期刊文献+
共找到202篇文章
< 1 2 11 >
每页显示 20 50 100
Correlation of Rainfall Anomalies in Rwanda from September to December (SOND) with Indian Ocean Dipole (IOD) and El Nino Southern Oscillation (ENSO) Events
1
作者 Frank Rusanganwa Ling Zhang +2 位作者 Jonah Kazora Joseph Ndakize Sebaziga Samuel Ekwacu 《Journal of Geoscience and Environment Protection》 2024年第6期115-134,共20页
Understanding the relationship between rainfall anomalies and large-scale systems is critical for driving adaptation and mitigation strategies in socioeconomic sectors. This study therefore aims primarily to investiga... Understanding the relationship between rainfall anomalies and large-scale systems is critical for driving adaptation and mitigation strategies in socioeconomic sectors. This study therefore aims primarily to investigate the correlation between rainfall anomalies in Rwanda during the months of September to December (SOND) with the occurrences of Indian Ocean Dipole (IOD) and El Nino Southern Oscillation (ENSO) events. The study is useful for early warning and forecasting of negative effects associated with extreme rainfall anomalies across the country, using Climate Hazards Group InfraRed Precipitation with Station (CHIRPS), the National Centers for Environmental Prediction (NCEP) National Center for Atmospheric Research (NCAR) reanalysis sea surface temperature and ERA5 reanalysis datasets, during the period of 1983-2021. Both empirical orthogonal function (EOF), correlation analysis and composite analysis were used to delineate variability, relationship and the related atmospheric circulation between Rwanda seasonal rainfall September to December (SOND) with Indian Ocean Dipole (IOD) and El-Nino Southern Oscillation (ENSO). The results for Empirical Orthogonal Function (EOF) for the reconstructed rainfall data set showed three modes. EOF-1, EOF-2 and EOF-3 with their total variance of 63.6%, 16.5% and 4.8%, Indian ocean dipole (IOD) events resulted to a strong positive correlation of rainfall anomalies and Dipole model index (DMI) (r = 0.42, p value = 0.001, DF = 37) significant at 95% confidence level. The composite analysis for the reanalysis dataset was carried out to show the circulation patterns during four different events correlated with September to December seasonal rainfall in Rwanda using T-test at 95% confidence level. Wind anomaly revealed that there was a convergence of south westerly winds and easterly wind over the study area during positive Indian Ocean Diploe (PIOD) and PIOD with El Nino concurrence event years. The finding of this study will contribute to the enhancement of SOND seasonal rainfall forecasting and the reduction of vulnerability during IOD (ENSO) event years. 展开更多
关键词 CORRELATION Rainfall Anomalies Rwanda indian ocean dipole El Nino Southern Oscillation
下载PDF
Characteristics and triggering mechanisms of early negative Indian Ocean Dipole
2
作者 Yue Fang Shuangwen Sun +2 位作者 Yongcan Zu Jianhu Wang Lin Feng 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第3期59-65,共7页
Negative Indian Ocean Dipole(nIOD)can exert great impacts on global climate and can also strongly influence the climate in China.Early nIOD is a major type of nIOD,which can induce more pronounced climate anomalies in... Negative Indian Ocean Dipole(nIOD)can exert great impacts on global climate and can also strongly influence the climate in China.Early nIOD is a major type of nIOD,which can induce more pronounced climate anomalies in summer than La Niña-related nIOD.However,the characteristics and triggering mechanisms of early nIOD are unclear.Our results based on reanalysis datasets indicate that the early nIOD and La Niña-related nIOD are the two major types of nIOD,and the former accounts for over one third of all the nIOD events in the past six decades.These two types of nIODs are similar in their intensities,but are different in their spatial patterns and seasonal cycles.The early nIOD,which develops in spring and peaks in summer,is one season earlier than the La Niña-related nIOD.The spatial pattern of the wind anomaly associated with early nIOD exhibits a winter monsoon-like pattern,with strong westerly anomalies in the equatorial Indian Ocean and eastly anomalies in the northern Indian Ocean.Opposite to the triggering mechanism of early positve IOD,the early nIOD is induced by delayed Indian summer monsoon onset.The results of this study are helpful for improving the prediction skill of IOD and its climate impacts. 展开更多
