016)the Special Fund for Public Welfare Technology Research of Agricultural Industry(No.200903001-5)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Jerusalem artichoke(Helianthus tuberosus L.) not just can be used for bioethanol production but may be potentially used in phytoremediation for the removal of heavy metal pollutants.Two Jerusalem artichoke cultivars,N2 and N5,were subjected to six cadmium(Cd) concentrations(0,5,25,50,100 and 200 mg L1) to investigate Cd tolerance and accumulation.After 21 days of growth,the effects of Cd on growth,chlorophyll content,net photosynthetic rate,intercellular CO2 concentration and malondialdehyde content were evaluated.Most growth parameters were reduced under Cd stress.The two Jerusalem artichoke cultivars had relatively high Cd tolerance and accumulation capacity(> 100 mg kg1),with N5 being more tolerant and having higher Cd accumulation than N2.Roots accumulated more Cd than stems and leaves.The bioconcentration factors(far higher than 1) and translocation factors(lower than 1) decreased with an increase in Cd applied.The results suggested that Jerusalem artichoke could be grown at relatively high Cd loads,and N5 could be an excellent candidate for phytoremediation of Cd-contaminated soils.