关键词 indian ocean dipole(iod) triggering mechanism indian summer monsoon seasonal cycle negative iod
下载PDF
Circulation Patterns Linked to the Positive Sub-Tropical Indian Ocean Dipole 被引量:1
3
作者 Chibuike Chiedozie IBEBUCHI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第1期110-128,共19页
The positive phase of the subtropical Indian Ocean dipole(SIOD)is one of the climatic modes in the subtropical southern Indian Ocean that influences the austral summer inter-annual rainfall variability in parts of sou... The positive phase of the subtropical Indian Ocean dipole(SIOD)is one of the climatic modes in the subtropical southern Indian Ocean that influences the austral summer inter-annual rainfall variability in parts of southern Africa.This paper examines austral summer rain-bearing circulation types(CTs)in Africa south of the equator that are related to the positive SIOD and the dynamics through which specific rainfall regions in southern Africa can be influenced by this relationship.Four austral summer rain-bearing CTs were obtained.Among the four CTs,the CT that featured(i)enhanced cyclonic activity in the southwest Indian Ocean;(ii)positive widespread rainfall anomaly in the southwest Indian Ocean;and(iii)low-level convergence of moisture fluxes from the tropical South Atlantic Ocean,tropical Indian Ocean,and the southwest Indian Ocean,over the south-central landmass of Africa,was found to be related to the positive SIOD climatic mode.The relationship also implies that positive SIOD can be expected to increase the amplitude and frequency of occurrence of the aforementioned CT.The linkage between the CT related to the positive SIOD and austral summer homogeneous regions of rainfall anomalies in Africa south of the equator showed that it is the principal CT that is related to the inter-annual rainfall variability of the south-central regions of Africa,where the SIOD is already known to significantly influence its rainfall variability.Hence,through the large-scale patterns of atmospheric circulation associated with the CT,the SIOD can influence the spatial distribution and intensity of rainfall over the preferred landmass through enhanced moisture convergence. 展开更多
关键词 subtropical indian ocean dipole circulation types RAINFALL South indian ocean moisture convergence
下载PDF
The Subsurface and Surface Indian Ocean Dipoles and Their Association with ENSO in CMIP6 models
4
作者 Ge SONG Rongcai REN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第6期975-987,共13页
This study assesses the reproducibility of 31 historical simulations from 1850 to 2014 in the Coupled Model Intercomparison Project phase 6(CMIP6) for the subsurface(Sub-IOD) and surface Indian Ocean Dipole(IOD) and t... This study assesses the reproducibility of 31 historical simulations from 1850 to 2014 in the Coupled Model Intercomparison Project phase 6(CMIP6) for the subsurface(Sub-IOD) and surface Indian Ocean Dipole(IOD) and their association with El Ni?o-Southern Oscillation(ENSO). Most CMIP6 models can reproduce the leading east-west dipole oscillation mode of heat content anomalies in the tropical Indian Ocean(TIO) but largely overestimate the amplitude and the dominant period of the Sub-IOD. Associated with the much steeper west-to-east thermocline tilt of the TIO, the vertical coupling between the Sub-IOD and IOD is overly strong in most CMIP6 models compared to that in the Ocean Reanalysis System 4(ORAS4). Related to this, most models also show a much tighter association of Sub-IOD and IOD events with the canonical ENSO than observations. This explains the more(less) regular Sub-IOD and IOD events in autumn in those models with stronger(weaker) surface-subsurface coupling in TIO. Though all model simulations feature a consistently low bias regarding the percentage of the winter–spring Sub-IOD events co-occurring with a Central Pacific(CP) ENSO, the linkage between a westward-centered CP-ENSO and the Sub-IOD that occurs in winter–spring, independent of the IOD, is well reproduced. 展开更多
关键词 CMIP6 subsurface indian ocean dipole surface indian ocean dipole El Niño-Southern Oscillation
下载PDF
Revisiting the Seasonal Evolution of the Indian Ocean Dipole from the Perspective of Process-Based Decomposition
5
作者 ZHANG Guangli FAN Hanjie +3 位作者 HUANG Ke LONG Tong SONG Wei XIE Qiang 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第6期1453-1463,共11页
The seasonal phase-locking feature of the Indian Ocean Dipole(IOD)is well documented.However,the seasonality ten-dency of sea surface temperature anomalies(SSTAs)during the development of the IOD has not been widely i... The seasonal phase-locking feature of the Indian Ocean Dipole(IOD)is well documented.However,the seasonality ten-dency of sea surface temperature anomalies(SSTAs)during the development of the IOD has not been widely investigated.The SSTA tendencies over the two centers of the IOD peak in September-October-November are of different monthly amplitudes.The SSTA tendency over the west pole is small before June-July-August but dramatically increases in July-August-September.Meanwhile,the SSTA tendency over the east pole gradually increases before June-July-August and decreases since then.The growth rate attribution of the SSTAs is achieved by examining the roles of radiative and non-radiative air-sea coupled thermodynamic processes through the climate feedback-response analysis method(CFRAM).The CFRAM results indicate that oceanic dynamic processes largely contribute to the total SSTA tendency for initiating and fueling the IOD SSTAs,similar to previous studies.However,these results cannot ex-plain the monthly amplitudes of SSTA tendency.Four negative feedback processes(cloud radiative feedback,atmospheric dynamic processes,surface sensible,and latent heat flux)together play a damping role opposite to the SSTA tendency.Nevertheless,the sea surface temperature-water vapor feedback shows positive feedback.Specifically,variations in SSTAs can change water vapor con-centrations through evaporation,resulting in anomalous longwave radiation that amplifies the initial SSTAs through positive feedback.The effect of water vapor feedback is well in-phase with the monthly amplitudes of SSTA tendency,suggesting that the water vapor feedback might modulate the seasonally dependent SSTA tendency during the development of the IOD. 展开更多
关键词 indian ocean dipole climate feedback-response analysis method growth rate of the sea surface temperature anomaly seasonally dependent sea surface temperature anomaly water vapor feedback
下载PDF
Impact of Southern Indian ocean dipole via the ITCZ on winter and spring precipitation in China
6
作者 Ran Dong Yuanhong Guan +1 位作者 Wen Zhou Chenguang Guo 《Atmospheric and Oceanic Science Letters》 CSCD 2023年第6期28-33,共6页
本文分析了1979-2021年南印度洋冬季海表面温度特征,印度洋热带辐合带(ITCZ)位置变化及其对中国冬春季降水的影响.EOF分析第一模态表明南印度洋冬季海表面温度异常显示西南-东北反相分布,即南印度洋偶极子模态(SIOD).分离厄尔尼诺-南方... 本文分析了1979-2021年南印度洋冬季海表面温度特征,印度洋热带辐合带(ITCZ)位置变化及其对中国冬春季降水的影响.EOF分析第一模态表明南印度洋冬季海表面温度异常显示西南-东北反相分布,即南印度洋偶极子模态(SIOD).分离厄尔尼诺-南方涛动(ENSO)信号后,纯SIOD事件对同年冬季和次年春季的印度洋ITCZ位置(35°-75°E平均)均有影响,冬季,纯正(负)SIOD事件使印度洋ITCZ往南(北)移动.春季,SIOD则使印度洋ITCZ移动方向与冬季相反,且移动幅度更大.冬,春季长江中下游地区(MLYR)的降水量与印度洋ITCZ位置分别呈正,负相关.同时,在纯正(负)SIOD事件下,冬,春季MLYR的降水分别减少,增加,可见印度洋ITCZ位置变化可能是SIOD影响MLYR冬,春季降水的媒介之一. 展开更多
关键词 南印度洋偶极子 ENSO ITCZ 降水
下载PDF
The Role of Barrier Layer in Southeastern Arabian Sea During the Development of Positive Indian Ocean Dipole Events 被引量:4
7
作者 GUO Feiyan LIU Qinyu +1 位作者 ZHENG Xiao-Tong SUN Shan 《Journal of Ocean University of China》 SCIE CAS 2013年第2期245-252,共8页
Using data from Argo and simple ocean data assimilation (SODA), the role of the barrier layer (BL) in the southeastern Arabian Sea (SEAS: 60°E-75°E, 0°-10°N) is investigated during the development ... Using data from Argo and simple ocean data assimilation (SODA), the role of the barrier layer (BL) in the southeastern Arabian Sea (SEAS: 60°E-75°E, 0°-10°N) is investigated during the development of positive Indian Ocean Dipole (IOD) events from 1960 to 2008. It is found that warmer sea surface temperature (SST) in the northern Indian Ocean appears in June in the SEAS. This warm SST accompanying anomalous southeastern wind persists for six months and a thicker BL and a corresponding thinner mixed layer in the SEAS contribute to the SST warming during the IOD formation period. The excessive precipitation during this period helps to form a thicker BL and a thinner mixed layer, resulting in a higher SST in the SEAS. Warm SST in the SEAS and cold SST to the southeast of the SEAS intensify the southeasterly anomaly in the tropical Indian Ocean, which transports more moisture to the SEAS, and then induces more precipitation there. The ocean-atmosphere interaction process among wind, precipitation, BL and SST is very important for the anomalous warming in the SEAS during the development of positive IOD events. 展开更多
关键词 sea surface temperature (SST) mixed layer barrier layer indian ocean dipole (iod PERSISTENCE precipitation southeastern Arabian Sea
下载PDF
Indian Ocean Dipole Response to Global Warming: A Multi-Member Study with CCSM4 被引量:1
8
作者 ZHOU Zhen-Qiang XIE Shang-Ping +1 位作者 ZHENG Xiao-Tong LIU Qinyu 《Journal of Ocean University of China》 SCIE CAS 2013年第2期209-215,共7页
Based on a coupled ocean-atmosphere model, the response of the Indian Ocean Dipole (IOD) mode to global warming is investigated with a six member ensemble of simulations for the period 1850-2100. The model can simulat... Based on a coupled ocean-atmosphere model, the response of the Indian Ocean Dipole (IOD) mode to global warming is investigated with a six member ensemble of simulations for the period 1850-2100. The model can simulate the IOD features rea-listically, including the east-west dipole pattern and the phase locking in boreal autumn. The ensemble analysis suppresses internal variability and isolates the radiative forced response. In response to increasing greenhouse gases, a weakening of the Walker circula-tion leads to the easterly wind anomalies in the equatorial Indian Ocean and the shoaling thermocline in the eastern equatorial Indian Ocean (EEIO), and sea surface temperature and precipitation changes show an IOD-like pattern in the equatorial Indian Ocean. Al-though the thermocline feedback intensifies with shoaling, the interannual variability of the IOD mode surprisingly weakens under global warming. The zonal wind feedback of IOD is found to weaken as well, due to decreased precipitation in the EEIO. Therefore, the atmospheric feedback decreases much more than the oceanic feedback increases, causing the decreased IOD variance in this model. 展开更多
关键词 indian ocean dipole (iod multi-member ensemble analysis global warming ocean-atmospheric interaction CCSM4
下载PDF
The Relationship between Extreme Precipitation Events in East Africa during the Short Rainy Season and Indian Ocean Sea Surface Temperature
9
作者 Jafari Swalehe Chobo Liwei Huo 《Journal of Geoscience and Environment Protection》 2024年第9期1-16,共16页
The East African short rainy season (October-November-December) is one of the major flood seasons in the East African region. The amount of rainfall during the short rainy season is closely related to the lives of the... The East African short rainy season (October-November-December) is one of the major flood seasons in the East African region. The amount of rainfall during the short rainy season is closely related to the lives of the people and the socio-economic development of the area. By using precipitation data and sea surface temperature data, this study reveals the spatial and temporal variation patterns of extreme precipitation during the East African short rainy season. Key findings include significant rainfall variability, with Tanzania experiencing the highest amounts in December due to the southward shift of the Intertropical Convergence Zone (ITCZ), while other regions receive less than 100 mm. Extreme rainfall events (90th percentiles) are evenly distributed, averaging 2 to 10 days annually. Historical data shows maximum seasonal rainfall often peaks at 15 mm, with frequent occurrences of daily rainfall exceeding 10 mm during OND. Additionally, a positive correlation (0.48) between OND precipitation extremes and Indian Ocean Dipole (IOD) anomalies is statistically significant. These findings highlight the climatic variability and potential trends in extreme rainfall events in East Africa, providing valuable insights for regional climate adaptation strategies. 展开更多
关键词 East Africa Sea Surface Temperature (SST) Extreme Rainfall Short Rains Season indian ocean dipole (iod)
下载PDF
The Influence of the Indian Ocean Dipole on Atmospheric Circulation and Climate 被引量:18
10
作者 李崇银 穆明权 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2001年第5期831-843,共13页
The SST variation in the equatorial Indian Ocean is studied with special interest in analyzing its dipole oscillation feature. The dipole oscillation appears to be stronger in September-November and weaker in January-... The SST variation in the equatorial Indian Ocean is studied with special interest in analyzing its dipole oscillation feature. The dipole oscillation appears to be stronger in September-November and weaker in January-April with higher SST in the west region and lower SST in the east region as the positive phase and higher SST in the east region and lower SST in the west region as the negative phase. Generally, the amplitude of the positive phase is larger than the negative phase. The interannual variation (4-5 year period) and the interdecadal variation (25-30 year period) also exist in the dipole. The analyses also showed the significant impact of the Indian Ocean dipole on the Asian monsoon activity, because the lower tropospheric wind fields over the Southern Asia, the Tibetan high in the upper troposphere and the subtropical high over the northwestern Pacific are all related to the Indian Ocean dipole. On the other, the Indian Ocean dipole still has significant impact on atmospheric circulation and climate in North America and the southern Indian Ocean region (including Australia and South Africa). 展开更多
关键词 indian ocean dipole sea surface temperature anomaly (SSTA) Asian summer monsoon climate impact
下载PDF
ENSO and Indian Ocean dipole mode in three coupled GCMs 被引量:16
11
作者 YUYongqiang LIUXiying 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2004年第4期581-595,共15页
The simulated ENSO and Indian Ocean dipole (IOD) mode events from three coupled GCMs with the same oceaniccomponent model, CPM0, CPM1 and FGCM0, are compared. The only difference between the CPM0 and theCPM1 comes fro... The simulated ENSO and Indian Ocean dipole (IOD) mode events from three coupled GCMs with the same oceaniccomponent model, CPM0, CPM1 and FGCM0, are compared. The only difference between the CPM0 and theCPM1 comes from the coupling scheme at the airsea interface, e.g., flux anomaly coupling scheme for the former anddirect coupling scheme for the latter. The FGCM0 is also a directly coupled GCM, but its atmospheric componentmodel is the NCAR CCM3 rather than the NCC T63AGCM as in the other two coupled GCMs CPM0 and CPM1.All three coupled models show El Nio-like interannual variability in the tropic Pacific, but the FGCM0 shows a bitstronger amplitude of El Nio events and both the CPM0 and the CPM1 show much weaker amplitude than theobserved one. In the meanwhile, the quasi-biennial variability dominates in the FGCM0 simulations, and 4 a andlonger periods are significant in both the CPM0 and CPM1 models. As the El Nio events simulated by the threecoupled GCMs, the simulated Indian Ocean dipole mode events are stronger from the coupled model FGCM0 andweaker from both the CPM0 and CPM1 models than those from observation. 展开更多
关键词 ENSO indian ocean dipole coupled models
下载PDF
How does the Indian Ocean subtropical dipole trigger the tropical Indian Ocean dipole via the Mascarene high? 被引量:4
12
作者 FENG Junqiao HU Dunxin YU Lejiang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2014年第1期64-76,共13页
The variation in the Indian Ocean is investigated using Hadley center sea surface temperature(SST) data during the period 1958–2010.All the first empirical orthogonal function(EOF) modes of the SST anomalies(SST... The variation in the Indian Ocean is investigated using Hadley center sea surface temperature(SST) data during the period 1958–2010.All the first empirical orthogonal function(EOF) modes of the SST anomalies(SSTA) in different domains represent the basin-wide warming and are closely related to the Pacific El Ni o– Southern Oscillation(ENSO) phenomenon.Further examination suggests that the impact of ENSO on the tropical Indian Ocean is stronger than that on the southern Indian Ocean.The second EOF modes in different domains show different features.It shows a clear east-west SSTA dipole pattern in the tropical Indian Ocean(Indian Ocean dipole,IOD),and a southwest-northeast SSTA dipole in the southern Indian Ocean(Indian Ocean subtropical dipole,IOSD).It is further revealed that the IOSD is also the main structure of the second EOF mode on the whole basin-scale,in which the IOD pattern does not appear.A correlation analysis indicates that an IOSD event observed during the austral summer is highly correlated to the IOD event peaking about 9 months later.One of the possible physical mechanisms underlying this highly significant statistical relationship is proposed.The IOSD and the IOD can occur in sequence with the help of the Mascarene high.The SSTA in the southwestern Indian Ocean persists for several seasons after the mature phase of the IOSD event,likely due to the positive wind–evaporation–SST feedback mechanism.The Mascarene high will be weakened or intensified by this SSTA,which can affect the atmosphere in the tropical region by teleconnection.The pressure gradient between the Mascarene high and the monsoon trough in the tropical Indian Ocean increases(decreases).Hence,an anticyclone(cyclone) circulation appears over the Arabian Sea-India continent.The easterly or westerly anomalies appear in the equatorial Indian Ocean,inducing the onset stage of the IOD.This study shows that the SSTA associated with the IOSD can lead to the onset of IOD with the aid of atmosphere circulation and also explains why some IOD events in the tropical tend to be followed by IOSD in the southern Indian Ocean. 展开更多
关键词 indian ocean dipole indian ocean subtropical dipole Mascarene high
下载PDF
Asymmetry of upper ocean salinity response to the Indian Ocean dipole events as seen from ECCO simulation 被引量:3
13
作者 ZHANG Ying DU Yan +1 位作者 ZHANG Yuhong GAO Shan 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第7期42-49,共8页
The interannual variability of salinity and associated ocean dynamics in the equatorial Indian Ocean is analyzed using observations and numerical simulations by the Estimating the Circulation and Climate of the Ocean ... The interannual variability of salinity and associated ocean dynamics in the equatorial Indian Ocean is analyzed using observations and numerical simulations by the Estimating the Circulation and Climate of the Ocean (ECCO) model. The results show that salinity anomalies in the upper ocean are asymmetrically associated with the Indian Ocean dipole (IOD) events, with stronger response during their positive phases. Further investigations reveal that zonal currents along the equator, the Wyrtki jets, dominate the salinity transport. During the positive IOD events, the Wyrtld jets have stronger westward anomalies. The positive skewness of the IOD explains that the amplitude of the anomalous Wyrtld jets is stronger in the positive IOD events than that in the negative events. 展开更多
关键词 Wyrtld jets salinity transport indian ocean dipole asymmetry
下载PDF
Investigating the Initial Errors that Cause Predictability Barriers for Indian Ocean Dipole Events Using CMIP5 Model Outputs 被引量:2
14
作者 Rong FENG Wansuo DUAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第10期1305-1320,共16页
By analyzing the outputs of the pre-industrial control runs of four models within phase 5 of the Coupled Model Intercomparison Project, the effects of initial sea temperature errors on the predictability of Indian Oce... By analyzing the outputs of the pre-industrial control runs of four models within phase 5 of the Coupled Model Intercomparison Project, the effects of initial sea temperature errors on the predictability of Indian Ocean Dipole events were identified. The initial errors cause a significant winter predictability barrier(WPB) or summer predictability barrier(SPB).The WPB is closely related with the initial errors in the tropical Indian Ocean, where two types of WPB-related initial errors display opposite patterns and a west–east dipole. In contrast, the occurrence of the SPB is mainly caused by initial errors in the tropical Pacific Ocean, where two types of SPB-related initial errors exhibit opposite patterns, with one pole in the subsurface western Pacific Ocean and the other in the upper eastern Pacific Ocean. Both of the WPB-related initial errors grow the fastest in winter, because the coupled system is at its weakest, and finally cause a significant WPB. The SPB-related initial errors develop into a La Ni ?na–like mode in the Pacific Ocean. The negative SST errors in the Pacific Ocean induce westerly wind anomalies in the Indian Ocean by modulating the Walker circulation in the tropical oceans. The westerly wind anomalies first cool the sea surface water in the eastern Indian Ocean. When the climatological wind direction reverses in summer, the wind anomalies in turn warm the sea surface water, finally causing a significant SPB. Therefore, in addition to the spatial patterns of the initial errors, the climatological conditions also play an important role in causing a significant predictability barrier. 展开更多
关键词 PREDICTABILITY barrier INITIAL ERRORS indian ocean dipole targeted observations
下载PDF
Relationship between Indian Ocean dipole and ENSO and their connection with the onset of South China Sea summer monsoon 被引量:3
15
作者 LIANG Zhaoning WEN Zhiping LIANG Jieyi WU Liji WU Naigeng 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2006年第6期22-32,共11页
Using Reynolds and Smith 1950 - 1998 re-constructed monthly-mean SST to discuss the relationship between the ENSO and Indian Ocean dipole (IOD) and their possible connection with the onset of South China Sea summer ... Using Reynolds and Smith 1950 - 1998 re-constructed monthly-mean SST to discuss the relationship between the ENSO and Indian Ocean dipole (IOD) and their possible connection with the onset of South China Sea summer monsoon( SCSSM), the results are obtained as follows : Most of IOD events have a closely positive relation to simultaneous ENSO events in summer and autumn. IOD events in autumn ( mature phase) are also closely related to ENSO events in winter ( mature phase). When these two kinds of events happen in phase, i.e. , positive (negative) IOD events are coupled with E1 Nifío (La Nifía) events, they are always followed by late ( or early) onsets of SCSSM. On the contrary, when these two kinds of events happen out of phase, i.e. positive (negative) IOD events are coupled with La Nifia ( E1 Nifío) events, they are followed by normal onsets of SCSSM. In addition, single IOD events or single ENSO events cannot correspond well to the abnormal onset of SCSSM. 展开更多
关键词 indian ocean dipole ENSO South China Sea summer monsoon early or late onset
下载PDF
Role of the Oceanic Channel in the Relationships between the Basin/Dipole Mode of SST Anomalies in the Tropical Indian Ocean and ENSO Transition 被引量:2
16
作者 Xia ZHAO Dongliang YUAN +2 位作者 Guang YANG Hui ZHOU Jing WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第12期1386-1400,共15页
The relationships between the tropical Indian Ocean basin (IOB)/dipole (IOD) mode of SST anomalies (SSTAs) and ENSO phase transition during the following year are examined and compared in observations for the pe... The relationships between the tropical Indian Ocean basin (IOB)/dipole (IOD) mode of SST anomalies (SSTAs) and ENSO phase transition during the following year are examined and compared in observations for the period 1958-2008. Both partial correlation analysis and composite analysis show that both the positive (negative) phase of the lOB and IOD (independent of each other) in the tropical Indian Ocean are possible contributors to the E1 Nino (La Nifia) decay and phase transition to La Nifia (El Nifio) about one year later. However, the influence on ENSO transition induced by the IOB is stronger than that by the IOD. The SSTAs in the equatorial central-eastern Pacific in the coming year originate from subsurface temperature anomalies in the equatorial eastern Indian and western Pacific Ocean, induced by the IOB and IOD through eastward and upward propagation to meet the surface. During this process, however the contribution of the oceanic channel process between the tropical Indian and Pacific oceans is totally different for the IOB and IOD. For the IOD, the influence of the Indonesian Throughflow transport anomalies could propagate to the eastern Pacific to induce the ENSO transition. For the IOB, the impact of the oceanic channel stays and disappears in the western Pacific without propagation to the eastern Pacific. 展开更多
关键词 indian ocean SSTAs dipole mode basin mode ENSO transition oceanic channel
下载PDF
The Spatial Patterns of Initial Errors Related to the “Winter Predictability Barrier” of the Indian Ocean Dipole 被引量:5
17
作者 FENG Rong DUAN Wan-Suo 《Atmospheric and Oceanic Science Letters》 CSCD 2014年第5期406-410,共5页
In this study, using the Geophysical Fluid Dynamics Laboratory Climate Model version 2pl (GFDL CM2pl) coupled model, the winter predictability barrier (WPB) is found to exist in the model not only in the growing p... In this study, using the Geophysical Fluid Dynamics Laboratory Climate Model version 2pl (GFDL CM2pl) coupled model, the winter predictability barrier (WPB) is found to exist in the model not only in the growing phase but also the Indian Ocean dipole (IOD) decaying phase of positive events due to the effect of initial errors. In particular, the WPB is stronger in the growing phase than in the decaying phase. These results indicate that initial errors can cause the WPB. The domi- nant patterns of the initial errors that cause the occurrence of the WPB often present an eastern-western dipole both in the surface and subsurface temperature components. These initial errors tend to concentrate in a few areas, and these areas may represent the sensitive areas of the predictions of positive IOD events. By increasing observations over these areas and eliminating initial errors here, the WPB phenomenon may be largely weakened and the forecast skill greatly improved. 展开更多
关键词 indian ocean dipole winter predictabilitybarrier initial errors sensitive areas
下载PDF
The Positive Indian Ocean Dipole–like Response in the Tropical Indian Ocean to Global Warming 被引量:2
18
作者 Yiyong LUO Jian LU +1 位作者 Fukai LIU Xiuquan WAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第4期476-488,共13页
Climate models project a positive Indian Ocean Dipole (plOD)-like SST response in the tropical Indian Ocean to global warming, By employing the Community Earth System Model and applying an overriding technique to it... Climate models project a positive Indian Ocean Dipole (plOD)-like SST response in the tropical Indian Ocean to global warming, By employing the Community Earth System Model and applying an overriding technique to its ocean component (version 2 of the Parallel Ocean Program), this study investigates the similarities and differences of the formation mechanisms for the changes in the tropical Indian Ocean during the plOD versus global warming. Results show that their formation processes and related seasonality are quite similar; in particular, wind-thermocline-SST feedback is the leading mechanism in producing the anomalous cooling over the eastern tropics in both cases. Some differences are also fbund, including the fact that the cooling effect of the vertical advection over the eastern tropical Indian Ocean is dominated by the anomalous vertical velocity during the plOD but by the anomalous upper-ocean stratification under global warming. These findings are lhrther examined through an analysis of the mixed layer heat budget. 展开更多
关键词 indian ocean dipole positive indian ocean dipole-like response global warming Bjerknes feedback
下载PDF
Variations in the eastern Indian Ocean warm pool and its relation to the dipole in the tropical Indian Ocean 被引量:3
19
作者 张启龙 侯一筠 +1 位作者 齐庆华 白学志 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2009年第3期640-649,共10页
Based on the monthly average SST and 850 hPa monthly average wind data,the seasonal,interannual and long-term variations in the eastern Indian Ocean warm pool(EIWP) and its relationship to the Indian Ocean Dipole(IOD)... Based on the monthly average SST and 850 hPa monthly average wind data,the seasonal,interannual and long-term variations in the eastern Indian Ocean warm pool(EIWP) and its relationship to the Indian Ocean Dipole(IOD),and its response to the wind over the Indian Ocean are analyzed in this study.The results show that the distribution range,boundary and area of the EIWP exhibited obviously seasonal and interannual variations associated with the ENSO cycles.Further analysis suggests that the EIWP had obvious long-term trend in its bound edge and area,which indicated the EIWP migrated westwards by about 14 longitudes for its west edge,southwards by about 5 latitudes for its south edge and increased by 3.52×106 km2 for its area,respectively,from 1950 to 2002.The correlation and composite analyses show that the anomalous westward and northward displacements of the EIWP caused by the easterly wind anomaly and the southerly wind anomaly over the eastern equatorial Indian Ocean played an important and direct role in the formation of the IOD. 展开更多
关键词 the indian ocean warm pool ENSO dipole
下载PDF
A dipole mode at thermocline layer in the tropical Indian Ocean 被引量:2
20
作者 田纪伟 刘慧卿 钱维宏 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2003年第1期15-24,共10页
Temperature data at different layers of the past 45 years were studied and we found adiploe mode in the thermocline layer (DMT): anomalously cold sea temperature off the coast of Sumatra and warm sea temperature in th... Temperature data at different layers of the past 45 years were studied and we found adiploe mode in the thermocline layer (DMT): anomalously cold sea temperature off the coast of Sumatra and warm sea temperature in the western Indian Ocean. First, we analyzed the temperature and the temperature anomaly (TA) along the equatorial Indian Ocean in different layers. This shows that stronger cold and warm TA signals appeared at subsurface than at the surface in the tropical Indian O-cean. This result shows that there may be a strong dipole mode pattern in the subsurface tropical Indian Ocean. Secondly we used Empirical Orthogonal Functions (EOF) to analyze the TA at thermocline layer. The first EOF pattern was a dipole mode pattern. Finally we analyzed the correlations between DMT and surface tropical dipole mode (SDM), DMT and Nino 3 SSTA, etc. and these correlations are strong. 展开更多
关键词 Temperature anomaly dipole mode in thermocline layer tropical indian ocean empirical orthogonal function
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部